- 根目录:
- kernel
- rcu
- update.c
/*
* Read-Copy Update mechanism for mutual exclusion
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you can access it online at
* http://www.gnu.org/licenses/gpl-2.0.html.
*
* Copyright IBM Corporation, 2001
*
* Authors: Dipankar Sarma <dipankar@in.ibm.com>
* Manfred Spraul <manfred@colorfullife.com>
*
* Based on the original work by Paul McKenney <paulmck@us.ibm.com>
* and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
* Papers:
* http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
* http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
*
* For detailed explanation of Read-Copy Update mechanism see -
* http://lse.sourceforge.net/locking/rcupdate.html
*
*/
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/smp.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
#include <linux/atomic.h>
#include <linux/bitops.h>
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
#include <linux/mutex.h>
#include <linux/export.h>
#include <linux/hardirq.h>
#include <linux/delay.h>
#include <linux/module.h>
#include <linux/kthread.h>
#include <linux/tick.h>
#define CREATE_TRACE_POINTS
#include "rcu.h"
MODULE_ALIAS("rcupdate");
#ifdef MODULE_PARAM_PREFIX
#undef MODULE_PARAM_PREFIX
#endif
#define MODULE_PARAM_PREFIX "rcupdate."
module_param(rcu_expedited, int, 0);
#ifdef CONFIG_PREEMPT_RCU
/*
* Preemptible RCU implementation for rcu_read_lock().
* Just increment ->rcu_read_lock_nesting, shared state will be updated
* if we block.
*/
void __rcu_read_lock(void)
{
current->rcu_read_lock_nesting++;
barrier(); /* critical section after entry code. */
}
EXPORT_SYMBOL_GPL(__rcu_read_lock);
/*
* Preemptible RCU implementation for rcu_read_unlock().
* Decrement ->rcu_read_lock_nesting. If the result is zero (outermost
* rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
* invoke rcu_read_unlock_special() to clean up after a context switch
* in an RCU read-side critical section and other special cases.
*/
void __rcu_read_unlock(void)
{
struct task_struct *t = current;
if (t->rcu_read_lock_nesting != 1) {
--t->rcu_read_lock_nesting;
} else {
barrier(); /* critical section before exit code. */
t->rcu_read_lock_nesting = INT_MIN;
barrier(); /* assign before ->rcu_read_unlock_special load */
if (unlikely(ACCESS_ONCE(t->rcu_read_unlock_special.s)))
rcu_read_unlock_special(t);
barrier(); /* ->rcu_read_unlock_special load before assign */
t->rcu_read_lock_nesting = 0;
}
#ifdef CONFIG_PROVE_LOCKING
{
int rrln = ACCESS_ONCE(t->rcu_read_lock_nesting);
WARN_ON_ONCE(rrln < 0 && rrln > INT_MIN / 2);
}
#endif /* #ifdef CONFIG_PROVE_LOCKING */
}
EXPORT_SYMBOL_GPL(__rcu_read_unlock);
#endif /* #ifdef CONFIG_PREEMPT_RCU */
#ifdef CONFIG_DEBUG_LOCK_ALLOC
static struct lock_class_key rcu_lock_key;
struct lockdep_map rcu_lock_map =
STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key);
EXPORT_SYMBOL_GPL(rcu_lock_map);
static struct lock_class_key rcu_bh_lock_key;
struct lockdep_map rcu_bh_lock_map =
STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_bh", &rcu_bh_lock_key);
EXPORT_SYMBOL_GPL(rcu_bh_lock_map);
static struct lock_class_key rcu_sched_lock_key;
struct lockdep_map rcu_sched_lock_map =
STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_sched", &rcu_sched_lock_key);
EXPORT_SYMBOL_GPL(rcu_sched_lock_map);
static struct lock_class_key rcu_callback_key;
struct lockdep_map rcu_callback_map =
STATIC_LOCKDEP_MAP_INIT("rcu_callback", &rcu_callback_key);
EXPORT_SYMBOL_GPL(rcu_callback_map);
int notrace debug_lockdep_rcu_enabled(void)
{
return rcu_scheduler_active && debug_locks &&
current->lockdep_recursion == 0;
}
EXPORT_SYMBOL_GPL(debug_lockdep_rcu_enabled);
/**
* rcu_read_lock_held() - might we be in RCU read-side critical section?
*
* If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU
* read-side critical section. In absence of CONFIG_DEBUG_LOCK_ALLOC,
* this assumes we are in an RCU read-side critical section unless it can
* prove otherwise. This is useful for debug checks in functions that
* require that they be called within an RCU read-side critical section.
*
* Checks debug_lockdep_rcu_enabled() to prevent false positives during boot
* and while lockdep is disabled.
*
* Note that rcu_read_lock() and the matching rcu_read_unlock() must
* occur in the same context, for example, it is illegal to invoke
* rcu_read_unlock() in process context if the matching rcu_read_lock()
* was invoked from within an irq handler.
*
* Note that rcu_read_lock() is disallowed if the CPU is either idle or
* offline from an RCU perspective, so check for those as well.
*/
int rcu_read_lock_held(void)
{
if (!debug_lockdep_rcu_enabled())
return 1;
if (!rcu_is_watching())
return 0;
if (!rcu_lockdep_current_cpu_online())
return 0;
return lock_is_held(&rcu_lock_map);
}
EXPORT_SYMBOL_GPL(rcu_read_lock_held);
/**
* rcu_read_lock_bh_held() - might we be in RCU-bh read-side critical section?
*
* Check for bottom half being disabled, which covers both the
* CONFIG_PROVE_RCU and not cases. Note that if someone uses
* rcu_read_lock_bh(), but then later enables BH, lockdep (if enabled)
* will show the situation. This is useful for debug checks in functions
* that require that they be called within an RCU read-side critical
* section.
*
* Check debug_lockdep_rcu_enabled() to prevent false positives during boot.
*
* Note that rcu_read_lock() is disallowed if the CPU is either idle or
* offline from an RCU perspective, so check for those as well.
*/
int rcu_read_lock_bh_held(void)
{
if (!debug_lockdep_rcu_enabled())
return 1;
if (!rcu_is_watching())
return 0;
if (!rcu_lockdep_current_cpu_online())
return 0;
return in_softirq() || irqs_disabled();
}
EXPORT_SYMBOL_GPL(rcu_read_lock_bh_held);
#endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
struct rcu_synchronize {
struct rcu_head head;
struct completion completion;
};
/*
* Awaken the corresponding synchronize_rcu() instance now that a
* grace period has elapsed.
*/
static void wakeme_after_rcu(struct rcu_head *head)
{
struct rcu_synchronize *rcu;
rcu = container_of(head, struct rcu_synchronize, head);
complete(&rcu->completion);
}
void wait_rcu_gp(call_rcu_func_t crf)
{
struct rcu_synchronize rcu;
init_rcu_head_on_stack(&rcu.head);
init_completion(&rcu.completion);
/* Will wake me after RCU finished. */
crf(&rcu.head, wakeme_after_rcu);
/* Wait for it. */
wait_for_completion(&rcu.completion);
destroy_rcu_head_on_stack(&rcu.head);
}
EXPORT_SYMBOL_GPL(wait_rcu_gp);
#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
void init_rcu_head(struct rcu_head *head)
{
debug_object_init(head, &rcuhead_debug_descr);
}
void destroy_rcu_head(struct rcu_head *head)
{
debug_object_free(head, &rcuhead_debug_descr);
}
/*
* fixup_activate is called when:
* - an active object is activated
* - an unknown object is activated (might be a statically initialized object)
* Activation is performed internally by call_rcu().
*/
static int rcuhead_fixup_activate(void *addr, enum debug_obj_state state)
{
struct rcu_head *head = addr;
switch (state) {
case ODEBUG_STATE_NOTAVAILABLE:
/*
* This is not really a fixup. We just make sure that it is
* tracked in the object tracker.
*/
debug_object_init(head, &rcuhead_debug_descr);
debug_object_activate(head, &rcuhead_debug_descr);
return 0;
default:
return 1;
}
}
/**
* init_rcu_head_on_stack() - initialize on-stack rcu_head for debugobjects
* @head: pointer to rcu_head structure to be initialized
*
* This function informs debugobjects of a new rcu_head structure that
* has been allocated as an auto variable on the stack. This function
* is not required for rcu_head structures that are statically defined or
* that are dynamically allocated on the heap. This function has no
* effect for !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
*/
void init_rcu_head_on_stack(struct rcu_head *head)
{
debug_object_init_on_stack(head, &rcuhead_debug_descr);
}
EXPORT_SYMBOL_GPL(init_rcu_head_on_stack);
/**
* destroy_rcu_head_on_stack() - destroy on-stack rcu_head for debugobjects
* @head: pointer to rcu_head structure to be initialized
*
* This function informs debugobjects that an on-stack rcu_head structure
* is about to go out of scope. As with init_rcu_head_on_stack(), this
* function is not required for rcu_head structures that are statically
* defined or that are dynamically allocated on the heap. Also as with
* init_rcu_head_on_stack(), this function has no effect for
* !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
*/
void destroy_rcu_head_on_stack(struct rcu_head *head)
{
debug_object_free(head, &rcuhead_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_rcu_head_on_stack);
struct debug_obj_descr rcuhead_debug_descr = {
.name = "rcu_head",
.fixup_activate = rcuhead_fixup_activate,
};
EXPORT_SYMBOL_GPL(rcuhead_debug_descr);
#endif /* #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD */
#if defined(CONFIG_TREE_RCU) || defined(CONFIG_TREE_PREEMPT_RCU) || defined(CONFIG_RCU_TRACE)
void do_trace_rcu_torture_read(const char *rcutorturename, struct rcu_head *rhp,
unsigned long secs,
unsigned long c_old, unsigned long c)
{
trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c);
}
EXPORT_SYMBOL_GPL(do_trace_rcu_torture_read);
#else
#define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
do { } while (0)
#endif
#ifdef CONFIG_RCU_STALL_COMMON
#ifdef CONFIG_PROVE_RCU
#define RCU_STALL_DELAY_DELTA (5 * HZ)
#else
#define RCU_STALL_DELAY_DELTA 0
#endif
int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
static int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;
module_param(rcu_cpu_stall_suppress, int, 0644);
module_param(rcu_cpu_stall_timeout, int, 0644);
int rcu_jiffies_till_stall_check(void)
{
int till_stall_check = ACCESS_ONCE(rcu_cpu_stall_timeout);
/*
* Limit check must be consistent with the Kconfig limits
* for CONFIG_RCU_CPU_STALL_TIMEOUT.
*/
if (till_stall_check < 3) {
ACCESS_ONCE(rcu_cpu_stall_timeout) = 3;
till_stall_check = 3;
} else if (till_stall_check > 300) {
ACCESS_ONCE(rcu_cpu_stall_timeout) = 300;
till_stall_check = 300;
}
return till_stall_check * HZ + RCU_STALL_DELAY_DELTA;
}
void rcu_sysrq_start(void)
{
if (!rcu_cpu_stall_suppress)
rcu_cpu_stall_suppress = 2;
}
void rcu_sysrq_end(void)
{
if (rcu_cpu_stall_suppress == 2)
rcu_cpu_stall_suppress = 0;
}
static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
{
rcu_cpu_stall_suppress = 1;
return NOTIFY_DONE;
}
static struct notifier_block rcu_panic_block = {
.notifier_call = rcu_panic,
};
static int __init check_cpu_stall_init(void)
{
atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
return 0;
}
early_initcall(check_cpu_stall_init);
#endif /* #ifdef CONFIG_RCU_STALL_COMMON */
#ifdef CONFIG_TASKS_RCU
/*
* Simple variant of RCU whose quiescent states are voluntary context switch,
* user-space execution, and idle. As such, grace periods can take one good
* long time. There are no read-side primitives similar to rcu_read_lock()
* and rcu_read_unlock() because this implementation is intended to get
* the system into a safe state for some of the manipulations involved in
* tracing and the like. Finally, this implementation does not support
* high call_rcu_tasks() rates from multiple CPUs. If this is required,
* per-CPU callback lists will be needed.
*/
/* Global list of callbacks and associated lock. */
static struct rcu_head *rcu_tasks_cbs_head;
static struct rcu_head **rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
static DECLARE_WAIT_QUEUE_HEAD(rcu_tasks_cbs_wq);
static DEFINE_RAW_SPINLOCK(rcu_tasks_cbs_lock);
/* Track exiting tasks in order to allow them to be waited for. */
DEFINE_SRCU(tasks_rcu_exit_srcu);
/* Control stall timeouts. Disable with <= 0, otherwise jiffies till stall. */
static int rcu_task_stall_timeout __read_mostly = HZ * 60 * 10;
module_param(rcu_task_stall_timeout, int, 0644);
static void rcu_spawn_tasks_kthread(void);
/*
* Post an RCU-tasks callback. First call must be from process context
* after the scheduler if fully operational.
*/
void call_rcu_tasks(struct rcu_head *rhp, void (*func)(struct rcu_head *rhp))
{
unsigned long flags;
bool needwake;
rhp->next = NULL;
rhp->func = func;
raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
needwake = !rcu_tasks_cbs_head;
*rcu_tasks_cbs_tail = rhp;
rcu_tasks_cbs_tail = &rhp->next;
raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
if (needwake) {
rcu_spawn_tasks_kthread();
wake_up(&rcu_tasks_cbs_wq);
}
}
EXPORT_SYMBOL_GPL(call_rcu_tasks);
/**
* synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed.
*
* Control will return to the caller some time after a full rcu-tasks
* grace period has elapsed, in other words after all currently
* executing rcu-tasks read-side critical sections have elapsed. These
* read-side critical sections are delimited by calls to schedule(),
* cond_resched_rcu_qs(), idle execution, userspace execution, calls
* to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched().
*
* This is a very specialized primitive, intended only for a few uses in
* tracing and other situations requiring manipulation of function
* preambles and profiling hooks. The synchronize_rcu_tasks() function
* is not (yet) intended for heavy use from multiple CPUs.
*
* Note that this guarantee implies further memory-ordering guarantees.
* On systems with more than one CPU, when synchronize_rcu_tasks() returns,
* each CPU is guaranteed to have executed a full memory barrier since the
* end of its last RCU-tasks read-side critical section whose beginning
* preceded the call to synchronize_rcu_tasks(). In addition, each CPU
* having an RCU-tasks read-side critical section that extends beyond
* the return from synchronize_rcu_tasks() is guaranteed to have executed
* a full memory barrier after the beginning of synchronize_rcu_tasks()
* and before the beginning of that RCU-tasks read-side critical section.
* Note that these guarantees include CPUs that are offline, idle, or
* executing in user mode, as well as CPUs that are executing in the kernel.
*
* Furthermore, if CPU A invoked synchronize_rcu_tasks(), which returned
* to its caller on CPU B, then both CPU A and CPU B are guaranteed
* to have executed a full memory barrier during the execution of
* synchronize_rcu_tasks() -- even if CPU A and CPU B are the same CPU
* (but again only if the system has more than one CPU).
*/
void synchronize_rcu_tasks(void)
{
/* Complain if the scheduler has not started. */
rcu_lockdep_assert(!rcu_scheduler_active,
"synchronize_rcu_tasks called too soon");
/* Wait for the grace period. */
wait_rcu_gp(call_rcu_tasks);
}
EXPORT_SYMBOL_GPL(synchronize_rcu_tasks);
/**
* rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks.
*
* Although the current implementation is guaranteed to wait, it is not
* obligated to, for example, if there are no pending callbacks.
*/
void rcu_barrier_tasks(void)
{
/* There is only one callback queue, so this is easy. ;-) */
synchronize_rcu_tasks();
}
EXPORT_SYMBOL_GPL(rcu_barrier_tasks);
/* See if tasks are still holding out, complain if so. */
static void check_holdout_task(struct task_struct *t,
bool needreport, bool *firstreport)
{
int cpu;
if (!ACCESS_ONCE(t->rcu_tasks_holdout) ||
t->rcu_tasks_nvcsw != ACCESS_ONCE(t->nvcsw) ||
!ACCESS_ONCE(t->on_rq) ||
(IS_ENABLED(CONFIG_NO_HZ_FULL) &&
!is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) {
ACCESS_ONCE(t->rcu_tasks_holdout) = false;
list_del_init(&t->rcu_tasks_holdout_list);
put_task_struct(t);
return;
}
if (!needreport)
return;
if (*firstreport) {
pr_err("INFO: rcu_tasks detected stalls on tasks:\n");
*firstreport = false;
}
cpu = task_cpu(t);
pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n",
t, ".I"[is_idle_task(t)],
"N."[cpu < 0 || !tick_nohz_full_cpu(cpu)],
t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout,
t->rcu_tasks_idle_cpu, cpu);
sched_show_task(t);
}
/* RCU-tasks kthread that detects grace periods and invokes callbacks. */
static int __noreturn rcu_tasks_kthread(void *arg)
{
unsigned long flags;
struct task_struct *g, *t;
unsigned long lastreport;
struct rcu_head *list;
struct rcu_head *next;
LIST_HEAD(rcu_tasks_holdouts);
/* FIXME: Add housekeeping affinity. */
/*
* Each pass through the following loop makes one check for
* newly arrived callbacks, and, if there are some, waits for
* one RCU-tasks grace period and then invokes the callbacks.
* This loop is terminated by the system going down. ;-)
*/
for (;;) {
/* Pick up any new callbacks. */
raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
list = rcu_tasks_cbs_head;
rcu_tasks_cbs_head = NULL;
rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
/* If there were none, wait a bit and start over. */
if (!list) {
wait_event_interruptible(rcu_tasks_cbs_wq,
rcu_tasks_cbs_head);
if (!rcu_tasks_cbs_head) {
WARN_ON(signal_pending(current));
schedule_timeout_interruptible(HZ/10);
}
continue;
}
/*
* Wait for all pre-existing t->on_rq and t->nvcsw
* transitions to complete. Invoking synchronize_sched()
* suffices because all these transitions occur with
* interrupts disabled. Without this synchronize_sched(),
* a read-side critical section that started before the
* grace period might be incorrectly seen as having started
* after the grace period.
*
* This synchronize_sched() also dispenses with the
* need for a memory barrier on the first store to
* ->rcu_tasks_holdout, as it forces the store to happen
* after the beginning of the grace period.
*/
synchronize_sched();
/*
* There were callbacks, so we need to wait for an
* RCU-tasks grace period. Start off by scanning
* the task list for tasks that are not already
* voluntarily blocked. Mark these tasks and make
* a list of them in rcu_tasks_holdouts.
*/
rcu_read_lock();
for_each_process_thread(g, t) {
if (t != current && ACCESS_ONCE(t->on_rq) &&
!is_idle_task(t)) {
get_task_struct(t);
t->rcu_tasks_nvcsw = ACCESS_ONCE(t->nvcsw);
ACCESS_ONCE(t->rcu_tasks_holdout) = true;
list_add(&t->rcu_tasks_holdout_list,
&rcu_tasks_holdouts);
}
}
rcu_read_unlock();
/*
* Wait for tasks that are in the process of exiting.
* This does only part of the job, ensuring that all
* tasks that were previously exiting reach the point
* where they have disabled preemption, allowing the
* later synchronize_sched() to finish the job.
*/
synchronize_srcu(&tasks_rcu_exit_srcu);
/*
* Each pass through the following loop scans the list
* of holdout tasks, removing any that are no longer
* holdouts. When the list is empty, we are done.
*/
lastreport = jiffies;
while (!list_empty(&rcu_tasks_holdouts)) {
bool firstreport;
bool needreport;
int rtst;
struct task_struct *t1;
schedule_timeout_interruptible(HZ);
rtst = ACCESS_ONCE(rcu_task_stall_timeout);
needreport = rtst > 0 &&
time_after(jiffies, lastreport + rtst);
if (needreport)
lastreport = jiffies;
firstreport = true;
WARN_ON(signal_pending(current));
list_for_each_entry_safe(t, t1, &rcu_tasks_holdouts,
rcu_tasks_holdout_list) {
check_holdout_task(t, needreport, &firstreport);
cond_resched();
}
}
/*
* Because ->on_rq and ->nvcsw are not guaranteed
* to have a full memory barriers prior to them in the
* schedule() path, memory reordering on other CPUs could
* cause their RCU-tasks read-side critical sections to
* extend past the end of the grace period. However,
* because these ->nvcsw updates are carried out with
* interrupts disabled, we can use synchronize_sched()
* to force the needed ordering on all such CPUs.
*
* This synchronize_sched() also confines all
* ->rcu_tasks_holdout accesses to be within the grace
* period, avoiding the need for memory barriers for
* ->rcu_tasks_holdout accesses.
*
* In addition, this synchronize_sched() waits for exiting
* tasks to complete their final preempt_disable() region
* of execution, cleaning up after the synchronize_srcu()
* above.
*/
synchronize_sched();
/* Invoke the callbacks. */
while (list) {
next = list->next;
local_bh_disable();
list->func(list);
local_bh_enable();
list = next;
cond_resched();
}
schedule_timeout_uninterruptible(HZ/10);
}
}
/* Spawn rcu_tasks_kthread() at first call to call_rcu_tasks(). */
static void rcu_spawn_tasks_kthread(void)
{
static DEFINE_MUTEX(rcu_tasks_kthread_mutex);
static struct task_struct *rcu_tasks_kthread_ptr;
struct task_struct *t;
if (ACCESS_ONCE(rcu_tasks_kthread_ptr)) {
smp_mb(); /* Ensure caller sees full kthread. */
return;
}
mutex_lock(&rcu_tasks_kthread_mutex);
if (rcu_tasks_kthread_ptr) {
mutex_unlock(&rcu_tasks_kthread_mutex);
return;
}
t = kthread_run(rcu_tasks_kthread, NULL, "rcu_tasks_kthread");
BUG_ON(IS_ERR(t));
smp_mb(); /* Ensure others see full kthread. */
ACCESS_ONCE(rcu_tasks_kthread_ptr) = t;
mutex_unlock(&rcu_tasks_kthread_mutex);
}
#endif /* #ifdef CONFIG_TASKS_RCU */