Kernel  |  3.18

下载     查看原文件
C++程序  |  956行  |  29.59 KB
#ifndef _LINUX_CGROUP_H
#define _LINUX_CGROUP_H
/*
 *  cgroup interface
 *
 *  Copyright (C) 2003 BULL SA
 *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
 *
 */

#include <linux/sched.h>
#include <linux/cpumask.h>
#include <linux/nodemask.h>
#include <linux/rcupdate.h>
#include <linux/rculist.h>
#include <linux/cgroupstats.h>
#include <linux/rwsem.h>
#include <linux/idr.h>
#include <linux/workqueue.h>
#include <linux/fs.h>
#include <linux/percpu-refcount.h>
#include <linux/seq_file.h>
#include <linux/kernfs.h>
#include <linux/wait.h>

#ifdef CONFIG_CGROUPS

struct cgroup_root;
struct cgroup_subsys;
struct cgroup;

extern int cgroup_init_early(void);
extern int cgroup_init(void);
extern void cgroup_fork(struct task_struct *p);
extern void cgroup_post_fork(struct task_struct *p);
extern void cgroup_exit(struct task_struct *p);
extern int cgroupstats_build(struct cgroupstats *stats,
				struct dentry *dentry);

extern int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
			    struct pid *pid, struct task_struct *tsk);

/* define the enumeration of all cgroup subsystems */
#define SUBSYS(_x) _x ## _cgrp_id,
enum cgroup_subsys_id {
#include <linux/cgroup_subsys.h>
	CGROUP_SUBSYS_COUNT,
};
#undef SUBSYS

/*
 * Per-subsystem/per-cgroup state maintained by the system.  This is the
 * fundamental structural building block that controllers deal with.
 *
 * Fields marked with "PI:" are public and immutable and may be accessed
 * directly without synchronization.
 */
struct cgroup_subsys_state {
	/* PI: the cgroup that this css is attached to */
	struct cgroup *cgroup;

	/* PI: the cgroup subsystem that this css is attached to */
	struct cgroup_subsys *ss;

	/* reference count - access via css_[try]get() and css_put() */
	struct percpu_ref refcnt;

	/* PI: the parent css */
	struct cgroup_subsys_state *parent;

	/* siblings list anchored at the parent's ->children */
	struct list_head sibling;
	struct list_head children;

	/*
	 * PI: Subsys-unique ID.  0 is unused and root is always 1.  The
	 * matching css can be looked up using css_from_id().
	 */
	int id;

	unsigned int flags;

	/*
	 * Monotonically increasing unique serial number which defines a
	 * uniform order among all csses.  It's guaranteed that all
	 * ->children lists are in the ascending order of ->serial_nr and
	 * used to allow interrupting and resuming iterations.
	 */
	u64 serial_nr;

	/* percpu_ref killing and RCU release */
	struct rcu_head rcu_head;
	struct work_struct destroy_work;
};

/* bits in struct cgroup_subsys_state flags field */
enum {
	CSS_NO_REF	= (1 << 0), /* no reference counting for this css */
	CSS_ONLINE	= (1 << 1), /* between ->css_online() and ->css_offline() */
	CSS_RELEASED	= (1 << 2), /* refcnt reached zero, released */
};

/**
 * css_get - obtain a reference on the specified css
 * @css: target css
 *
 * The caller must already have a reference.
 */
static inline void css_get(struct cgroup_subsys_state *css)
{
	if (!(css->flags & CSS_NO_REF))
		percpu_ref_get(&css->refcnt);
}

/**
 * css_tryget - try to obtain a reference on the specified css
 * @css: target css
 *
 * Obtain a reference on @css unless it already has reached zero and is
 * being released.  This function doesn't care whether @css is on or
 * offline.  The caller naturally needs to ensure that @css is accessible
 * but doesn't have to be holding a reference on it - IOW, RCU protected
 * access is good enough for this function.  Returns %true if a reference
 * count was successfully obtained; %false otherwise.
 */
static inline bool css_tryget(struct cgroup_subsys_state *css)
{
	if (!(css->flags & CSS_NO_REF))
		return percpu_ref_tryget(&css->refcnt);
	return true;
}

/**
 * css_tryget_online - try to obtain a reference on the specified css if online
 * @css: target css
 *
 * Obtain a reference on @css if it's online.  The caller naturally needs
 * to ensure that @css is accessible but doesn't have to be holding a
 * reference on it - IOW, RCU protected access is good enough for this
 * function.  Returns %true if a reference count was successfully obtained;
 * %false otherwise.
 */
static inline bool css_tryget_online(struct cgroup_subsys_state *css)
{
	if (!(css->flags & CSS_NO_REF))
		return percpu_ref_tryget_live(&css->refcnt);
	return true;
}

/**
 * css_put - put a css reference
 * @css: target css
 *
 * Put a reference obtained via css_get() and css_tryget_online().
 */
static inline void css_put(struct cgroup_subsys_state *css)
{
	if (!(css->flags & CSS_NO_REF))
		percpu_ref_put(&css->refcnt);
}

/* bits in struct cgroup flags field */
enum {
	/* Control Group requires release notifications to userspace */
	CGRP_NOTIFY_ON_RELEASE,
	/*
	 * Clone the parent's configuration when creating a new child
	 * cpuset cgroup.  For historical reasons, this option can be
	 * specified at mount time and thus is implemented here.
	 */
	CGRP_CPUSET_CLONE_CHILDREN,
};

struct cgroup {
	/* self css with NULL ->ss, points back to this cgroup */
	struct cgroup_subsys_state self;

	unsigned long flags;		/* "unsigned long" so bitops work */

	/*
	 * idr allocated in-hierarchy ID.
	 *
	 * ID 0 is not used, the ID of the root cgroup is always 1, and a
	 * new cgroup will be assigned with a smallest available ID.
	 *
	 * Allocating/Removing ID must be protected by cgroup_mutex.
	 */
	int id;

	/*
	 * If this cgroup contains any tasks, it contributes one to
	 * populated_cnt.  All children with non-zero popuplated_cnt of
	 * their own contribute one.  The count is zero iff there's no task
	 * in this cgroup or its subtree.
	 */
	int populated_cnt;

	struct kernfs_node *kn;		/* cgroup kernfs entry */
	struct kernfs_node *populated_kn; /* kn for "cgroup.subtree_populated" */

	/*
	 * The bitmask of subsystems enabled on the child cgroups.
	 * ->subtree_control is the one configured through
	 * "cgroup.subtree_control" while ->child_subsys_mask is the
	 * effective one which may have more subsystems enabled.
	 * Controller knobs are made available iff it's enabled in
	 * ->subtree_control.
	 */
	unsigned int subtree_control;
	unsigned int child_subsys_mask;

	/* Private pointers for each registered subsystem */
	struct cgroup_subsys_state __rcu *subsys[CGROUP_SUBSYS_COUNT];

	struct cgroup_root *root;

	/*
	 * List of cgrp_cset_links pointing at css_sets with tasks in this
	 * cgroup.  Protected by css_set_lock.
	 */
	struct list_head cset_links;

	/*
	 * On the default hierarchy, a css_set for a cgroup with some
	 * susbsys disabled will point to css's which are associated with
	 * the closest ancestor which has the subsys enabled.  The
	 * following lists all css_sets which point to this cgroup's css
	 * for the given subsystem.
	 */
	struct list_head e_csets[CGROUP_SUBSYS_COUNT];

	/*
	 * list of pidlists, up to two for each namespace (one for procs, one
	 * for tasks); created on demand.
	 */
	struct list_head pidlists;
	struct mutex pidlist_mutex;

	/* used to wait for offlining of csses */
	wait_queue_head_t offline_waitq;

	/* used to schedule release agent */
	struct work_struct release_agent_work;
};

#define MAX_CGROUP_ROOT_NAMELEN 64

/* cgroup_root->flags */
enum {
	CGRP_ROOT_SANE_BEHAVIOR	= (1 << 0), /* __DEVEL__sane_behavior specified */
	CGRP_ROOT_NOPREFIX	= (1 << 1), /* mounted subsystems have no named prefix */
	CGRP_ROOT_XATTR		= (1 << 2), /* supports extended attributes */
};

/*
 * A cgroup_root represents the root of a cgroup hierarchy, and may be
 * associated with a kernfs_root to form an active hierarchy.  This is
 * internal to cgroup core.  Don't access directly from controllers.
 */
struct cgroup_root {
	struct kernfs_root *kf_root;

	/* The bitmask of subsystems attached to this hierarchy */
	unsigned int subsys_mask;

	/* Unique id for this hierarchy. */
	int hierarchy_id;

	/* The root cgroup.  Root is destroyed on its release. */
	struct cgroup cgrp;

	/* Number of cgroups in the hierarchy, used only for /proc/cgroups */
	atomic_t nr_cgrps;

	/* A list running through the active hierarchies */
	struct list_head root_list;

	/* Hierarchy-specific flags */
	unsigned int flags;

	/* IDs for cgroups in this hierarchy */
	struct idr cgroup_idr;

	/* The path to use for release notifications. */
	char release_agent_path[PATH_MAX];

	/* The name for this hierarchy - may be empty */
	char name[MAX_CGROUP_ROOT_NAMELEN];
};

/*
 * A css_set is a structure holding pointers to a set of
 * cgroup_subsys_state objects. This saves space in the task struct
 * object and speeds up fork()/exit(), since a single inc/dec and a
 * list_add()/del() can bump the reference count on the entire cgroup
 * set for a task.
 */

struct css_set {

	/* Reference count */
	atomic_t refcount;

	/*
	 * List running through all cgroup groups in the same hash
	 * slot. Protected by css_set_lock
	 */
	struct hlist_node hlist;

	/*
	 * Lists running through all tasks using this cgroup group.
	 * mg_tasks lists tasks which belong to this cset but are in the
	 * process of being migrated out or in.  Protected by
	 * css_set_rwsem, but, during migration, once tasks are moved to
	 * mg_tasks, it can be read safely while holding cgroup_mutex.
	 */
	struct list_head tasks;
	struct list_head mg_tasks;

	/*
	 * List of cgrp_cset_links pointing at cgroups referenced from this
	 * css_set.  Protected by css_set_lock.
	 */
	struct list_head cgrp_links;

	/* the default cgroup associated with this css_set */
	struct cgroup *dfl_cgrp;

	/*
	 * Set of subsystem states, one for each subsystem. This array is
	 * immutable after creation apart from the init_css_set during
	 * subsystem registration (at boot time).
	 */
	struct cgroup_subsys_state *subsys[CGROUP_SUBSYS_COUNT];

	/*
	 * List of csets participating in the on-going migration either as
	 * source or destination.  Protected by cgroup_mutex.
	 */
	struct list_head mg_preload_node;
	struct list_head mg_node;

	/*
	 * If this cset is acting as the source of migration the following
	 * two fields are set.  mg_src_cgrp is the source cgroup of the
	 * on-going migration and mg_dst_cset is the destination cset the
	 * target tasks on this cset should be migrated to.  Protected by
	 * cgroup_mutex.
	 */
	struct cgroup *mg_src_cgrp;
	struct css_set *mg_dst_cset;

	/*
	 * On the default hierarhcy, ->subsys[ssid] may point to a css
	 * attached to an ancestor instead of the cgroup this css_set is
	 * associated with.  The following node is anchored at
	 * ->subsys[ssid]->cgroup->e_csets[ssid] and provides a way to
	 * iterate through all css's attached to a given cgroup.
	 */
	struct list_head e_cset_node[CGROUP_SUBSYS_COUNT];

	/* For RCU-protected deletion */
	struct rcu_head rcu_head;
};

/*
 * struct cftype: handler definitions for cgroup control files
 *
 * When reading/writing to a file:
 *	- the cgroup to use is file->f_dentry->d_parent->d_fsdata
 *	- the 'cftype' of the file is file->f_dentry->d_fsdata
 */

/* cftype->flags */
enum {
	CFTYPE_ONLY_ON_ROOT	= (1 << 0),	/* only create on root cgrp */
	CFTYPE_NOT_ON_ROOT	= (1 << 1),	/* don't create on root cgrp */
	CFTYPE_NO_PREFIX	= (1 << 3),	/* (DON'T USE FOR NEW FILES) no subsys prefix */

	/* internal flags, do not use outside cgroup core proper */
	__CFTYPE_ONLY_ON_DFL	= (1 << 16),	/* only on default hierarchy */
	__CFTYPE_NOT_ON_DFL	= (1 << 17),	/* not on default hierarchy */
};

#define MAX_CFTYPE_NAME		64

struct cftype {
	/*
	 * By convention, the name should begin with the name of the
	 * subsystem, followed by a period.  Zero length string indicates
	 * end of cftype array.
	 */
	char name[MAX_CFTYPE_NAME];
	int private;
	/*
	 * If not 0, file mode is set to this value, otherwise it will
	 * be figured out automatically
	 */
	umode_t mode;

	/*
	 * The maximum length of string, excluding trailing nul, that can
	 * be passed to write.  If < PAGE_SIZE-1, PAGE_SIZE-1 is assumed.
	 */
	size_t max_write_len;

	/* CFTYPE_* flags */
	unsigned int flags;

	/*
	 * Fields used for internal bookkeeping.  Initialized automatically
	 * during registration.
	 */
	struct cgroup_subsys *ss;	/* NULL for cgroup core files */
	struct list_head node;		/* anchored at ss->cfts */
	struct kernfs_ops *kf_ops;

	/*
	 * read_u64() is a shortcut for the common case of returning a
	 * single integer. Use it in place of read()
	 */
	u64 (*read_u64)(struct cgroup_subsys_state *css, struct cftype *cft);
	/*
	 * read_s64() is a signed version of read_u64()
	 */
	s64 (*read_s64)(struct cgroup_subsys_state *css, struct cftype *cft);

	/* generic seq_file read interface */
	int (*seq_show)(struct seq_file *sf, void *v);

	/* optional ops, implement all or none */
	void *(*seq_start)(struct seq_file *sf, loff_t *ppos);
	void *(*seq_next)(struct seq_file *sf, void *v, loff_t *ppos);
	void (*seq_stop)(struct seq_file *sf, void *v);

	/*
	 * write_u64() is a shortcut for the common case of accepting
	 * a single integer (as parsed by simple_strtoull) from
	 * userspace. Use in place of write(); return 0 or error.
	 */
	int (*write_u64)(struct cgroup_subsys_state *css, struct cftype *cft,
			 u64 val);
	/*
	 * write_s64() is a signed version of write_u64()
	 */
	int (*write_s64)(struct cgroup_subsys_state *css, struct cftype *cft,
			 s64 val);

	/*
	 * write() is the generic write callback which maps directly to
	 * kernfs write operation and overrides all other operations.
	 * Maximum write size is determined by ->max_write_len.  Use
	 * of_css/cft() to access the associated css and cft.
	 */
	ssize_t (*write)(struct kernfs_open_file *of,
			 char *buf, size_t nbytes, loff_t off);

#ifdef CONFIG_DEBUG_LOCK_ALLOC
	struct lock_class_key	lockdep_key;
#endif
};

extern struct cgroup_root cgrp_dfl_root;
extern struct css_set init_css_set;

/**
 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
 * @cgrp: the cgroup of interest
 *
 * The default hierarchy is the v2 interface of cgroup and this function
 * can be used to test whether a cgroup is on the default hierarchy for
 * cases where a subsystem should behave differnetly depending on the
 * interface version.
 *
 * The set of behaviors which change on the default hierarchy are still
 * being determined and the mount option is prefixed with __DEVEL__.
 *
 * List of changed behaviors:
 *
 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
 *   and "name" are disallowed.
 *
 * - When mounting an existing superblock, mount options should match.
 *
 * - Remount is disallowed.
 *
 * - rename(2) is disallowed.
 *
 * - "tasks" is removed.  Everything should be at process granularity.  Use
 *   "cgroup.procs" instead.
 *
 * - "cgroup.procs" is not sorted.  pids will be unique unless they got
 *   recycled inbetween reads.
 *
 * - "release_agent" and "notify_on_release" are removed.  Replacement
 *   notification mechanism will be implemented.
 *
 * - "cgroup.clone_children" is removed.
 *
 * - "cgroup.subtree_populated" is available.  Its value is 0 if the cgroup
 *   and its descendants contain no task; otherwise, 1.  The file also
 *   generates kernfs notification which can be monitored through poll and
 *   [di]notify when the value of the file changes.
 *
 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
 *   take masks of ancestors with non-empty cpus/mems, instead of being
 *   moved to an ancestor.
 *
 * - cpuset: a task can be moved into an empty cpuset, and again it takes
 *   masks of ancestors.
 *
 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
 *   is not created.
 *
 * - blkcg: blk-throttle becomes properly hierarchical.
 *
 * - debug: disallowed on the default hierarchy.
 */
static inline bool cgroup_on_dfl(const struct cgroup *cgrp)
{
	return cgrp->root == &cgrp_dfl_root;
}

/* no synchronization, the result can only be used as a hint */
static inline bool cgroup_has_tasks(struct cgroup *cgrp)
{
	return !list_empty(&cgrp->cset_links);
}

/* returns ino associated with a cgroup */
static inline ino_t cgroup_ino(struct cgroup *cgrp)
{
	return cgrp->kn->ino;
}

/* cft/css accessors for cftype->write() operation */
static inline struct cftype *of_cft(struct kernfs_open_file *of)
{
	return of->kn->priv;
}

struct cgroup_subsys_state *of_css(struct kernfs_open_file *of);

/* cft/css accessors for cftype->seq_*() operations */
static inline struct cftype *seq_cft(struct seq_file *seq)
{
	return of_cft(seq->private);
}

static inline struct cgroup_subsys_state *seq_css(struct seq_file *seq)
{
	return of_css(seq->private);
}

/*
 * Name / path handling functions.  All are thin wrappers around the kernfs
 * counterparts and can be called under any context.
 */

static inline int cgroup_name(struct cgroup *cgrp, char *buf, size_t buflen)
{
	return kernfs_name(cgrp->kn, buf, buflen);
}

static inline char * __must_check cgroup_path(struct cgroup *cgrp, char *buf,
					      size_t buflen)
{
	return kernfs_path(cgrp->kn, buf, buflen);
}

static inline void pr_cont_cgroup_name(struct cgroup *cgrp)
{
	pr_cont_kernfs_name(cgrp->kn);
}

static inline void pr_cont_cgroup_path(struct cgroup *cgrp)
{
	pr_cont_kernfs_path(cgrp->kn);
}

char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen);

int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts);
int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts);
int cgroup_rm_cftypes(struct cftype *cfts);

bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor);

/*
 * Control Group taskset, used to pass around set of tasks to cgroup_subsys
 * methods.
 */
struct cgroup_taskset;
struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset);
struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset);

/**
 * cgroup_taskset_for_each - iterate cgroup_taskset
 * @task: the loop cursor
 * @tset: taskset to iterate
 */
#define cgroup_taskset_for_each(task, tset)				\
	for ((task) = cgroup_taskset_first((tset)); (task);		\
	     (task) = cgroup_taskset_next((tset)))

/*
 * Control Group subsystem type.
 * See Documentation/cgroups/cgroups.txt for details
 */

struct cgroup_subsys {
	struct cgroup_subsys_state *(*css_alloc)(struct cgroup_subsys_state *parent_css);
	int (*css_online)(struct cgroup_subsys_state *css);
	void (*css_offline)(struct cgroup_subsys_state *css);
	void (*css_free)(struct cgroup_subsys_state *css);
	void (*css_reset)(struct cgroup_subsys_state *css);

	int (*allow_attach)(struct cgroup_subsys_state *css,
			    struct cgroup_taskset *tset);
	int (*can_attach)(struct cgroup_subsys_state *css,
			  struct cgroup_taskset *tset);
	void (*cancel_attach)(struct cgroup_subsys_state *css,
			      struct cgroup_taskset *tset);
	void (*attach)(struct cgroup_subsys_state *css,
		       struct cgroup_taskset *tset);
	void (*fork)(struct task_struct *task);
	void (*exit)(struct cgroup_subsys_state *css,
		     struct cgroup_subsys_state *old_css,
		     struct task_struct *task);
	void (*bind)(struct cgroup_subsys_state *root_css);

	int disabled;
	int early_init;

	/*
	 * If %false, this subsystem is properly hierarchical -
	 * configuration, resource accounting and restriction on a parent
	 * cgroup cover those of its children.  If %true, hierarchy support
	 * is broken in some ways - some subsystems ignore hierarchy
	 * completely while others are only implemented half-way.
	 *
	 * It's now disallowed to create nested cgroups if the subsystem is
	 * broken and cgroup core will emit a warning message on such
	 * cases.  Eventually, all subsystems will be made properly
	 * hierarchical and this will go away.
	 */
	bool broken_hierarchy;
	bool warned_broken_hierarchy;

	/* the following two fields are initialized automtically during boot */
	int id;
#define MAX_CGROUP_TYPE_NAMELEN 32
	const char *name;

	/* link to parent, protected by cgroup_lock() */
	struct cgroup_root *root;

	/* idr for css->id */
	struct idr css_idr;

	/*
	 * List of cftypes.  Each entry is the first entry of an array
	 * terminated by zero length name.
	 */
	struct list_head cfts;

	/*
	 * Base cftypes which are automatically registered.  The two can
	 * point to the same array.
	 */
	struct cftype *dfl_cftypes;	/* for the default hierarchy */
	struct cftype *legacy_cftypes;	/* for the legacy hierarchies */

	/*
	 * A subsystem may depend on other subsystems.  When such subsystem
	 * is enabled on a cgroup, the depended-upon subsystems are enabled
	 * together if available.  Subsystems enabled due to dependency are
	 * not visible to userland until explicitly enabled.  The following
	 * specifies the mask of subsystems that this one depends on.
	 */
	unsigned int depends_on;
};

#define SUBSYS(_x) extern struct cgroup_subsys _x ## _cgrp_subsys;
#include <linux/cgroup_subsys.h>
#undef SUBSYS

/**
 * task_css_set_check - obtain a task's css_set with extra access conditions
 * @task: the task to obtain css_set for
 * @__c: extra condition expression to be passed to rcu_dereference_check()
 *
 * A task's css_set is RCU protected, initialized and exited while holding
 * task_lock(), and can only be modified while holding both cgroup_mutex
 * and task_lock() while the task is alive.  This macro verifies that the
 * caller is inside proper critical section and returns @task's css_set.
 *
 * The caller can also specify additional allowed conditions via @__c, such
 * as locks used during the cgroup_subsys::attach() methods.
 */
#ifdef CONFIG_PROVE_RCU
extern struct mutex cgroup_mutex;
extern struct rw_semaphore css_set_rwsem;
#define task_css_set_check(task, __c)					\
	rcu_dereference_check((task)->cgroups,				\
		lockdep_is_held(&cgroup_mutex) ||			\
		lockdep_is_held(&css_set_rwsem) ||			\
		((task)->flags & PF_EXITING) || (__c))
#else
#define task_css_set_check(task, __c)					\
	rcu_dereference((task)->cgroups)
#endif

/**
 * task_css_check - obtain css for (task, subsys) w/ extra access conds
 * @task: the target task
 * @subsys_id: the target subsystem ID
 * @__c: extra condition expression to be passed to rcu_dereference_check()
 *
 * Return the cgroup_subsys_state for the (@task, @subsys_id) pair.  The
 * synchronization rules are the same as task_css_set_check().
 */
#define task_css_check(task, subsys_id, __c)				\
	task_css_set_check((task), (__c))->subsys[(subsys_id)]

/**
 * task_css_set - obtain a task's css_set
 * @task: the task to obtain css_set for
 *
 * See task_css_set_check().
 */
static inline struct css_set *task_css_set(struct task_struct *task)
{
	return task_css_set_check(task, false);
}

/**
 * task_css - obtain css for (task, subsys)
 * @task: the target task
 * @subsys_id: the target subsystem ID
 *
 * See task_css_check().
 */
static inline struct cgroup_subsys_state *task_css(struct task_struct *task,
						   int subsys_id)
{
	return task_css_check(task, subsys_id, false);
}

/**
 * task_css_is_root - test whether a task belongs to the root css
 * @task: the target task
 * @subsys_id: the target subsystem ID
 *
 * Test whether @task belongs to the root css on the specified subsystem.
 * May be invoked in any context.
 */
static inline bool task_css_is_root(struct task_struct *task, int subsys_id)
{
	return task_css_check(task, subsys_id, true) ==
		init_css_set.subsys[subsys_id];
}

static inline struct cgroup *task_cgroup(struct task_struct *task,
					 int subsys_id)
{
	return task_css(task, subsys_id)->cgroup;
}

struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
					   struct cgroup_subsys_state *parent);

struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss);

/**
 * css_for_each_child - iterate through children of a css
 * @pos: the css * to use as the loop cursor
 * : css whose children to walk
 *
 * Walk 's children.  Must be called under rcu_read_lock().
 *
 * If a subsystem synchronizes ->css_online() and the start of iteration, a
 * css which finished ->css_online() is guaranteed to be visible in the
 * future iterations and will stay visible until the last reference is put.
 * A css which hasn't finished ->css_online() or already finished
 * ->css_offline() may show up during traversal.  It's each subsystem's
 * responsibility to synchronize against on/offlining.
 *
 * It is allowed to temporarily drop RCU read lock during iteration.  The
 * caller is responsible for ensuring that @pos remains accessible until
 * the start of the next iteration by, for example, bumping the css refcnt.
 */
#define css_for_each_child(pos, parent)					\
	for ((pos) = css_next_child(NULL, (parent)); (pos);		\
	     (pos) = css_next_child((pos), (parent)))

struct cgroup_subsys_state *
css_next_descendant_pre(struct cgroup_subsys_state *pos,
			struct cgroup_subsys_state *css);

struct cgroup_subsys_state *
css_rightmost_descendant(struct cgroup_subsys_state *pos);

/**
 * css_for_each_descendant_pre - pre-order walk of a css's descendants
 * @pos: the css * to use as the loop cursor
 * @root: css whose descendants to walk
 *
 * Walk @root's descendants.  @root is included in the iteration and the
 * first node to be visited.  Must be called under rcu_read_lock().
 *
 * If a subsystem synchronizes ->css_online() and the start of iteration, a
 * css which finished ->css_online() is guaranteed to be visible in the
 * future iterations and will stay visible until the last reference is put.
 * A css which hasn't finished ->css_online() or already finished
 * ->css_offline() may show up during traversal.  It's each subsystem's
 * responsibility to synchronize against on/offlining.
 *
 * For example, the following guarantees that a descendant can't escape
 * state updates of its ancestors.
 *
 * my_online(@css)
 * {
 *	Lock @css's parent and @css;
 *	Inherit state from the parent;
 *	Unlock both.
 * }
 *
 * my_update_state(@css)
 * {
 *	css_for_each_descendant_pre(@pos, @css) {
 *		Lock @pos;
 *		if (@pos == @css)
 *			Update @css's state;
 *		else
 *			Verify @pos is alive and inherit state from its parent;
 *		Unlock @pos;
 *	}
 * }
 *
 * As long as the inheriting step, including checking the parent state, is
 * enclosed inside @pos locking, double-locking the parent isn't necessary
 * while inheriting.  The state update to the parent is guaranteed to be
 * visible by walking order and, as long as inheriting operations to the
 * same @pos are atomic to each other, multiple updates racing each other
 * still result in the correct state.  It's guaranateed that at least one
 * inheritance happens for any css after the latest update to its parent.
 *
 * If checking parent's state requires locking the parent, each inheriting
 * iteration should lock and unlock both @pos->parent and @pos.
 *
 * Alternatively, a subsystem may choose to use a single global lock to
 * synchronize ->css_online() and ->css_offline() against tree-walking
 * operations.
 *
 * It is allowed to temporarily drop RCU read lock during iteration.  The
 * caller is responsible for ensuring that @pos remains accessible until
 * the start of the next iteration by, for example, bumping the css refcnt.
 */
#define css_for_each_descendant_pre(pos, css)				\
	for ((pos) = css_next_descendant_pre(NULL, (css)); (pos);	\
	     (pos) = css_next_descendant_pre((pos), (css)))

struct cgroup_subsys_state *
css_next_descendant_post(struct cgroup_subsys_state *pos,
			 struct cgroup_subsys_state *css);

/**
 * css_for_each_descendant_post - post-order walk of a css's descendants
 * @pos: the css * to use as the loop cursor
 * @css: css whose descendants to walk
 *
 * Similar to css_for_each_descendant_pre() but performs post-order
 * traversal instead.  @root is included in the iteration and the last
 * node to be visited.
 *
 * If a subsystem synchronizes ->css_online() and the start of iteration, a
 * css which finished ->css_online() is guaranteed to be visible in the
 * future iterations and will stay visible until the last reference is put.
 * A css which hasn't finished ->css_online() or already finished
 * ->css_offline() may show up during traversal.  It's each subsystem's
 * responsibility to synchronize against on/offlining.
 *
 * Note that the walk visibility guarantee example described in pre-order
 * walk doesn't apply the same to post-order walks.
 */
#define css_for_each_descendant_post(pos, css)				\
	for ((pos) = css_next_descendant_post(NULL, (css)); (pos);	\
	     (pos) = css_next_descendant_post((pos), (css)))

bool css_has_online_children(struct cgroup_subsys_state *css);

/* A css_task_iter should be treated as an opaque object */
struct css_task_iter {
	struct cgroup_subsys		*ss;

	struct list_head		*cset_pos;
	struct list_head		*cset_head;

	struct list_head		*task_pos;
	struct list_head		*tasks_head;
	struct list_head		*mg_tasks_head;
};

void css_task_iter_start(struct cgroup_subsys_state *css,
			 struct css_task_iter *it);
struct task_struct *css_task_iter_next(struct css_task_iter *it);
void css_task_iter_end(struct css_task_iter *it);

int cgroup_attach_task_all(struct task_struct *from, struct task_struct *);
int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from);

struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
						       struct cgroup_subsys *ss);

/*
 * Default Android check for whether the current process is allowed to move a
 * task across cgroups, either because CAP_SYS_NICE is set or because the uid
 * of the calling process is the same as the moved task or because we are
 * running as root.
 * Returns 0 if this is allowed, or -EACCES otherwise.
 */
int subsys_cgroup_allow_attach(struct cgroup_subsys_state *css,
			       struct cgroup_taskset *tset);


#else /* !CONFIG_CGROUPS */

static inline int cgroup_init_early(void) { return 0; }
static inline int cgroup_init(void) { return 0; }
static inline void cgroup_fork(struct task_struct *p) {}
static inline void cgroup_post_fork(struct task_struct *p) {}
static inline void cgroup_exit(struct task_struct *p) {}

static inline int cgroupstats_build(struct cgroupstats *stats,
					struct dentry *dentry)
{
	return -EINVAL;
}

/* No cgroups - nothing to do */
static inline int cgroup_attach_task_all(struct task_struct *from,
					 struct task_struct *t)
{
	return 0;
}

static inline int subsys_cgroup_allow_attach(struct cgroup_subsys_state *css,
					     void *tset)
{
	return -EINVAL;
}
#endif /* !CONFIG_CGROUPS */

#endif /* _LINUX_CGROUP_H */