- 根目录:
- drivers
- staging
- vt6655
- device_main.c
/*
* Copyright (c) 1996, 2003 VIA Networking Technologies, Inc.
* All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* File: device_main.c
*
* Purpose: driver entry for initial, open, close, tx and rx.
*
* Author: Lyndon Chen
*
* Date: Jan 8, 2003
*
* Functions:
*
* vt6655_probe - module initial (insmod) driver entry
* vt6655_remove - module remove entry
* vt6655_init_info - device structure resource allocation function
* device_free_info - device structure resource free function
* device_get_pci_info - get allocated pci io/mem resource
* device_print_info - print out resource
* device_open - allocate dma/descripter resource & initial mac/bbp function
* device_xmit - asynchrous data tx function
* device_intr - interrupt handle function
* device_set_multi - set mac filter
* device_ioctl - ioctl entry
* device_close - shutdown mac/bbp & free dma/descripter resource
* device_rx_srv - rx service function
* device_receive_frame - rx data function
* device_alloc_rx_buf - rx buffer pre-allocated function
* device_alloc_frag_buf - rx fragement pre-allocated function
* device_free_tx_buf - free tx buffer function
* device_free_frag_buf- free de-fragement buffer
* device_dma0_tx_80211- tx 802.11 frame via dma0
* device_dma0_xmit- tx PS bufferred frame via dma0
* device_init_rd0_ring- initial rd dma0 ring
* device_init_rd1_ring- initial rd dma1 ring
* device_init_td0_ring- initial tx dma0 ring buffer
* device_init_td1_ring- initial tx dma1 ring buffer
* device_init_registers- initial MAC & BBP & RF internal registers.
* device_init_rings- initial tx/rx ring buffer
* device_init_defrag_cb- initial & allocate de-fragement buffer.
* device_free_rings- free all allocated ring buffer
* device_tx_srv- tx interrupt service function
*
* Revision History:
*/
#undef __NO_VERSION__
#include <linux/file.h>
#include "device.h"
#include "card.h"
#include "channel.h"
#include "baseband.h"
#include "mac.h"
#include "tether.h"
#include "wmgr.h"
#include "wctl.h"
#include "power.h"
#include "wcmd.h"
#include "iocmd.h"
#include "tcrc.h"
#include "rxtx.h"
#include "wroute.h"
#include "bssdb.h"
#include "hostap.h"
#include "wpactl.h"
#include "ioctl.h"
#include "iwctl.h"
#include "dpc.h"
#include "datarate.h"
#include "rf.h"
#include "iowpa.h"
#include <linux/delay.h>
#include <linux/kthread.h>
#include <linux/slab.h>
/*--------------------- Static Definitions -------------------------*/
//
// Define module options
//
MODULE_AUTHOR("VIA Networking Technologies, Inc., <lyndonchen@vntek.com.tw>");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("VIA Networking Solomon-A/B/G Wireless LAN Adapter Driver");
#define DEVICE_PARAM(N, D)
#define RX_DESC_MIN0 16
#define RX_DESC_MAX0 128
#define RX_DESC_DEF0 32
DEVICE_PARAM(RxDescriptors0, "Number of receive descriptors0");
#define RX_DESC_MIN1 16
#define RX_DESC_MAX1 128
#define RX_DESC_DEF1 32
DEVICE_PARAM(RxDescriptors1, "Number of receive descriptors1");
#define TX_DESC_MIN0 16
#define TX_DESC_MAX0 128
#define TX_DESC_DEF0 32
DEVICE_PARAM(TxDescriptors0, "Number of transmit descriptors0");
#define TX_DESC_MIN1 16
#define TX_DESC_MAX1 128
#define TX_DESC_DEF1 64
DEVICE_PARAM(TxDescriptors1, "Number of transmit descriptors1");
#define IP_ALIG_DEF 0
/* IP_byte_align[] is used for IP header unsigned long byte aligned
0: indicate the IP header won't be unsigned long byte aligned.(Default) .
1: indicate the IP header will be unsigned long byte aligned.
In some environment, the IP header should be unsigned long byte aligned,
or the packet will be droped when we receive it. (eg: IPVS)
*/
DEVICE_PARAM(IP_byte_align, "Enable IP header dword aligned");
#define INT_WORKS_DEF 20
#define INT_WORKS_MIN 10
#define INT_WORKS_MAX 64
DEVICE_PARAM(int_works, "Number of packets per interrupt services");
#define CHANNEL_MIN 1
#define CHANNEL_MAX 14
#define CHANNEL_DEF 6
DEVICE_PARAM(Channel, "Channel number");
/* PreambleType[] is the preamble length used for transmit.
0: indicate allows long preamble type
1: indicate allows short preamble type
*/
#define PREAMBLE_TYPE_DEF 1
DEVICE_PARAM(PreambleType, "Preamble Type");
#define RTS_THRESH_MIN 512
#define RTS_THRESH_MAX 2347
#define RTS_THRESH_DEF 2347
DEVICE_PARAM(RTSThreshold, "RTS threshold");
#define FRAG_THRESH_MIN 256
#define FRAG_THRESH_MAX 2346
#define FRAG_THRESH_DEF 2346
DEVICE_PARAM(FragThreshold, "Fragmentation threshold");
#define DATA_RATE_MIN 0
#define DATA_RATE_MAX 13
#define DATA_RATE_DEF 13
/* datarate[] index
0: indicate 1 Mbps 0x02
1: indicate 2 Mbps 0x04
2: indicate 5.5 Mbps 0x0B
3: indicate 11 Mbps 0x16
4: indicate 6 Mbps 0x0c
5: indicate 9 Mbps 0x12
6: indicate 12 Mbps 0x18
7: indicate 18 Mbps 0x24
8: indicate 24 Mbps 0x30
9: indicate 36 Mbps 0x48
10: indicate 48 Mbps 0x60
11: indicate 54 Mbps 0x6c
12: indicate 72 Mbps 0x90
13: indicate auto rate
*/
DEVICE_PARAM(ConnectionRate, "Connection data rate");
#define OP_MODE_DEF 0
DEVICE_PARAM(OPMode, "Infrastruct, adhoc, AP mode ");
/* OpMode[] is used for transmit.
0: indicate infrastruct mode used
1: indicate adhoc mode used
2: indicate AP mode used
*/
/* PSMode[]
0: indicate disable power saving mode
1: indicate enable power saving mode
*/
#define PS_MODE_DEF 0
DEVICE_PARAM(PSMode, "Power saving mode");
#define SHORT_RETRY_MIN 0
#define SHORT_RETRY_MAX 31
#define SHORT_RETRY_DEF 8
DEVICE_PARAM(ShortRetryLimit, "Short frame retry limits");
#define LONG_RETRY_MIN 0
#define LONG_RETRY_MAX 15
#define LONG_RETRY_DEF 4
DEVICE_PARAM(LongRetryLimit, "long frame retry limits");
/* BasebandType[] baseband type selected
0: indicate 802.11a type
1: indicate 802.11b type
2: indicate 802.11g type
*/
#define BBP_TYPE_MIN 0
#define BBP_TYPE_MAX 2
#define BBP_TYPE_DEF 2
DEVICE_PARAM(BasebandType, "baseband type");
/* 80211hEnable[]
0: indicate disable 802.11h
1: indicate enable 802.11h
*/
#define X80211h_MODE_DEF 0
DEVICE_PARAM(b80211hEnable, "802.11h mode");
/* 80211hEnable[]
0: indicate disable 802.11h
1: indicate enable 802.11h
*/
#define DIVERSITY_ANT_DEF 0
DEVICE_PARAM(bDiversityANTEnable, "ANT diversity mode");
//
// Static vars definitions
//
static CHIP_INFO chip_info_table[] = {
{ VT3253, "VIA Networking Solomon-A/B/G Wireless LAN Adapter ",
256, 1, DEVICE_FLAGS_IP_ALIGN|DEVICE_FLAGS_TX_ALIGN },
{0, NULL}
};
static const struct pci_device_id vt6655_pci_id_table[] = {
{ PCI_VDEVICE(VIA, 0x3253), (kernel_ulong_t)chip_info_table},
{ 0, }
};
/*--------------------- Static Functions --------------------------*/
static int vt6655_probe(struct pci_dev *pcid, const struct pci_device_id *ent);
static void vt6655_init_info(struct pci_dev *pcid,
struct vnt_private **ppDevice, PCHIP_INFO);
static void device_free_info(struct vnt_private *pDevice);
static bool device_get_pci_info(struct vnt_private *, struct pci_dev *pcid);
static void device_print_info(struct vnt_private *pDevice);
static void device_init_diversity_timer(struct vnt_private *pDevice);
static int device_open(struct net_device *dev);
static int device_xmit(struct sk_buff *skb, struct net_device *dev);
static irqreturn_t device_intr(int irq, void *dev_instance);
static void device_set_multi(struct net_device *dev);
static int device_close(struct net_device *dev);
static int device_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
#ifdef CONFIG_PM
static int device_notify_reboot(struct notifier_block *, unsigned long event, void *ptr);
static int viawget_suspend(struct pci_dev *pcid, pm_message_t state);
static int viawget_resume(struct pci_dev *pcid);
static struct notifier_block device_notifier = {
.notifier_call = device_notify_reboot,
.next = NULL,
.priority = 0,
};
#endif
static void device_init_rd0_ring(struct vnt_private *pDevice);
static void device_init_rd1_ring(struct vnt_private *pDevice);
static void device_init_defrag_cb(struct vnt_private *pDevice);
static void device_init_td0_ring(struct vnt_private *pDevice);
static void device_init_td1_ring(struct vnt_private *pDevice);
static int device_dma0_tx_80211(struct sk_buff *skb, struct net_device *dev);
//2008-0714<Add>by Mike Liu
static bool device_release_WPADEV(struct vnt_private *pDevice);
static int ethtool_ioctl(struct net_device *dev, void __user *useraddr);
static int device_rx_srv(struct vnt_private *pDevice, unsigned int uIdx);
static int device_tx_srv(struct vnt_private *pDevice, unsigned int uIdx);
static bool device_alloc_rx_buf(struct vnt_private *pDevice, PSRxDesc pDesc);
static void device_init_registers(struct vnt_private *pDevice);
static void device_free_tx_buf(struct vnt_private *pDevice, PSTxDesc pDesc);
static void device_free_td0_ring(struct vnt_private *pDevice);
static void device_free_td1_ring(struct vnt_private *pDevice);
static void device_free_rd0_ring(struct vnt_private *pDevice);
static void device_free_rd1_ring(struct vnt_private *pDevice);
static void device_free_rings(struct vnt_private *pDevice);
static void device_free_frag_buf(struct vnt_private *pDevice);
static int Config_FileGetParameter(unsigned char *string,
unsigned char *dest, unsigned char *source);
/*--------------------- Export Variables --------------------------*/
/*--------------------- Export Functions --------------------------*/
static char *get_chip_name(int chip_id)
{
int i;
for (i = 0; chip_info_table[i].name != NULL; i++)
if (chip_info_table[i].chip_id == chip_id)
break;
return chip_info_table[i].name;
}
static void vt6655_remove(struct pci_dev *pcid)
{
struct vnt_private *pDevice = pci_get_drvdata(pcid);
if (pDevice == NULL)
return;
device_free_info(pDevice);
}
static void device_get_options(struct vnt_private *pDevice)
{
POPTIONS pOpts = &(pDevice->sOpts);
pOpts->nRxDescs0 = RX_DESC_DEF0;
pOpts->nRxDescs1 = RX_DESC_DEF1;
pOpts->nTxDescs[0] = TX_DESC_DEF0;
pOpts->nTxDescs[1] = TX_DESC_DEF1;
pOpts->flags |= DEVICE_FLAGS_IP_ALIGN;
pOpts->int_works = INT_WORKS_DEF;
pOpts->rts_thresh = RTS_THRESH_DEF;
pOpts->frag_thresh = FRAG_THRESH_DEF;
pOpts->data_rate = DATA_RATE_DEF;
pOpts->channel_num = CHANNEL_DEF;
pOpts->flags |= DEVICE_FLAGS_PREAMBLE_TYPE;
pOpts->flags |= DEVICE_FLAGS_OP_MODE;
pOpts->short_retry = SHORT_RETRY_DEF;
pOpts->long_retry = LONG_RETRY_DEF;
pOpts->bbp_type = BBP_TYPE_DEF;
pOpts->flags |= DEVICE_FLAGS_80211h_MODE;
pOpts->flags |= DEVICE_FLAGS_DiversityANT;
}
static void
device_set_options(struct vnt_private *pDevice)
{
unsigned char abyBroadcastAddr[ETH_ALEN] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
unsigned char abySNAP_RFC1042[ETH_ALEN] = {0xAA, 0xAA, 0x03, 0x00, 0x00, 0x00};
unsigned char abySNAP_Bridgetunnel[ETH_ALEN] = {0xAA, 0xAA, 0x03, 0x00, 0x00, 0xF8};
memcpy(pDevice->abyBroadcastAddr, abyBroadcastAddr, ETH_ALEN);
memcpy(pDevice->abySNAP_RFC1042, abySNAP_RFC1042, ETH_ALEN);
memcpy(pDevice->abySNAP_Bridgetunnel, abySNAP_Bridgetunnel, ETH_ALEN);
pDevice->uChannel = pDevice->sOpts.channel_num;
pDevice->wRTSThreshold = pDevice->sOpts.rts_thresh;
pDevice->wFragmentationThreshold = pDevice->sOpts.frag_thresh;
pDevice->byShortRetryLimit = pDevice->sOpts.short_retry;
pDevice->byLongRetryLimit = pDevice->sOpts.long_retry;
pDevice->wMaxTransmitMSDULifetime = DEFAULT_MSDU_LIFETIME;
pDevice->byShortPreamble = (pDevice->sOpts.flags & DEVICE_FLAGS_PREAMBLE_TYPE) ? 1 : 0;
pDevice->byOpMode = (pDevice->sOpts.flags & DEVICE_FLAGS_OP_MODE) ? 1 : 0;
pDevice->ePSMode = (pDevice->sOpts.flags & DEVICE_FLAGS_PS_MODE) ? 1 : 0;
pDevice->b11hEnable = (pDevice->sOpts.flags & DEVICE_FLAGS_80211h_MODE) ? 1 : 0;
pDevice->bDiversityRegCtlON = (pDevice->sOpts.flags & DEVICE_FLAGS_DiversityANT) ? 1 : 0;
pDevice->uConnectionRate = pDevice->sOpts.data_rate;
if (pDevice->uConnectionRate < RATE_AUTO)
pDevice->bFixRate = true;
pDevice->byBBType = pDevice->sOpts.bbp_type;
pDevice->byPacketType = (VIA_PKT_TYPE)pDevice->byBBType;
pDevice->byAutoFBCtrl = AUTO_FB_0;
pDevice->bUpdateBBVGA = true;
pDevice->byFOETuning = 0;
pDevice->byPreambleType = 0;
pr_debug(" uChannel= %d\n", (int)pDevice->uChannel);
pr_debug(" byOpMode= %d\n", (int)pDevice->byOpMode);
pr_debug(" ePSMode= %d\n", (int)pDevice->ePSMode);
pr_debug(" wRTSThreshold= %d\n", (int)pDevice->wRTSThreshold);
pr_debug(" byShortRetryLimit= %d\n", (int)pDevice->byShortRetryLimit);
pr_debug(" byLongRetryLimit= %d\n", (int)pDevice->byLongRetryLimit);
pr_debug(" byPreambleType= %d\n", (int)pDevice->byPreambleType);
pr_debug(" byShortPreamble= %d\n", (int)pDevice->byShortPreamble);
pr_debug(" uConnectionRate= %d\n", (int)pDevice->uConnectionRate);
pr_debug(" byBBType= %d\n", (int)pDevice->byBBType);
pr_debug(" pDevice->b11hEnable= %d\n", (int)pDevice->b11hEnable);
pr_debug(" pDevice->bDiversityRegCtlON= %d\n",
(int)pDevice->bDiversityRegCtlON);
}
static void s_vCompleteCurrentMeasure(struct vnt_private *pDevice,
unsigned char byResult)
{
unsigned int ii;
unsigned long dwDuration = 0;
unsigned char byRPI0 = 0;
for (ii = 1; ii < 8; ii++) {
pDevice->dwRPIs[ii] *= 255;
dwDuration |= *((unsigned short *)(pDevice->pCurrMeasureEID->sReq.abyDuration));
dwDuration <<= 10;
pDevice->dwRPIs[ii] /= dwDuration;
pDevice->abyRPIs[ii] = (unsigned char)pDevice->dwRPIs[ii];
byRPI0 += pDevice->abyRPIs[ii];
}
pDevice->abyRPIs[0] = (0xFF - byRPI0);
if (pDevice->uNumOfMeasureEIDs == 0) {
VNTWIFIbMeasureReport(pDevice->pMgmt,
true,
pDevice->pCurrMeasureEID,
byResult,
pDevice->byBasicMap,
pDevice->byCCAFraction,
pDevice->abyRPIs
);
} else {
VNTWIFIbMeasureReport(pDevice->pMgmt,
false,
pDevice->pCurrMeasureEID,
byResult,
pDevice->byBasicMap,
pDevice->byCCAFraction,
pDevice->abyRPIs
);
CARDbStartMeasure(pDevice, pDevice->pCurrMeasureEID++, pDevice->uNumOfMeasureEIDs);
}
}
//
// Initialisation of MAC & BBP registers
//
static void device_init_registers(struct vnt_private *pDevice)
{
unsigned int ii;
unsigned char byValue;
unsigned char byValue1;
unsigned char byCCKPwrdBm = 0;
unsigned char byOFDMPwrdBm = 0;
int zonetype = 0;
PSMgmtObject pMgmt = &(pDevice->sMgmtObj);
MACbShutdown(pDevice->PortOffset);
BBvSoftwareReset(pDevice->PortOffset);
/* Do MACbSoftwareReset in MACvInitialize */
MACbSoftwareReset(pDevice->PortOffset);
pDevice->bAES = false;
/* Only used in 11g type, sync with ERP IE */
pDevice->bProtectMode = false;
pDevice->bNonERPPresent = false;
pDevice->bBarkerPreambleMd = false;
pDevice->wCurrentRate = RATE_1M;
pDevice->byTopOFDMBasicRate = RATE_24M;
pDevice->byTopCCKBasicRate = RATE_1M;
/* Target to IF pin while programming to RF chip. */
pDevice->byRevId = 0;
/* init MAC */
MACvInitialize(pDevice->PortOffset);
/* Get Local ID */
VNSvInPortB(pDevice->PortOffset + MAC_REG_LOCALID, &pDevice->byLocalID);
spin_lock_irq(&pDevice->lock);
SROMvReadAllContents(pDevice->PortOffset, pDevice->abyEEPROM);
spin_unlock_irq(&pDevice->lock);
/* Get Channel range */
pDevice->byMinChannel = 1;
pDevice->byMaxChannel = CB_MAX_CHANNEL;
/* Get Antena */
byValue = SROMbyReadEmbedded(pDevice->PortOffset, EEP_OFS_ANTENNA);
if (byValue & EEP_ANTINV)
pDevice->bTxRxAntInv = true;
else
pDevice->bTxRxAntInv = false;
byValue &= (EEP_ANTENNA_AUX | EEP_ANTENNA_MAIN);
/* if not set default is All */
if (byValue == 0)
byValue = (EEP_ANTENNA_AUX | EEP_ANTENNA_MAIN);
pDevice->ulDiversityNValue = 100*260;
pDevice->ulDiversityMValue = 100*16;
pDevice->byTMax = 1;
pDevice->byTMax2 = 4;
pDevice->ulSQ3TH = 0;
pDevice->byTMax3 = 64;
if (byValue == (EEP_ANTENNA_AUX | EEP_ANTENNA_MAIN)) {
pDevice->byAntennaCount = 2;
pDevice->byTxAntennaMode = ANT_B;
pDevice->dwTxAntennaSel = 1;
pDevice->dwRxAntennaSel = 1;
if (pDevice->bTxRxAntInv)
pDevice->byRxAntennaMode = ANT_A;
else
pDevice->byRxAntennaMode = ANT_B;
byValue1 = SROMbyReadEmbedded(pDevice->PortOffset,
EEP_OFS_ANTENNA);
if ((byValue1 & 0x08) == 0)
pDevice->bDiversityEnable = false;
else
pDevice->bDiversityEnable = true;
} else {
pDevice->bDiversityEnable = false;
pDevice->byAntennaCount = 1;
pDevice->dwTxAntennaSel = 0;
pDevice->dwRxAntennaSel = 0;
if (byValue & EEP_ANTENNA_AUX) {
pDevice->byTxAntennaMode = ANT_A;
if (pDevice->bTxRxAntInv)
pDevice->byRxAntennaMode = ANT_B;
else
pDevice->byRxAntennaMode = ANT_A;
} else {
pDevice->byTxAntennaMode = ANT_B;
if (pDevice->bTxRxAntInv)
pDevice->byRxAntennaMode = ANT_A;
else
pDevice->byRxAntennaMode = ANT_B;
}
}
pr_debug("bDiversityEnable=[%d],NValue=[%d],MValue=[%d],TMax=[%d],TMax2=[%d]\n",
pDevice->bDiversityEnable, (int)pDevice->ulDiversityNValue,
(int)pDevice->ulDiversityMValue, pDevice->byTMax,
pDevice->byTMax2);
/* zonetype initial */
pDevice->byOriginalZonetype = pDevice->abyEEPROM[EEP_OFS_ZONETYPE];
zonetype = Config_FileOperation(pDevice, false, NULL);
if (zonetype >= 0) {
if ((zonetype == 0) &&
(pDevice->abyEEPROM[EEP_OFS_ZONETYPE] != 0x00)) {
/* for USA */
pDevice->abyEEPROM[EEP_OFS_ZONETYPE] = 0;
pDevice->abyEEPROM[EEP_OFS_MAXCHANNEL] = 0x0B;
pr_debug("Init Zone Type :USA\n");
} else if ((zonetype == 1) &&
(pDevice->abyEEPROM[EEP_OFS_ZONETYPE] != 0x01)) {
/* for Japan */
pDevice->abyEEPROM[EEP_OFS_ZONETYPE] = 0x01;
pDevice->abyEEPROM[EEP_OFS_MAXCHANNEL] = 0x0D;
} else if ((zonetype == 2) &&
(pDevice->abyEEPROM[EEP_OFS_ZONETYPE] != 0x02)) {
/* for Europe */
pDevice->abyEEPROM[EEP_OFS_ZONETYPE] = 0x02;
pDevice->abyEEPROM[EEP_OFS_MAXCHANNEL] = 0x0D;
pr_debug("Init Zone Type :Europe\n");
} else {
if (zonetype != pDevice->abyEEPROM[EEP_OFS_ZONETYPE])
pr_debug("zonetype in file[%02x] mismatch with in EEPROM[%02x]\n",
zonetype,
pDevice->abyEEPROM[EEP_OFS_ZONETYPE]);
else
pr_debug("Read Zonetype file success,use default zonetype setting[%02x]\n",
zonetype);
}
} else {
pr_debug("Read Zonetype file fail,use default zonetype setting[%02x]\n",
SROMbyReadEmbedded(pDevice->PortOffset, EEP_OFS_ZONETYPE));
}
/* Get RFType */
pDevice->byRFType = SROMbyReadEmbedded(pDevice->PortOffset, EEP_OFS_RFTYPE);
/* force change RevID for VT3253 emu */
if ((pDevice->byRFType & RF_EMU) != 0)
pDevice->byRevId = 0x80;
pDevice->byRFType &= RF_MASK;
pr_debug("pDevice->byRFType = %x\n", pDevice->byRFType);
if (!pDevice->bZoneRegExist)
pDevice->byZoneType = pDevice->abyEEPROM[EEP_OFS_ZONETYPE];
pr_debug("pDevice->byZoneType = %x\n", pDevice->byZoneType);
/* Init RF module */
RFbInit(pDevice);
/* Get Desire Power Value */
pDevice->byCurPwr = 0xFF;
pDevice->byCCKPwr = SROMbyReadEmbedded(pDevice->PortOffset, EEP_OFS_PWR_CCK);
pDevice->byOFDMPwrG = SROMbyReadEmbedded(pDevice->PortOffset, EEP_OFS_PWR_OFDMG);
/* Load power Table */
for (ii = 0; ii < CB_MAX_CHANNEL_24G; ii++) {
pDevice->abyCCKPwrTbl[ii + 1] =
SROMbyReadEmbedded(pDevice->PortOffset,
(unsigned char)(ii + EEP_OFS_CCK_PWR_TBL));
if (pDevice->abyCCKPwrTbl[ii + 1] == 0)
pDevice->abyCCKPwrTbl[ii+1] = pDevice->byCCKPwr;
pDevice->abyOFDMPwrTbl[ii + 1] =
SROMbyReadEmbedded(pDevice->PortOffset,
(unsigned char)(ii + EEP_OFS_OFDM_PWR_TBL));
if (pDevice->abyOFDMPwrTbl[ii + 1] == 0)
pDevice->abyOFDMPwrTbl[ii + 1] = pDevice->byOFDMPwrG;
pDevice->abyCCKDefaultPwr[ii + 1] = byCCKPwrdBm;
pDevice->abyOFDMDefaultPwr[ii + 1] = byOFDMPwrdBm;
}
/* recover 12,13 ,14channel for EUROPE by 11 channel */
if (((pDevice->abyEEPROM[EEP_OFS_ZONETYPE] == ZoneType_Japan) ||
(pDevice->abyEEPROM[EEP_OFS_ZONETYPE] == ZoneType_Europe)) &&
(pDevice->byOriginalZonetype == ZoneType_USA)) {
for (ii = 11; ii < 14; ii++) {
pDevice->abyCCKPwrTbl[ii] = pDevice->abyCCKPwrTbl[10];
pDevice->abyOFDMPwrTbl[ii] = pDevice->abyOFDMPwrTbl[10];
}
}
/* Load OFDM A Power Table */
for (ii = 0; ii < CB_MAX_CHANNEL_5G; ii++) {
pDevice->abyOFDMPwrTbl[ii + CB_MAX_CHANNEL_24G + 1] =
SROMbyReadEmbedded(pDevice->PortOffset,
(unsigned char)(ii + EEP_OFS_OFDMA_PWR_TBL));
pDevice->abyOFDMDefaultPwr[ii + CB_MAX_CHANNEL_24G + 1] =
SROMbyReadEmbedded(pDevice->PortOffset,
(unsigned char)(ii + EEP_OFS_OFDMA_PWR_dBm));
}
init_channel_table((void *)pDevice);
if (pDevice->byLocalID > REV_ID_VT3253_B1) {
MACvSelectPage1(pDevice->PortOffset);
VNSvOutPortB(pDevice->PortOffset + MAC_REG_MSRCTL + 1,
(MSRCTL1_TXPWR | MSRCTL1_CSAPAREN));
MACvSelectPage0(pDevice->PortOffset);
}
/* use relative tx timeout and 802.11i D4 */
MACvWordRegBitsOn(pDevice->PortOffset,
MAC_REG_CFG, (CFG_TKIPOPT | CFG_NOTXTIMEOUT));
/* set performance parameter by registry */
MACvSetShortRetryLimit(pDevice->PortOffset, pDevice->byShortRetryLimit);
MACvSetLongRetryLimit(pDevice->PortOffset, pDevice->byLongRetryLimit);
/* reset TSF counter */
VNSvOutPortB(pDevice->PortOffset + MAC_REG_TFTCTL, TFTCTL_TSFCNTRST);
/* enable TSF counter */
VNSvOutPortB(pDevice->PortOffset + MAC_REG_TFTCTL, TFTCTL_TSFCNTREN);
/* initialize BBP registers */
BBbVT3253Init(pDevice);
if (pDevice->bUpdateBBVGA) {
pDevice->byBBVGACurrent = pDevice->abyBBVGA[0];
pDevice->byBBVGANew = pDevice->byBBVGACurrent;
BBvSetVGAGainOffset(pDevice, pDevice->abyBBVGA[0]);
}
BBvSetRxAntennaMode(pDevice->PortOffset, pDevice->byRxAntennaMode);
BBvSetTxAntennaMode(pDevice->PortOffset, pDevice->byTxAntennaMode);
pDevice->byCurrentCh = 0;
/* Set BB and packet type at the same time. */
/* Set Short Slot Time, xIFS, and RSPINF. */
if (pDevice->uConnectionRate == RATE_AUTO)
pDevice->wCurrentRate = RATE_54M;
else
pDevice->wCurrentRate = (unsigned short)pDevice->uConnectionRate;
/* default G Mode */
VNTWIFIbConfigPhyMode(pDevice->pMgmt, PHY_TYPE_11G);
VNTWIFIbConfigPhyMode(pDevice->pMgmt, PHY_TYPE_AUTO);
pDevice->bRadioOff = false;
pDevice->byRadioCtl = SROMbyReadEmbedded(pDevice->PortOffset,
EEP_OFS_RADIOCTL);
pDevice->bHWRadioOff = false;
if (pDevice->byRadioCtl & EEP_RADIOCTL_ENABLE) {
/* Get GPIO */
MACvGPIOIn(pDevice->PortOffset, &pDevice->byGPIO);
if (((pDevice->byGPIO & GPIO0_DATA) &&
!(pDevice->byRadioCtl & EEP_RADIOCTL_INV)) ||
(!(pDevice->byGPIO & GPIO0_DATA) &&
(pDevice->byRadioCtl & EEP_RADIOCTL_INV)))
pDevice->bHWRadioOff = true;
}
if (pDevice->bHWRadioOff || pDevice->bRadioControlOff)
CARDbRadioPowerOff(pDevice);
pMgmt->eScanType = WMAC_SCAN_PASSIVE;
/* get Permanent network address */
SROMvReadEtherAddress(pDevice->PortOffset, pDevice->abyCurrentNetAddr);
pr_debug("Network address = %pM\n", pDevice->abyCurrentNetAddr);
/* reset Tx pointer */
CARDvSafeResetRx(pDevice);
/* reset Rx pointer */
CARDvSafeResetTx(pDevice);
if (pDevice->byLocalID <= REV_ID_VT3253_A1)
MACvRegBitsOn(pDevice->PortOffset, MAC_REG_RCR, RCR_WPAERR);
pDevice->eEncryptionStatus = Ndis802_11EncryptionDisabled;
/* Turn On Rx DMA */
MACvReceive0(pDevice->PortOffset);
MACvReceive1(pDevice->PortOffset);
/* start the adapter */
MACvStart(pDevice->PortOffset);
netif_stop_queue(pDevice->dev);
}
static void device_init_diversity_timer(struct vnt_private *pDevice)
{
init_timer(&pDevice->TimerSQ3Tmax1);
pDevice->TimerSQ3Tmax1.data = (unsigned long) pDevice;
pDevice->TimerSQ3Tmax1.function = (TimerFunction)TimerSQ3CallBack;
pDevice->TimerSQ3Tmax1.expires = RUN_AT(HZ);
init_timer(&pDevice->TimerSQ3Tmax2);
pDevice->TimerSQ3Tmax2.data = (unsigned long) pDevice;
pDevice->TimerSQ3Tmax2.function = (TimerFunction)TimerSQ3CallBack;
pDevice->TimerSQ3Tmax2.expires = RUN_AT(HZ);
init_timer(&pDevice->TimerSQ3Tmax3);
pDevice->TimerSQ3Tmax3.data = (unsigned long) pDevice;
pDevice->TimerSQ3Tmax3.function = (TimerFunction)TimerState1CallBack;
pDevice->TimerSQ3Tmax3.expires = RUN_AT(HZ);
}
static bool device_release_WPADEV(struct vnt_private *pDevice)
{
viawget_wpa_header *wpahdr;
int ii = 0;
//send device close to wpa_supplicnat layer
if (pDevice->bWPADEVUp) {
wpahdr = (viawget_wpa_header *)pDevice->skb->data;
wpahdr->type = VIAWGET_DEVICECLOSE_MSG;
wpahdr->resp_ie_len = 0;
wpahdr->req_ie_len = 0;
skb_put(pDevice->skb, sizeof(viawget_wpa_header));
pDevice->skb->dev = pDevice->wpadev;
skb_reset_mac_header(pDevice->skb);
pDevice->skb->pkt_type = PACKET_HOST;
pDevice->skb->protocol = htons(ETH_P_802_2);
memset(pDevice->skb->cb, 0, sizeof(pDevice->skb->cb));
netif_rx(pDevice->skb);
pDevice->skb = dev_alloc_skb((int)pDevice->rx_buf_sz);
while (pDevice->bWPADEVUp) {
set_current_state(TASK_UNINTERRUPTIBLE);
schedule_timeout(HZ / 20); //wait 50ms
ii++;
if (ii > 20)
break;
}
}
return true;
}
static const struct net_device_ops device_netdev_ops = {
.ndo_open = device_open,
.ndo_stop = device_close,
.ndo_do_ioctl = device_ioctl,
.ndo_start_xmit = device_xmit,
.ndo_set_rx_mode = device_set_multi,
};
static int
vt6655_probe(struct pci_dev *pcid, const struct pci_device_id *ent)
{
static bool bFirst = true;
struct net_device *dev = NULL;
PCHIP_INFO pChip_info = (PCHIP_INFO)ent->driver_data;
struct vnt_private *pDevice;
int rc;
dev = alloc_etherdev(sizeof(*pDevice));
pDevice = netdev_priv(dev);
if (dev == NULL) {
pr_err(DEVICE_NAME ": allocate net device failed\n");
return -ENOMEM;
}
// Chain it all together
SET_NETDEV_DEV(dev, &pcid->dev);
if (bFirst) {
pr_notice("%s Ver. %s\n", DEVICE_FULL_DRV_NAM, DEVICE_VERSION);
pr_notice("Copyright (c) 2003 VIA Networking Technologies, Inc.\n");
bFirst = false;
}
vt6655_init_info(pcid, &pDevice, pChip_info);
pDevice->dev = dev;
if (pci_enable_device(pcid)) {
device_free_info(pDevice);
return -ENODEV;
}
dev->irq = pcid->irq;
#ifdef DEBUG
pr_debug("Before get pci_info memaddr is %x\n", pDevice->memaddr);
#endif
if (!device_get_pci_info(pDevice, pcid)) {
pr_err(DEVICE_NAME ": Failed to find PCI device.\n");
device_free_info(pDevice);
return -ENODEV;
}
#if 1
#ifdef DEBUG
pr_debug("after get pci_info memaddr is %x, io addr is %x,io_size is %d\n", pDevice->memaddr, pDevice->ioaddr, pDevice->io_size);
{
int i;
u32 bar, len;
u32 address[] = {
PCI_BASE_ADDRESS_0,
PCI_BASE_ADDRESS_1,
PCI_BASE_ADDRESS_2,
PCI_BASE_ADDRESS_3,
PCI_BASE_ADDRESS_4,
PCI_BASE_ADDRESS_5,
0};
for (i = 0; address[i]; i++) {
pci_read_config_dword(pcid, address[i], &bar);
pr_debug("bar %d is %x\n", i, bar);
if (!bar) {
pr_debug("bar %d not implemented\n", i);
continue;
}
if (bar & PCI_BASE_ADDRESS_SPACE_IO) {
/* This is IO */
len = bar & (PCI_BASE_ADDRESS_IO_MASK & 0xFFFF);
len = len & ~(len - 1);
pr_debug("IO space: len in IO %x, BAR %d\n", len, i);
} else {
len = bar & 0xFFFFFFF0;
len = ~len + 1;
pr_debug("len in MEM %x, BAR %d\n", len, i);
}
}
}
#endif
#endif
pDevice->PortOffset = ioremap(pDevice->memaddr & PCI_BASE_ADDRESS_MEM_MASK, pDevice->io_size);
if (pDevice->PortOffset == NULL) {
pr_err(DEVICE_NAME ": Failed to IO remapping ..\n");
device_free_info(pDevice);
return -ENODEV;
}
rc = pci_request_regions(pcid, DEVICE_NAME);
if (rc) {
pr_err(DEVICE_NAME ": Failed to find PCI device\n");
device_free_info(pDevice);
return -ENODEV;
}
dev->base_addr = pDevice->ioaddr;
// do reset
if (!MACbSoftwareReset(pDevice->PortOffset)) {
pr_err(DEVICE_NAME ": Failed to access MAC hardware..\n");
device_free_info(pDevice);
return -ENODEV;
}
// initial to reload eeprom
MACvInitialize(pDevice->PortOffset);
MACvReadEtherAddress(pDevice->PortOffset, dev->dev_addr);
device_get_options(pDevice);
device_set_options(pDevice);
//Mask out the options cannot be set to the chip
pDevice->sOpts.flags &= pChip_info->flags;
//Enable the chip specified capabilities
pDevice->flags = pDevice->sOpts.flags | (pChip_info->flags & 0xFF000000UL);
pDevice->tx_80211 = device_dma0_tx_80211;
pDevice->sMgmtObj.pAdapter = (void *)pDevice;
pDevice->pMgmt = &(pDevice->sMgmtObj);
dev->irq = pcid->irq;
dev->netdev_ops = &device_netdev_ops;
dev->wireless_handlers = (struct iw_handler_def *)&iwctl_handler_def;
rc = register_netdev(dev);
if (rc) {
pr_err(DEVICE_NAME " Failed to register netdev\n");
device_free_info(pDevice);
return -ENODEV;
}
device_print_info(pDevice);
pci_set_drvdata(pcid, pDevice);
return 0;
}
static void device_print_info(struct vnt_private *pDevice)
{
struct net_device *dev = pDevice->dev;
pr_info("%s: %s\n", dev->name, get_chip_name(pDevice->chip_id));
pr_info("%s: MAC=%pM IO=0x%lx Mem=0x%lx IRQ=%d\n",
dev->name, dev->dev_addr, (unsigned long)pDevice->ioaddr,
(unsigned long)pDevice->PortOffset, pDevice->dev->irq);
}
static void vt6655_init_info(struct pci_dev *pcid,
struct vnt_private **ppDevice,
PCHIP_INFO pChip_info)
{
memset(*ppDevice, 0, sizeof(**ppDevice));
(*ppDevice)->pcid = pcid;
(*ppDevice)->chip_id = pChip_info->chip_id;
(*ppDevice)->io_size = pChip_info->io_size;
(*ppDevice)->nTxQueues = pChip_info->nTxQueue;
(*ppDevice)->multicast_limit = 32;
spin_lock_init(&((*ppDevice)->lock));
}
static bool device_get_pci_info(struct vnt_private *pDevice,
struct pci_dev *pcid)
{
u16 pci_cmd;
u8 b;
unsigned int cis_addr;
pci_read_config_byte(pcid, PCI_REVISION_ID, &pDevice->byRevId);
pci_read_config_word(pcid, PCI_SUBSYSTEM_ID, &pDevice->SubSystemID);
pci_read_config_word(pcid, PCI_SUBSYSTEM_VENDOR_ID, &pDevice->SubVendorID);
pci_read_config_word(pcid, PCI_COMMAND, (u16 *)&(pci_cmd));
pci_set_master(pcid);
pDevice->memaddr = pci_resource_start(pcid, 0);
pDevice->ioaddr = pci_resource_start(pcid, 1);
cis_addr = pci_resource_start(pcid, 2);
pDevice->pcid = pcid;
pci_read_config_byte(pcid, PCI_COMMAND, &b);
pci_write_config_byte(pcid, PCI_COMMAND, (b|PCI_COMMAND_MASTER));
return true;
}
static void device_free_info(struct vnt_private *pDevice)
{
struct net_device *dev = pDevice->dev;
ASSERT(pDevice);
//2008-0714-01<Add>by chester
device_release_WPADEV(pDevice);
//2008-07-21-01<Add>by MikeLiu
//unregister wpadev
if (wpa_set_wpadev(pDevice, 0) != 0)
pr_err("unregister wpadev fail?\n");
#ifdef HOSTAP
if (dev)
vt6655_hostap_set_hostapd(pDevice, 0, 0);
#endif
if (dev)
unregister_netdev(dev);
if (pDevice->PortOffset)
iounmap(pDevice->PortOffset);
if (pDevice->pcid)
pci_release_regions(pDevice->pcid);
if (dev)
free_netdev(dev);
}
static bool device_init_rings(struct vnt_private *pDevice)
{
void *vir_pool;
/*allocate all RD/TD rings a single pool*/
vir_pool = pci_zalloc_consistent(pDevice->pcid,
pDevice->sOpts.nRxDescs0 * sizeof(SRxDesc) +
pDevice->sOpts.nRxDescs1 * sizeof(SRxDesc) +
pDevice->sOpts.nTxDescs[0] * sizeof(STxDesc) +
pDevice->sOpts.nTxDescs[1] * sizeof(STxDesc),
&pDevice->pool_dma);
if (vir_pool == NULL) {
dev_err(&pDevice->pcid->dev, "allocate desc dma memory failed\n");
return false;
}
pDevice->aRD0Ring = vir_pool;
pDevice->aRD1Ring = vir_pool +
pDevice->sOpts.nRxDescs0 * sizeof(SRxDesc);
pDevice->rd0_pool_dma = pDevice->pool_dma;
pDevice->rd1_pool_dma = pDevice->rd0_pool_dma +
pDevice->sOpts.nRxDescs0 * sizeof(SRxDesc);
pDevice->tx0_bufs = pci_zalloc_consistent(pDevice->pcid,
pDevice->sOpts.nTxDescs[0] * PKT_BUF_SZ +
pDevice->sOpts.nTxDescs[1] * PKT_BUF_SZ +
CB_BEACON_BUF_SIZE +
CB_MAX_BUF_SIZE,
&pDevice->tx_bufs_dma0);
if (pDevice->tx0_bufs == NULL) {
dev_err(&pDevice->pcid->dev, "allocate buf dma memory failed\n");
pci_free_consistent(pDevice->pcid,
pDevice->sOpts.nRxDescs0 * sizeof(SRxDesc) +
pDevice->sOpts.nRxDescs1 * sizeof(SRxDesc) +
pDevice->sOpts.nTxDescs[0] * sizeof(STxDesc) +
pDevice->sOpts.nTxDescs[1] * sizeof(STxDesc),
vir_pool, pDevice->pool_dma
);
return false;
}
pDevice->td0_pool_dma = pDevice->rd1_pool_dma +
pDevice->sOpts.nRxDescs1 * sizeof(SRxDesc);
pDevice->td1_pool_dma = pDevice->td0_pool_dma +
pDevice->sOpts.nTxDescs[0] * sizeof(STxDesc);
// vir_pool: pvoid type
pDevice->apTD0Rings = vir_pool
+ pDevice->sOpts.nRxDescs0 * sizeof(SRxDesc)
+ pDevice->sOpts.nRxDescs1 * sizeof(SRxDesc);
pDevice->apTD1Rings = vir_pool
+ pDevice->sOpts.nRxDescs0 * sizeof(SRxDesc)
+ pDevice->sOpts.nRxDescs1 * sizeof(SRxDesc)
+ pDevice->sOpts.nTxDescs[0] * sizeof(STxDesc);
pDevice->tx1_bufs = pDevice->tx0_bufs +
pDevice->sOpts.nTxDescs[0] * PKT_BUF_SZ;
pDevice->tx_beacon_bufs = pDevice->tx1_bufs +
pDevice->sOpts.nTxDescs[1] * PKT_BUF_SZ;
pDevice->pbyTmpBuff = pDevice->tx_beacon_bufs +
CB_BEACON_BUF_SIZE;
pDevice->tx_bufs_dma1 = pDevice->tx_bufs_dma0 +
pDevice->sOpts.nTxDescs[0] * PKT_BUF_SZ;
pDevice->tx_beacon_dma = pDevice->tx_bufs_dma1 +
pDevice->sOpts.nTxDescs[1] * PKT_BUF_SZ;
return true;
}
static void device_free_rings(struct vnt_private *pDevice)
{
pci_free_consistent(pDevice->pcid,
pDevice->sOpts.nRxDescs0 * sizeof(SRxDesc) +
pDevice->sOpts.nRxDescs1 * sizeof(SRxDesc) +
pDevice->sOpts.nTxDescs[0] * sizeof(STxDesc) +
pDevice->sOpts.nTxDescs[1] * sizeof(STxDesc)
,
pDevice->aRD0Ring, pDevice->pool_dma
);
if (pDevice->tx0_bufs)
pci_free_consistent(pDevice->pcid,
pDevice->sOpts.nTxDescs[0] * PKT_BUF_SZ +
pDevice->sOpts.nTxDescs[1] * PKT_BUF_SZ +
CB_BEACON_BUF_SIZE +
CB_MAX_BUF_SIZE,
pDevice->tx0_bufs, pDevice->tx_bufs_dma0
);
}
static void device_init_rd0_ring(struct vnt_private *pDevice)
{
int i;
dma_addr_t curr = pDevice->rd0_pool_dma;
PSRxDesc pDesc;
/* Init the RD0 ring entries */
for (i = 0; i < pDevice->sOpts.nRxDescs0; i ++, curr += sizeof(SRxDesc)) {
pDesc = &(pDevice->aRD0Ring[i]);
pDesc->pRDInfo = alloc_rd_info();
ASSERT(pDesc->pRDInfo);
if (!device_alloc_rx_buf(pDevice, pDesc))
dev_err(&pDevice->pcid->dev, "can not alloc rx bufs\n");
pDesc->next = &(pDevice->aRD0Ring[(i+1) % pDevice->sOpts.nRxDescs0]);
pDesc->pRDInfo->curr_desc = cpu_to_le32(curr);
pDesc->next_desc = cpu_to_le32(curr + sizeof(SRxDesc));
}
if (i > 0)
pDevice->aRD0Ring[i-1].next_desc = cpu_to_le32(pDevice->rd0_pool_dma);
pDevice->pCurrRD[0] = &(pDevice->aRD0Ring[0]);
}
static void device_init_rd1_ring(struct vnt_private *pDevice)
{
int i;
dma_addr_t curr = pDevice->rd1_pool_dma;
PSRxDesc pDesc;
/* Init the RD1 ring entries */
for (i = 0; i < pDevice->sOpts.nRxDescs1; i ++, curr += sizeof(SRxDesc)) {
pDesc = &(pDevice->aRD1Ring[i]);
pDesc->pRDInfo = alloc_rd_info();
ASSERT(pDesc->pRDInfo);
if (!device_alloc_rx_buf(pDevice, pDesc))
dev_err(&pDevice->pcid->dev, "can not alloc rx bufs\n");
pDesc->next = &(pDevice->aRD1Ring[(i+1) % pDevice->sOpts.nRxDescs1]);
pDesc->pRDInfo->curr_desc = cpu_to_le32(curr);
pDesc->next_desc = cpu_to_le32(curr + sizeof(SRxDesc));
}
if (i > 0)
pDevice->aRD1Ring[i-1].next_desc = cpu_to_le32(pDevice->rd1_pool_dma);
pDevice->pCurrRD[1] = &(pDevice->aRD1Ring[0]);
}
static void device_init_defrag_cb(struct vnt_private *pDevice)
{
int i;
PSDeFragControlBlock pDeF;
/* Init the fragment ctl entries */
for (i = 0; i < CB_MAX_RX_FRAG; i++) {
pDeF = &(pDevice->sRxDFCB[i]);
if (!device_alloc_frag_buf(pDevice, pDeF))
dev_err(&pDevice->pcid->dev, "can not alloc frag bufs\n");
}
pDevice->cbDFCB = CB_MAX_RX_FRAG;
pDevice->cbFreeDFCB = pDevice->cbDFCB;
}
static void device_free_rd0_ring(struct vnt_private *pDevice)
{
int i;
for (i = 0; i < pDevice->sOpts.nRxDescs0; i++) {
PSRxDesc pDesc = &(pDevice->aRD0Ring[i]);
PDEVICE_RD_INFO pRDInfo = pDesc->pRDInfo;
pci_unmap_single(pDevice->pcid, pRDInfo->skb_dma,
pDevice->rx_buf_sz, PCI_DMA_FROMDEVICE);
dev_kfree_skb(pRDInfo->skb);
kfree((void *)pDesc->pRDInfo);
}
}
static void device_free_rd1_ring(struct vnt_private *pDevice)
{
int i;
for (i = 0; i < pDevice->sOpts.nRxDescs1; i++) {
PSRxDesc pDesc = &(pDevice->aRD1Ring[i]);
PDEVICE_RD_INFO pRDInfo = pDesc->pRDInfo;
pci_unmap_single(pDevice->pcid, pRDInfo->skb_dma,
pDevice->rx_buf_sz, PCI_DMA_FROMDEVICE);
dev_kfree_skb(pRDInfo->skb);
kfree((void *)pDesc->pRDInfo);
}
}
static void device_free_frag_buf(struct vnt_private *pDevice)
{
PSDeFragControlBlock pDeF;
int i;
for (i = 0; i < CB_MAX_RX_FRAG; i++) {
pDeF = &(pDevice->sRxDFCB[i]);
if (pDeF->skb)
dev_kfree_skb(pDeF->skb);
}
}
static void device_init_td0_ring(struct vnt_private *pDevice)
{
int i;
dma_addr_t curr;
PSTxDesc pDesc;
curr = pDevice->td0_pool_dma;
for (i = 0; i < pDevice->sOpts.nTxDescs[0]; i++, curr += sizeof(STxDesc)) {
pDesc = &(pDevice->apTD0Rings[i]);
pDesc->pTDInfo = alloc_td_info();
ASSERT(pDesc->pTDInfo);
if (pDevice->flags & DEVICE_FLAGS_TX_ALIGN) {
pDesc->pTDInfo->buf = pDevice->tx0_bufs + (i)*PKT_BUF_SZ;
pDesc->pTDInfo->buf_dma = pDevice->tx_bufs_dma0 + (i)*PKT_BUF_SZ;
}
pDesc->next = &(pDevice->apTD0Rings[(i+1) % pDevice->sOpts.nTxDescs[0]]);
pDesc->pTDInfo->curr_desc = cpu_to_le32(curr);
pDesc->next_desc = cpu_to_le32(curr+sizeof(STxDesc));
}
if (i > 0)
pDevice->apTD0Rings[i-1].next_desc = cpu_to_le32(pDevice->td0_pool_dma);
pDevice->apTailTD[0] = pDevice->apCurrTD[0] = &(pDevice->apTD0Rings[0]);
}
static void device_init_td1_ring(struct vnt_private *pDevice)
{
int i;
dma_addr_t curr;
PSTxDesc pDesc;
/* Init the TD ring entries */
curr = pDevice->td1_pool_dma;
for (i = 0; i < pDevice->sOpts.nTxDescs[1]; i++, curr += sizeof(STxDesc)) {
pDesc = &(pDevice->apTD1Rings[i]);
pDesc->pTDInfo = alloc_td_info();
ASSERT(pDesc->pTDInfo);
if (pDevice->flags & DEVICE_FLAGS_TX_ALIGN) {
pDesc->pTDInfo->buf = pDevice->tx1_bufs + (i) * PKT_BUF_SZ;
pDesc->pTDInfo->buf_dma = pDevice->tx_bufs_dma1 + (i) * PKT_BUF_SZ;
}
pDesc->next = &(pDevice->apTD1Rings[(i + 1) % pDevice->sOpts.nTxDescs[1]]);
pDesc->pTDInfo->curr_desc = cpu_to_le32(curr);
pDesc->next_desc = cpu_to_le32(curr+sizeof(STxDesc));
}
if (i > 0)
pDevice->apTD1Rings[i-1].next_desc = cpu_to_le32(pDevice->td1_pool_dma);
pDevice->apTailTD[1] = pDevice->apCurrTD[1] = &(pDevice->apTD1Rings[0]);
}
static void device_free_td0_ring(struct vnt_private *pDevice)
{
int i;
for (i = 0; i < pDevice->sOpts.nTxDescs[0]; i++) {
PSTxDesc pDesc = &(pDevice->apTD0Rings[i]);
PDEVICE_TD_INFO pTDInfo = pDesc->pTDInfo;
if (pTDInfo->skb_dma && (pTDInfo->skb_dma != pTDInfo->buf_dma))
pci_unmap_single(pDevice->pcid, pTDInfo->skb_dma,
pTDInfo->skb->len, PCI_DMA_TODEVICE);
if (pTDInfo->skb)
dev_kfree_skb(pTDInfo->skb);
kfree((void *)pDesc->pTDInfo);
}
}
static void device_free_td1_ring(struct vnt_private *pDevice)
{
int i;
for (i = 0; i < pDevice->sOpts.nTxDescs[1]; i++) {
PSTxDesc pDesc = &(pDevice->apTD1Rings[i]);
PDEVICE_TD_INFO pTDInfo = pDesc->pTDInfo;
if (pTDInfo->skb_dma && (pTDInfo->skb_dma != pTDInfo->buf_dma))
pci_unmap_single(pDevice->pcid, pTDInfo->skb_dma,
pTDInfo->skb->len, PCI_DMA_TODEVICE);
if (pTDInfo->skb)
dev_kfree_skb(pTDInfo->skb);
kfree((void *)pDesc->pTDInfo);
}
}
/*-----------------------------------------------------------------*/
static int device_rx_srv(struct vnt_private *pDevice, unsigned int uIdx)
{
PSRxDesc pRD;
int works = 0;
for (pRD = pDevice->pCurrRD[uIdx];
pRD->m_rd0RD0.f1Owner == OWNED_BY_HOST;
pRD = pRD->next) {
if (works++ > 15)
break;
if (device_receive_frame(pDevice, pRD)) {
if (!device_alloc_rx_buf(pDevice, pRD)) {
dev_err(&pDevice->pcid->dev,
"can not allocate rx buf\n");
break;
}
}
pRD->m_rd0RD0.f1Owner = OWNED_BY_NIC;
pDevice->dev->last_rx = jiffies;
}
pDevice->pCurrRD[uIdx] = pRD;
return works;
}
static bool device_alloc_rx_buf(struct vnt_private *pDevice, PSRxDesc pRD)
{
PDEVICE_RD_INFO pRDInfo = pRD->pRDInfo;
pRDInfo->skb = dev_alloc_skb((int)pDevice->rx_buf_sz);
if (pRDInfo->skb == NULL)
return false;
ASSERT(pRDInfo->skb);
pRDInfo->skb->dev = pDevice->dev;
pRDInfo->skb_dma = pci_map_single(pDevice->pcid, skb_tail_pointer(pRDInfo->skb),
pDevice->rx_buf_sz, PCI_DMA_FROMDEVICE);
*((unsigned int *)&(pRD->m_rd0RD0)) = 0; /* FIX cast */
pRD->m_rd0RD0.wResCount = cpu_to_le16(pDevice->rx_buf_sz);
pRD->m_rd0RD0.f1Owner = OWNED_BY_NIC;
pRD->m_rd1RD1.wReqCount = cpu_to_le16(pDevice->rx_buf_sz);
pRD->buff_addr = cpu_to_le32(pRDInfo->skb_dma);
return true;
}
bool device_alloc_frag_buf(struct vnt_private *pDevice,
PSDeFragControlBlock pDeF)
{
pDeF->skb = dev_alloc_skb((int)pDevice->rx_buf_sz);
if (pDeF->skb == NULL)
return false;
ASSERT(pDeF->skb);
pDeF->skb->dev = pDevice->dev;
return true;
}
static int device_tx_srv(struct vnt_private *pDevice, unsigned int uIdx)
{
PSTxDesc pTD;
bool bFull = false;
int works = 0;
unsigned char byTsr0;
unsigned char byTsr1;
unsigned int uFrameSize, uFIFOHeaderSize;
PSTxBufHead pTxBufHead;
struct net_device_stats *pStats = &pDevice->dev->stats;
struct sk_buff *skb;
unsigned int uNodeIndex;
PSMgmtObject pMgmt = pDevice->pMgmt;
for (pTD = pDevice->apTailTD[uIdx]; pDevice->iTDUsed[uIdx] > 0; pTD = pTD->next) {
if (pTD->m_td0TD0.f1Owner == OWNED_BY_NIC)
break;
if (works++ > 15)
break;
byTsr0 = pTD->m_td0TD0.byTSR0;
byTsr1 = pTD->m_td0TD0.byTSR1;
//Only the status of first TD in the chain is correct
if (pTD->m_td1TD1.byTCR & TCR_STP) {
if ((pTD->pTDInfo->byFlags & TD_FLAGS_NETIF_SKB) != 0) {
uFIFOHeaderSize = pTD->pTDInfo->dwHeaderLength;
uFrameSize = pTD->pTDInfo->dwReqCount - uFIFOHeaderSize;
pTxBufHead = (PSTxBufHead) (pTD->pTDInfo->buf);
// Update the statistics based on the Transmit status
// now, we DONT check TSR0_CDH
STAvUpdateTDStatCounter(&pDevice->scStatistic,
byTsr0, byTsr1,
(unsigned char *)(pTD->pTDInfo->buf + uFIFOHeaderSize),
uFrameSize, uIdx);
BSSvUpdateNodeTxCounter(pDevice,
byTsr0, byTsr1,
(unsigned char *)(pTD->pTDInfo->buf),
uFIFOHeaderSize
);
if (!(byTsr1 & TSR1_TERR)) {
if (byTsr0 != 0) {
pr_debug(" Tx[%d] OK but has error. tsr1[%02X] tsr0[%02X]\n",
(int)uIdx, byTsr1,
byTsr0);
}
if ((pTxBufHead->wFragCtl & FRAGCTL_ENDFRAG) != FRAGCTL_NONFRAG)
pDevice->s802_11Counter.TransmittedFragmentCount++;
pStats->tx_packets++;
pStats->tx_bytes += pTD->pTDInfo->skb->len;
} else {
pr_debug(" Tx[%d] dropped & tsr1[%02X] tsr0[%02X]\n",
(int)uIdx, byTsr1, byTsr0);
pStats->tx_errors++;
pStats->tx_dropped++;
}
}
if ((pTD->pTDInfo->byFlags & TD_FLAGS_PRIV_SKB) != 0) {
if (pDevice->bEnableHostapd) {
pr_debug("tx call back netif..\n");
skb = pTD->pTDInfo->skb;
skb->dev = pDevice->apdev;
skb_reset_mac_header(skb);
skb->pkt_type = PACKET_OTHERHOST;
memset(skb->cb, 0, sizeof(skb->cb));
netif_rx(skb);
}
}
if (byTsr1 & TSR1_TERR) {
if ((pTD->pTDInfo->byFlags & TD_FLAGS_PRIV_SKB) != 0) {
pr_debug(" Tx[%d] fail has error. tsr1[%02X] tsr0[%02X]\n",
(int)uIdx, byTsr1, byTsr0);
}
if ((pMgmt->eCurrMode == WMAC_MODE_ESS_AP) &&
(pTD->pTDInfo->byFlags & TD_FLAGS_NETIF_SKB)) {
unsigned short wAID;
unsigned char byMask[8] = {1, 2, 4, 8, 0x10, 0x20, 0x40, 0x80};
skb = pTD->pTDInfo->skb;
if (BSSDBbIsSTAInNodeDB(pMgmt, (unsigned char *)(skb->data), &uNodeIndex)) {
if (pMgmt->sNodeDBTable[uNodeIndex].bPSEnable) {
skb_queue_tail(&pMgmt->sNodeDBTable[uNodeIndex].sTxPSQueue, skb);
pMgmt->sNodeDBTable[uNodeIndex].wEnQueueCnt++;
// set tx map
wAID = pMgmt->sNodeDBTable[uNodeIndex].wAID;
pMgmt->abyPSTxMap[wAID >> 3] |= byMask[wAID & 7];
pTD->pTDInfo->byFlags &= ~(TD_FLAGS_NETIF_SKB);
pr_debug("tx_srv:tx fail re-queue sta index= %d, QueCnt= %d\n",
(int)uNodeIndex,
pMgmt->sNodeDBTable[uNodeIndex].wEnQueueCnt);
pStats->tx_errors--;
pStats->tx_dropped--;
}
}
}
}
device_free_tx_buf(pDevice, pTD);
pDevice->iTDUsed[uIdx]--;
}
}
if (uIdx == TYPE_AC0DMA) {
// RESERV_AC0DMA reserved for relay
if (AVAIL_TD(pDevice, uIdx) < RESERV_AC0DMA) {
bFull = true;
pr_debug(" AC0DMA is Full = %d\n",
pDevice->iTDUsed[uIdx]);
}
if (netif_queue_stopped(pDevice->dev) && !bFull)
netif_wake_queue(pDevice->dev);
}
pDevice->apTailTD[uIdx] = pTD;
return works;
}
static void device_error(struct vnt_private *pDevice, unsigned short status)
{
if (status & ISR_FETALERR) {
dev_err(&pDevice->pcid->dev, "Hardware fatal error\n");
netif_stop_queue(pDevice->dev);
del_timer(&pDevice->sTimerCommand);
del_timer(&(pDevice->pMgmt->sTimerSecondCallback));
pDevice->bCmdRunning = false;
MACbShutdown(pDevice->PortOffset);
return;
}
}
static void device_free_tx_buf(struct vnt_private *pDevice, PSTxDesc pDesc)
{
PDEVICE_TD_INFO pTDInfo = pDesc->pTDInfo;
struct sk_buff *skb = pTDInfo->skb;
// pre-allocated buf_dma can't be unmapped.
if (pTDInfo->skb_dma && (pTDInfo->skb_dma != pTDInfo->buf_dma)) {
pci_unmap_single(pDevice->pcid, pTDInfo->skb_dma, skb->len,
PCI_DMA_TODEVICE);
}
if ((pTDInfo->byFlags & TD_FLAGS_NETIF_SKB) != 0)
dev_kfree_skb_irq(skb);
pTDInfo->skb_dma = 0;
pTDInfo->skb = NULL;
pTDInfo->byFlags = 0;
}
static int device_open(struct net_device *dev)
{
struct vnt_private *pDevice = netdev_priv(dev);
int i;
#ifdef WPA_SM_Transtatus
extern SWPAResult wpa_Result;
#endif
pDevice->rx_buf_sz = PKT_BUF_SZ;
if (!device_init_rings(pDevice))
return -ENOMEM;
//2008-5-13 <add> by chester
i = request_irq(pDevice->pcid->irq, &device_intr, IRQF_SHARED, dev->name, dev);
if (i)
return i;
#ifdef WPA_SM_Transtatus
memset(wpa_Result.ifname, 0, sizeof(wpa_Result.ifname));
wpa_Result.proto = 0;
wpa_Result.key_mgmt = 0;
wpa_Result.eap_type = 0;
wpa_Result.authenticated = false;
pDevice->fWPA_Authened = false;
#endif
pr_debug("call device init rd0 ring\n");
device_init_rd0_ring(pDevice);
device_init_rd1_ring(pDevice);
device_init_defrag_cb(pDevice);
device_init_td0_ring(pDevice);
device_init_td1_ring(pDevice);
if (pDevice->bDiversityRegCtlON)
device_init_diversity_timer(pDevice);
vMgrObjectInit(pDevice);
vMgrTimerInit(pDevice);
pr_debug("call device_init_registers\n");
device_init_registers(pDevice);
MACvReadEtherAddress(pDevice->PortOffset, pDevice->abyCurrentNetAddr);
memcpy(pDevice->pMgmt->abyMACAddr, pDevice->abyCurrentNetAddr, ETH_ALEN);
device_set_multi(pDevice->dev);
// Init for Key Management
KeyvInitTable(&pDevice->sKey, pDevice->PortOffset);
add_timer(&(pDevice->pMgmt->sTimerSecondCallback));
#ifdef WPA_SUPPLICANT_DRIVER_WEXT_SUPPORT
pDevice->bwextcount = 0;
pDevice->bWPASuppWextEnabled = false;
#endif
pDevice->byReAssocCount = 0;
pDevice->bWPADEVUp = false;
// Patch: if WEP key already set by iwconfig but device not yet open
if (pDevice->bEncryptionEnable && pDevice->bTransmitKey) {
KeybSetDefaultKey(&(pDevice->sKey),
(unsigned long)(pDevice->byKeyIndex | (1 << 31)),
pDevice->uKeyLength,
NULL,
pDevice->abyKey,
KEY_CTL_WEP,
pDevice->PortOffset,
pDevice->byLocalID
);
pDevice->eEncryptionStatus = Ndis802_11Encryption1Enabled;
}
pr_debug("call MACvIntEnable\n");
MACvIntEnable(pDevice->PortOffset, IMR_MASK_VALUE);
if (pDevice->pMgmt->eConfigMode == WMAC_CONFIG_AP) {
bScheduleCommand((void *)pDevice, WLAN_CMD_RUN_AP, NULL);
} else {
bScheduleCommand((void *)pDevice, WLAN_CMD_BSSID_SCAN, NULL);
bScheduleCommand((void *)pDevice, WLAN_CMD_SSID, NULL);
}
pDevice->flags |= DEVICE_FLAGS_OPENED;
pr_debug("device_open success..\n");
return 0;
}
static int device_close(struct net_device *dev)
{
struct vnt_private *pDevice = netdev_priv(dev);
PSMgmtObject pMgmt = pDevice->pMgmt;
//2007-1121-02<Add>by EinsnLiu
if (pDevice->bLinkPass) {
bScheduleCommand((void *)pDevice, WLAN_CMD_DISASSOCIATE, NULL);
mdelay(30);
}
del_timer(&pDevice->sTimerTxData);
del_timer(&pDevice->sTimerCommand);
del_timer(&pMgmt->sTimerSecondCallback);
if (pDevice->bDiversityRegCtlON) {
del_timer(&pDevice->TimerSQ3Tmax1);
del_timer(&pDevice->TimerSQ3Tmax2);
del_timer(&pDevice->TimerSQ3Tmax3);
}
netif_stop_queue(dev);
pDevice->bCmdRunning = false;
MACbShutdown(pDevice->PortOffset);
MACbSoftwareReset(pDevice->PortOffset);
CARDbRadioPowerOff(pDevice);
pDevice->bLinkPass = false;
memset(pMgmt->abyCurrBSSID, 0, 6);
pMgmt->eCurrState = WMAC_STATE_IDLE;
device_free_td0_ring(pDevice);
device_free_td1_ring(pDevice);
device_free_rd0_ring(pDevice);
device_free_rd1_ring(pDevice);
device_free_frag_buf(pDevice);
device_free_rings(pDevice);
BSSvClearNodeDBTable(pDevice, 0);
free_irq(dev->irq, dev);
pDevice->flags &= (~DEVICE_FLAGS_OPENED);
//2008-0714-01<Add>by chester
device_release_WPADEV(pDevice);
pr_debug("device_close..\n");
return 0;
}
static int device_dma0_tx_80211(struct sk_buff *skb, struct net_device *dev)
{
struct vnt_private *pDevice = netdev_priv(dev);
unsigned char *pbMPDU;
unsigned int cbMPDULen = 0;
pr_debug("device_dma0_tx_80211\n");
spin_lock_irq(&pDevice->lock);
if (AVAIL_TD(pDevice, TYPE_TXDMA0) <= 0) {
pr_debug("device_dma0_tx_80211, td0 <=0\n");
dev_kfree_skb_irq(skb);
spin_unlock_irq(&pDevice->lock);
return 0;
}
if (pDevice->bStopTx0Pkt) {
dev_kfree_skb_irq(skb);
spin_unlock_irq(&pDevice->lock);
return 0;
}
cbMPDULen = skb->len;
pbMPDU = skb->data;
vDMA0_tx_80211(pDevice, skb, pbMPDU, cbMPDULen);
spin_unlock_irq(&pDevice->lock);
return 0;
}
bool device_dma0_xmit(struct vnt_private *pDevice,
struct sk_buff *skb, unsigned int uNodeIndex)
{
PSMgmtObject pMgmt = pDevice->pMgmt;
PSTxDesc pHeadTD, pLastTD;
unsigned int cbFrameBodySize;
unsigned int uMACfragNum;
unsigned char byPktType;
bool bNeedEncryption = false;
PSKeyItem pTransmitKey = NULL;
unsigned int cbHeaderSize;
unsigned int ii;
SKeyItem STempKey;
if (pDevice->bStopTx0Pkt) {
dev_kfree_skb_irq(skb);
return false;
}
if (AVAIL_TD(pDevice, TYPE_TXDMA0) <= 0) {
dev_kfree_skb_irq(skb);
pr_debug("device_dma0_xmit, td0 <=0\n");
return false;
}
if (pMgmt->eCurrMode == WMAC_MODE_ESS_AP) {
if (pDevice->uAssocCount == 0) {
dev_kfree_skb_irq(skb);
pr_debug("device_dma0_xmit, assocCount = 0\n");
return false;
}
}
pHeadTD = pDevice->apCurrTD[TYPE_TXDMA0];
pHeadTD->m_td1TD1.byTCR = (TCR_EDP|TCR_STP);
memcpy(pDevice->sTxEthHeader.abyDstAddr, (unsigned char *)(skb->data), ETH_HLEN);
cbFrameBodySize = skb->len - ETH_HLEN;
// 802.1H
if (ntohs(pDevice->sTxEthHeader.wType) > ETH_DATA_LEN)
cbFrameBodySize += 8;
uMACfragNum = cbGetFragCount(pDevice, pTransmitKey, cbFrameBodySize, &pDevice->sTxEthHeader);
if (uMACfragNum > AVAIL_TD(pDevice, TYPE_TXDMA0)) {
dev_kfree_skb_irq(skb);
return false;
}
byPktType = (unsigned char)pDevice->byPacketType;
if (pDevice->bFixRate) {
if (pDevice->eCurrentPHYType == PHY_TYPE_11B) {
if (pDevice->uConnectionRate >= RATE_11M)
pDevice->wCurrentRate = RATE_11M;
else
pDevice->wCurrentRate = (unsigned short)pDevice->uConnectionRate;
} else {
if (pDevice->uConnectionRate >= RATE_54M)
pDevice->wCurrentRate = RATE_54M;
else
pDevice->wCurrentRate = (unsigned short)pDevice->uConnectionRate;
}
} else {
pDevice->wCurrentRate = pDevice->pMgmt->sNodeDBTable[uNodeIndex].wTxDataRate;
}
//preamble type
if (pMgmt->sNodeDBTable[uNodeIndex].bShortPreamble)
pDevice->byPreambleType = pDevice->byShortPreamble;
else
pDevice->byPreambleType = PREAMBLE_LONG;
pr_debug("dma0: pDevice->wCurrentRate = %d\n", pDevice->wCurrentRate);
if (pDevice->wCurrentRate <= RATE_11M) {
byPktType = PK_TYPE_11B;
} else if (pDevice->eCurrentPHYType == PHY_TYPE_11A) {
byPktType = PK_TYPE_11A;
} else {
if (pDevice->bProtectMode)
byPktType = PK_TYPE_11GB;
else
byPktType = PK_TYPE_11GA;
}
if (pDevice->bEncryptionEnable)
bNeedEncryption = true;
if (pDevice->bEnableHostWEP) {
pTransmitKey = &STempKey;
pTransmitKey->byCipherSuite = pMgmt->sNodeDBTable[uNodeIndex].byCipherSuite;
pTransmitKey->dwKeyIndex = pMgmt->sNodeDBTable[uNodeIndex].dwKeyIndex;
pTransmitKey->uKeyLength = pMgmt->sNodeDBTable[uNodeIndex].uWepKeyLength;
pTransmitKey->dwTSC47_16 = pMgmt->sNodeDBTable[uNodeIndex].dwTSC47_16;
pTransmitKey->wTSC15_0 = pMgmt->sNodeDBTable[uNodeIndex].wTSC15_0;
memcpy(pTransmitKey->abyKey,
&pMgmt->sNodeDBTable[uNodeIndex].abyWepKey[0],
pTransmitKey->uKeyLength
);
}
vGenerateFIFOHeader(pDevice, byPktType, pDevice->pbyTmpBuff, bNeedEncryption,
cbFrameBodySize, TYPE_TXDMA0, pHeadTD,
&pDevice->sTxEthHeader, (unsigned char *)skb->data, pTransmitKey, uNodeIndex,
&uMACfragNum,
&cbHeaderSize
);
if (MACbIsRegBitsOn(pDevice->PortOffset, MAC_REG_PSCTL, PSCTL_PS)) {
// Disable PS
MACbPSWakeup(pDevice->PortOffset);
}
pDevice->bPWBitOn = false;
pLastTD = pHeadTD;
for (ii = 0; ii < uMACfragNum; ii++) {
// Poll Transmit the adapter
wmb();
pHeadTD->m_td0TD0.f1Owner = OWNED_BY_NIC;
wmb();
if (ii == (uMACfragNum - 1))
pLastTD = pHeadTD;
pHeadTD = pHeadTD->next;
}
// Save the information needed by the tx interrupt handler
// to complete the Send request
pLastTD->pTDInfo->skb = skb;
pLastTD->pTDInfo->byFlags = 0;
pLastTD->pTDInfo->byFlags |= TD_FLAGS_NETIF_SKB;
pDevice->apCurrTD[TYPE_TXDMA0] = pHeadTD;
MACvTransmit0(pDevice->PortOffset);
return true;
}
//TYPE_AC0DMA data tx
static int device_xmit(struct sk_buff *skb, struct net_device *dev) {
struct vnt_private *pDevice = netdev_priv(dev);
PSMgmtObject pMgmt = pDevice->pMgmt;
PSTxDesc pHeadTD, pLastTD;
unsigned int uNodeIndex = 0;
unsigned char byMask[8] = {1, 2, 4, 8, 0x10, 0x20, 0x40, 0x80};
unsigned short wAID;
unsigned int uMACfragNum = 1;
unsigned int cbFrameBodySize;
unsigned char byPktType;
unsigned int cbHeaderSize;
bool bNeedEncryption = false;
PSKeyItem pTransmitKey = NULL;
SKeyItem STempKey;
unsigned int ii;
bool bTKIP_UseGTK = false;
bool bNeedDeAuth = false;
unsigned char *pbyBSSID;
bool bNodeExist = false;
spin_lock_irq(&pDevice->lock);
if (!pDevice->bLinkPass) {
dev_kfree_skb_irq(skb);
spin_unlock_irq(&pDevice->lock);
return 0;
}
if (pDevice->bStopDataPkt) {
dev_kfree_skb_irq(skb);
spin_unlock_irq(&pDevice->lock);
return 0;
}
if (pMgmt->eCurrMode == WMAC_MODE_ESS_AP) {
if (pDevice->uAssocCount == 0) {
dev_kfree_skb_irq(skb);
spin_unlock_irq(&pDevice->lock);
return 0;
}
if (is_multicast_ether_addr((unsigned char *)(skb->data))) {
uNodeIndex = 0;
bNodeExist = true;
if (pMgmt->sNodeDBTable[0].bPSEnable) {
skb_queue_tail(&(pMgmt->sNodeDBTable[0].sTxPSQueue), skb);
pMgmt->sNodeDBTable[0].wEnQueueCnt++;
// set tx map
pMgmt->abyPSTxMap[0] |= byMask[0];
spin_unlock_irq(&pDevice->lock);
return 0;
}
} else {
if (BSSDBbIsSTAInNodeDB(pMgmt, (unsigned char *)(skb->data), &uNodeIndex)) {
if (pMgmt->sNodeDBTable[uNodeIndex].bPSEnable) {
skb_queue_tail(&pMgmt->sNodeDBTable[uNodeIndex].sTxPSQueue, skb);
pMgmt->sNodeDBTable[uNodeIndex].wEnQueueCnt++;
// set tx map
wAID = pMgmt->sNodeDBTable[uNodeIndex].wAID;
pMgmt->abyPSTxMap[wAID >> 3] |= byMask[wAID & 7];
pr_debug("Set:pMgmt->abyPSTxMap[%d]= %d\n",
(wAID >> 3),
pMgmt->abyPSTxMap[wAID >> 3]);
spin_unlock_irq(&pDevice->lock);
return 0;
}
if (pMgmt->sNodeDBTable[uNodeIndex].bShortPreamble)
pDevice->byPreambleType = pDevice->byShortPreamble;
else
pDevice->byPreambleType = PREAMBLE_LONG;
bNodeExist = true;
}
}
if (!bNodeExist) {
pr_debug("Unknown STA not found in node DB\n");
dev_kfree_skb_irq(skb);
spin_unlock_irq(&pDevice->lock);
return 0;
}
}
pHeadTD = pDevice->apCurrTD[TYPE_AC0DMA];
pHeadTD->m_td1TD1.byTCR = (TCR_EDP|TCR_STP);
memcpy(pDevice->sTxEthHeader.abyDstAddr, (unsigned char *)(skb->data), ETH_HLEN);
cbFrameBodySize = skb->len - ETH_HLEN;
// 802.1H
if (ntohs(pDevice->sTxEthHeader.wType) > ETH_DATA_LEN)
cbFrameBodySize += 8;
if (pDevice->bEncryptionEnable) {
bNeedEncryption = true;
// get Transmit key
do {
if ((pDevice->pMgmt->eCurrMode == WMAC_MODE_ESS_STA) &&
(pDevice->pMgmt->eCurrState == WMAC_STATE_ASSOC)) {
pbyBSSID = pDevice->abyBSSID;
// get pairwise key
if (KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, PAIRWISE_KEY, &pTransmitKey) == false) {
// get group key
if (KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, GROUP_KEY, &pTransmitKey) == true) {
bTKIP_UseGTK = true;
pr_debug("Get GTK\n");
break;
}
} else {
pr_debug("Get PTK\n");
break;
}
} else if (pDevice->pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) {
pbyBSSID = pDevice->sTxEthHeader.abyDstAddr; //TO_DS = 0 and FROM_DS = 0 --> 802.11 MAC Address1
pr_debug("IBSS Serach Key:\n");
for (ii = 0; ii < 6; ii++)
pr_debug("%x\n", *(pbyBSSID+ii));
pr_debug("\n");
// get pairwise key
if (KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, PAIRWISE_KEY, &pTransmitKey) == true)
break;
}
// get group key
pbyBSSID = pDevice->abyBroadcastAddr;
if (KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, GROUP_KEY, &pTransmitKey) == false) {
pTransmitKey = NULL;
if (pDevice->pMgmt->eCurrMode == WMAC_MODE_IBSS_STA)
pr_debug("IBSS and KEY is NULL. [%d]\n",
pDevice->pMgmt->eCurrMode);
else
pr_debug("NOT IBSS and KEY is NULL. [%d]\n",
pDevice->pMgmt->eCurrMode);
} else {
bTKIP_UseGTK = true;
pr_debug("Get GTK\n");
}
} while (false);
}
if (pDevice->bEnableHostWEP) {
pr_debug("acdma0: STA index %d\n", uNodeIndex);
if (pDevice->bEncryptionEnable) {
pTransmitKey = &STempKey;
pTransmitKey->byCipherSuite = pMgmt->sNodeDBTable[uNodeIndex].byCipherSuite;
pTransmitKey->dwKeyIndex = pMgmt->sNodeDBTable[uNodeIndex].dwKeyIndex;
pTransmitKey->uKeyLength = pMgmt->sNodeDBTable[uNodeIndex].uWepKeyLength;
pTransmitKey->dwTSC47_16 = pMgmt->sNodeDBTable[uNodeIndex].dwTSC47_16;
pTransmitKey->wTSC15_0 = pMgmt->sNodeDBTable[uNodeIndex].wTSC15_0;
memcpy(pTransmitKey->abyKey,
&pMgmt->sNodeDBTable[uNodeIndex].abyWepKey[0],
pTransmitKey->uKeyLength
);
}
}
uMACfragNum = cbGetFragCount(pDevice, pTransmitKey, cbFrameBodySize, &pDevice->sTxEthHeader);
if (uMACfragNum > AVAIL_TD(pDevice, TYPE_AC0DMA)) {
pr_debug("uMACfragNum > AVAIL_TD(TYPE_AC0DMA) = %d\n",
uMACfragNum);
dev_kfree_skb_irq(skb);
spin_unlock_irq(&pDevice->lock);
return 0;
}
if (pTransmitKey != NULL) {
if ((pTransmitKey->byCipherSuite == KEY_CTL_WEP) &&
(pTransmitKey->uKeyLength == WLAN_WEP232_KEYLEN)) {
uMACfragNum = 1; //WEP256 doesn't support fragment
}
}
byPktType = (unsigned char)pDevice->byPacketType;
if (pDevice->bFixRate) {
if (pDevice->eCurrentPHYType == PHY_TYPE_11B) {
if (pDevice->uConnectionRate >= RATE_11M)
pDevice->wCurrentRate = RATE_11M;
else
pDevice->wCurrentRate = (unsigned short)pDevice->uConnectionRate;
} else {
if ((pDevice->eCurrentPHYType == PHY_TYPE_11A) &&
(pDevice->uConnectionRate <= RATE_6M)) {
pDevice->wCurrentRate = RATE_6M;
} else {
if (pDevice->uConnectionRate >= RATE_54M)
pDevice->wCurrentRate = RATE_54M;
else
pDevice->wCurrentRate = (unsigned short)pDevice->uConnectionRate;
}
}
pDevice->byACKRate = (unsigned char) pDevice->wCurrentRate;
pDevice->byTopCCKBasicRate = RATE_1M;
pDevice->byTopOFDMBasicRate = RATE_6M;
} else {
//auto rate
if (pDevice->sTxEthHeader.wType == TYPE_PKT_802_1x) {
if (pDevice->eCurrentPHYType != PHY_TYPE_11A) {
pDevice->wCurrentRate = RATE_1M;
pDevice->byACKRate = RATE_1M;
pDevice->byTopCCKBasicRate = RATE_1M;
pDevice->byTopOFDMBasicRate = RATE_6M;
} else {
pDevice->wCurrentRate = RATE_6M;
pDevice->byACKRate = RATE_6M;
pDevice->byTopCCKBasicRate = RATE_1M;
pDevice->byTopOFDMBasicRate = RATE_6M;
}
} else {
VNTWIFIvGetTxRate(pDevice->pMgmt,
pDevice->sTxEthHeader.abyDstAddr,
&(pDevice->wCurrentRate),
&(pDevice->byACKRate),
&(pDevice->byTopCCKBasicRate),
&(pDevice->byTopOFDMBasicRate));
}
}
if (pDevice->wCurrentRate <= RATE_11M) {
byPktType = PK_TYPE_11B;
} else if (pDevice->eCurrentPHYType == PHY_TYPE_11A) {
byPktType = PK_TYPE_11A;
} else {
if (pDevice->bProtectMode)
byPktType = PK_TYPE_11GB;
else
byPktType = PK_TYPE_11GA;
}
if (bNeedEncryption) {
pr_debug("ntohs Pkt Type=%04x\n",
ntohs(pDevice->sTxEthHeader.wType));
if ((pDevice->sTxEthHeader.wType) == TYPE_PKT_802_1x) {
bNeedEncryption = false;
pr_debug("Pkt Type=%04x\n",
(pDevice->sTxEthHeader.wType));
if ((pDevice->pMgmt->eCurrMode == WMAC_MODE_ESS_STA) && (pDevice->pMgmt->eCurrState == WMAC_STATE_ASSOC)) {
if (pTransmitKey == NULL) {
pr_debug("Don't Find TX KEY\n");
} else {
if (bTKIP_UseGTK) {
pr_debug("error: KEY is GTK!!~~\n");
} else {
pr_debug("Find PTK [%lX]\n",
pTransmitKey->dwKeyIndex);
bNeedEncryption = true;
}
}
}
if (pDevice->byCntMeasure == 2) {
bNeedDeAuth = true;
pDevice->s802_11Counter.TKIPCounterMeasuresInvoked++;
}
if (pDevice->bEnableHostWEP) {
if ((uNodeIndex != 0) &&
(pMgmt->sNodeDBTable[uNodeIndex].dwKeyIndex & PAIRWISE_KEY)) {
pr_debug("Find PTK [%lX]\n",
pTransmitKey->dwKeyIndex);
bNeedEncryption = true;
}
}
} else {
if (pTransmitKey == NULL) {
pr_debug("return no tx key\n");
dev_kfree_skb_irq(skb);
spin_unlock_irq(&pDevice->lock);
return 0;
}
}
}
vGenerateFIFOHeader(pDevice, byPktType, pDevice->pbyTmpBuff, bNeedEncryption,
cbFrameBodySize, TYPE_AC0DMA, pHeadTD,
&pDevice->sTxEthHeader, (unsigned char *)skb->data, pTransmitKey, uNodeIndex,
&uMACfragNum,
&cbHeaderSize
);
if (MACbIsRegBitsOn(pDevice->PortOffset, MAC_REG_PSCTL, PSCTL_PS)) {
// Disable PS
MACbPSWakeup(pDevice->PortOffset);
}
pDevice->bPWBitOn = false;
pLastTD = pHeadTD;
for (ii = 0; ii < uMACfragNum; ii++) {
// Poll Transmit the adapter
wmb();
pHeadTD->m_td0TD0.f1Owner = OWNED_BY_NIC;
wmb();
if (ii == uMACfragNum - 1)
pLastTD = pHeadTD;
pHeadTD = pHeadTD->next;
}
// Save the information needed by the tx interrupt handler
// to complete the Send request
pLastTD->pTDInfo->skb = skb;
pLastTD->pTDInfo->byFlags = 0;
pLastTD->pTDInfo->byFlags |= TD_FLAGS_NETIF_SKB;
pDevice->nTxDataTimeCout = 0; //2008-8-21 chester <add> for send null packet
if (AVAIL_TD(pDevice, TYPE_AC0DMA) <= 1)
netif_stop_queue(dev);
pDevice->apCurrTD[TYPE_AC0DMA] = pHeadTD;
if (pDevice->bFixRate)
pr_debug("FixRate:Rate is %d,TxPower is %d\n", pDevice->wCurrentRate, pDevice->byCurPwr);
{
unsigned char Protocol_Version; //802.1x Authentication
unsigned char Packet_Type; //802.1x Authentication
unsigned char Descriptor_type;
unsigned short Key_info;
bool bTxeapol_key = false;
Protocol_Version = skb->data[ETH_HLEN];
Packet_Type = skb->data[ETH_HLEN+1];
Descriptor_type = skb->data[ETH_HLEN+1+1+2];
Key_info = (skb->data[ETH_HLEN+1+1+2+1] << 8)|(skb->data[ETH_HLEN+1+1+2+2]);
if (pDevice->sTxEthHeader.wType == TYPE_PKT_802_1x) {
if (((Protocol_Version == 1) || (Protocol_Version == 2)) &&
(Packet_Type == 3)) { //802.1x OR eapol-key challenge frame transfer
bTxeapol_key = true;
if ((Descriptor_type == 254) || (Descriptor_type == 2)) { //WPA or RSN
if (!(Key_info & BIT3) && //group-key challenge
(Key_info & BIT8) && (Key_info & BIT9)) { //send 2/2 key
pDevice->fWPA_Authened = true;
if (Descriptor_type == 254)
pr_debug("WPA ");
else
pr_debug("WPA2 ");
pr_debug("Authentication completed!!\n");
}
}
}
}
}
MACvTransmitAC0(pDevice->PortOffset);
dev->trans_start = jiffies;
spin_unlock_irq(&pDevice->lock);
return 0;
}
static irqreturn_t device_intr(int irq, void *dev_instance)
{
struct net_device *dev = dev_instance;
struct vnt_private *pDevice = netdev_priv(dev);
int max_count = 0;
unsigned long dwMIBCounter = 0;
PSMgmtObject pMgmt = pDevice->pMgmt;
unsigned char byOrgPageSel = 0;
int handled = 0;
unsigned char byData = 0;
int ii = 0;
unsigned long flags;
MACvReadISR(pDevice->PortOffset, &pDevice->dwIsr);
if (pDevice->dwIsr == 0)
return IRQ_RETVAL(handled);
if (pDevice->dwIsr == 0xffffffff) {
pr_debug("dwIsr = 0xffff\n");
return IRQ_RETVAL(handled);
}
handled = 1;
MACvIntDisable(pDevice->PortOffset);
spin_lock_irqsave(&pDevice->lock, flags);
//Make sure current page is 0
VNSvInPortB(pDevice->PortOffset + MAC_REG_PAGE1SEL, &byOrgPageSel);
if (byOrgPageSel == 1)
MACvSelectPage0(pDevice->PortOffset);
else
byOrgPageSel = 0;
MACvReadMIBCounter(pDevice->PortOffset, &dwMIBCounter);
// TBD....
// Must do this after doing rx/tx, cause ISR bit is slow
// than RD/TD write back
// update ISR counter
STAvUpdate802_11Counter(&pDevice->s802_11Counter, &pDevice->scStatistic , dwMIBCounter);
while (pDevice->dwIsr != 0) {
STAvUpdateIsrStatCounter(&pDevice->scStatistic, pDevice->dwIsr);
MACvWriteISR(pDevice->PortOffset, pDevice->dwIsr);
if (pDevice->dwIsr & ISR_FETALERR) {
pr_debug(" ISR_FETALERR\n");
VNSvOutPortB(pDevice->PortOffset + MAC_REG_SOFTPWRCTL, 0);
VNSvOutPortW(pDevice->PortOffset + MAC_REG_SOFTPWRCTL, SOFTPWRCTL_SWPECTI);
device_error(pDevice, pDevice->dwIsr);
}
if (pDevice->byLocalID > REV_ID_VT3253_B1) {
if (pDevice->dwIsr & ISR_MEASURESTART) {
// 802.11h measure start
pDevice->byOrgChannel = pDevice->byCurrentCh;
VNSvInPortB(pDevice->PortOffset + MAC_REG_RCR, &(pDevice->byOrgRCR));
VNSvOutPortB(pDevice->PortOffset + MAC_REG_RCR, (RCR_RXALLTYPE | RCR_UNICAST | RCR_BROADCAST | RCR_MULTICAST | RCR_WPAERR));
MACvSelectPage1(pDevice->PortOffset);
VNSvInPortD(pDevice->PortOffset + MAC_REG_MAR0, &(pDevice->dwOrgMAR0));
VNSvInPortD(pDevice->PortOffset + MAC_REG_MAR4, &(pDevice->dwOrgMAR4));
MACvSelectPage0(pDevice->PortOffset);
//xxxx
if (set_channel(pDevice, pDevice->pCurrMeasureEID->sReq.byChannel)) {
pDevice->bMeasureInProgress = true;
MACvSelectPage1(pDevice->PortOffset);
MACvRegBitsOn(pDevice->PortOffset, MAC_REG_MSRCTL, MSRCTL_READY);
MACvSelectPage0(pDevice->PortOffset);
pDevice->byBasicMap = 0;
pDevice->byCCAFraction = 0;
for (ii = 0; ii < 8; ii++)
pDevice->dwRPIs[ii] = 0;
} else {
// can not measure because set channel fail
// clear measure control
MACvRegBitsOff(pDevice->PortOffset, MAC_REG_MSRCTL, MSRCTL_EN);
s_vCompleteCurrentMeasure(pDevice, MEASURE_MODE_INCAPABLE);
MACvSelectPage1(pDevice->PortOffset);
MACvRegBitsOn(pDevice->PortOffset, MAC_REG_MSRCTL+1, MSRCTL1_TXPAUSE);
MACvSelectPage0(pDevice->PortOffset);
}
}
if (pDevice->dwIsr & ISR_MEASUREEND) {
// 802.11h measure end
pDevice->bMeasureInProgress = false;
VNSvOutPortB(pDevice->PortOffset + MAC_REG_RCR, pDevice->byOrgRCR);
MACvSelectPage1(pDevice->PortOffset);
VNSvOutPortD(pDevice->PortOffset + MAC_REG_MAR0, pDevice->dwOrgMAR0);
VNSvOutPortD(pDevice->PortOffset + MAC_REG_MAR4, pDevice->dwOrgMAR4);
VNSvInPortB(pDevice->PortOffset + MAC_REG_MSRBBSTS, &byData);
pDevice->byBasicMap |= (byData >> 4);
VNSvInPortB(pDevice->PortOffset + MAC_REG_CCAFRACTION, &pDevice->byCCAFraction);
VNSvInPortB(pDevice->PortOffset + MAC_REG_MSRCTL, &byData);
// clear measure control
MACvRegBitsOff(pDevice->PortOffset, MAC_REG_MSRCTL, MSRCTL_EN);
MACvSelectPage0(pDevice->PortOffset);
set_channel(pDevice, pDevice->byOrgChannel);
MACvSelectPage1(pDevice->PortOffset);
MACvRegBitsOn(pDevice->PortOffset, MAC_REG_MSRCTL+1, MSRCTL1_TXPAUSE);
MACvSelectPage0(pDevice->PortOffset);
if (byData & MSRCTL_FINISH) {
// measure success
s_vCompleteCurrentMeasure(pDevice, 0);
} else {
// can not measure because not ready before end of measure time
s_vCompleteCurrentMeasure(pDevice, MEASURE_MODE_LATE);
}
}
if (pDevice->dwIsr & ISR_QUIETSTART) {
do {
;
} while (!CARDbStartQuiet(pDevice));
}
}
if (pDevice->dwIsr & ISR_TBTT) {
if (pDevice->bEnableFirstQuiet) {
pDevice->byQuietStartCount--;
if (pDevice->byQuietStartCount == 0) {
pDevice->bEnableFirstQuiet = false;
MACvSelectPage1(pDevice->PortOffset);
MACvRegBitsOn(pDevice->PortOffset, MAC_REG_MSRCTL, (MSRCTL_QUIETTXCHK | MSRCTL_QUIETEN));
MACvSelectPage0(pDevice->PortOffset);
}
}
if (pDevice->bChannelSwitch &&
(pDevice->op_mode == NL80211_IFTYPE_STATION)) {
pDevice->byChannelSwitchCount--;
if (pDevice->byChannelSwitchCount == 0) {
pDevice->bChannelSwitch = false;
set_channel(pDevice, pDevice->byNewChannel);
VNTWIFIbChannelSwitch(pDevice->pMgmt, pDevice->byNewChannel);
MACvSelectPage1(pDevice->PortOffset);
MACvRegBitsOn(pDevice->PortOffset, MAC_REG_MSRCTL+1, MSRCTL1_TXPAUSE);
MACvSelectPage0(pDevice->PortOffset);
CARDbStartTxPacket(pDevice, PKT_TYPE_802_11_ALL);
}
}
if (pDevice->op_mode != NL80211_IFTYPE_ADHOC) {
if ((pDevice->bUpdateBBVGA) && pDevice->bLinkPass && (pDevice->uCurrRSSI != 0)) {
long ldBm;
RFvRSSITodBm(pDevice, (unsigned char) pDevice->uCurrRSSI, &ldBm);
for (ii = 0; ii < BB_VGA_LEVEL; ii++) {
if (ldBm < pDevice->ldBmThreshold[ii]) {
pDevice->byBBVGANew = pDevice->abyBBVGA[ii];
break;
}
}
if (pDevice->byBBVGANew != pDevice->byBBVGACurrent) {
pDevice->uBBVGADiffCount++;
if (pDevice->uBBVGADiffCount == 1) {
// first VGA diff gain
BBvSetVGAGainOffset(pDevice, pDevice->byBBVGANew);
pr_debug("First RSSI[%d] NewGain[%d] OldGain[%d] Count[%d]\n",
(int)ldBm,
pDevice->byBBVGANew,
pDevice->byBBVGACurrent,
(int)pDevice->uBBVGADiffCount);
}
if (pDevice->uBBVGADiffCount >= BB_VGA_CHANGE_THRESHOLD) {
pr_debug("RSSI[%d] NewGain[%d] OldGain[%d] Count[%d]\n",
(int)ldBm,
pDevice->byBBVGANew,
pDevice->byBBVGACurrent,
(int)pDevice->uBBVGADiffCount);
BBvSetVGAGainOffset(pDevice, pDevice->byBBVGANew);
}
} else {
pDevice->uBBVGADiffCount = 1;
}
}
}
pDevice->bBeaconSent = false;
if (pDevice->bEnablePSMode)
PSbIsNextTBTTWakeUp((void *)pDevice);
if ((pDevice->op_mode == NL80211_IFTYPE_AP) ||
(pDevice->op_mode == NL80211_IFTYPE_ADHOC)) {
MACvOneShotTimer1MicroSec(pDevice->PortOffset,
(pMgmt->wIBSSBeaconPeriod - MAKE_BEACON_RESERVED) << 10);
}
/* TODO: adhoc PS mode */
}
if (pDevice->dwIsr & ISR_BNTX) {
if (pDevice->op_mode == NL80211_IFTYPE_ADHOC) {
pDevice->bIsBeaconBufReadySet = false;
pDevice->cbBeaconBufReadySetCnt = 0;
}
if (pDevice->op_mode == NL80211_IFTYPE_AP) {
if (pMgmt->byDTIMCount > 0) {
pMgmt->byDTIMCount--;
pMgmt->sNodeDBTable[0].bRxPSPoll = false;
} else {
if (pMgmt->byDTIMCount == 0) {
// check if mutltcast tx bufferring
pMgmt->byDTIMCount = pMgmt->byDTIMPeriod - 1;
pMgmt->sNodeDBTable[0].bRxPSPoll = true;
bScheduleCommand((void *)pDevice, WLAN_CMD_RX_PSPOLL, NULL);
}
}
}
pDevice->bBeaconSent = true;
if (pDevice->bChannelSwitch) {
pDevice->byChannelSwitchCount--;
if (pDevice->byChannelSwitchCount == 0) {
pDevice->bChannelSwitch = false;
set_channel(pDevice, pDevice->byNewChannel);
VNTWIFIbChannelSwitch(pDevice->pMgmt, pDevice->byNewChannel);
MACvSelectPage1(pDevice->PortOffset);
MACvRegBitsOn(pDevice->PortOffset, MAC_REG_MSRCTL+1, MSRCTL1_TXPAUSE);
MACvSelectPage0(pDevice->PortOffset);
CARDbStartTxPacket(pDevice, PKT_TYPE_802_11_ALL);
}
}
}
if (pDevice->dwIsr & ISR_RXDMA0)
max_count += device_rx_srv(pDevice, TYPE_RXDMA0);
if (pDevice->dwIsr & ISR_RXDMA1)
max_count += device_rx_srv(pDevice, TYPE_RXDMA1);
if (pDevice->dwIsr & ISR_TXDMA0)
max_count += device_tx_srv(pDevice, TYPE_TXDMA0);
if (pDevice->dwIsr & ISR_AC0DMA)
max_count += device_tx_srv(pDevice, TYPE_AC0DMA);
if (pDevice->dwIsr & ISR_SOFTTIMER1) {
if (pDevice->op_mode == NL80211_IFTYPE_AP) {
if (pDevice->bShortSlotTime)
pMgmt->wCurrCapInfo |= WLAN_SET_CAP_INFO_SHORTSLOTTIME(1);
else
pMgmt->wCurrCapInfo &= ~(WLAN_SET_CAP_INFO_SHORTSLOTTIME(1));
}
bMgrPrepareBeaconToSend(pDevice, pMgmt);
pDevice->byCntMeasure = 0;
}
MACvReadISR(pDevice->PortOffset, &pDevice->dwIsr);
MACvReceive0(pDevice->PortOffset);
MACvReceive1(pDevice->PortOffset);
if (max_count > pDevice->sOpts.int_works)
break;
}
if (byOrgPageSel == 1)
MACvSelectPage1(pDevice->PortOffset);
spin_unlock_irqrestore(&pDevice->lock, flags);
MACvIntEnable(pDevice->PortOffset, IMR_MASK_VALUE);
return IRQ_RETVAL(handled);
}
//2008-8-4 <add> by chester
static int Config_FileGetParameter(unsigned char *string,
unsigned char *dest, unsigned char *source)
{
unsigned char buf1[100];
int source_len = strlen(source);
memset(buf1, 0, 100);
strcat(buf1, string);
strcat(buf1, "=");
source += strlen(buf1);
memcpy(dest, source, source_len - strlen(buf1));
return true;
}
int Config_FileOperation(struct vnt_private *pDevice,
bool fwrite, unsigned char *Parameter)
{
unsigned char *buffer = kmalloc(1024, GFP_KERNEL);
unsigned char tmpbuffer[20];
struct file *file;
int result = 0;
if (!buffer) {
pr_err("allocate mem for file fail?\n");
return -1;
}
file = filp_open(CONFIG_PATH, O_RDONLY, 0);
if (IS_ERR(file)) {
kfree(buffer);
pr_err("Config_FileOperation:open file fail?\n");
return -1;
}
if (kernel_read(file, 0, buffer, 1024) < 0) {
pr_err("read file error?\n");
result = -1;
goto error1;
}
if (Config_FileGetParameter("ZONETYPE", tmpbuffer, buffer) != true) {
pr_err("get parameter error?\n");
result = -1;
goto error1;
}
if (memcmp(tmpbuffer, "USA", 3) == 0) {
result = ZoneType_USA;
} else if (memcmp(tmpbuffer, "JAPAN", 5) == 0) {
result = ZoneType_Japan;
} else if (memcmp(tmpbuffer, "EUROPE", 5) == 0) {
result = ZoneType_Europe;
} else {
result = -1;
pr_err("Unknown Zonetype[%s]?\n", tmpbuffer);
}
error1:
kfree(buffer);
fput(file);
return result;
}
static void device_set_multi(struct net_device *dev) {
struct vnt_private *pDevice = netdev_priv(dev);
PSMgmtObject pMgmt = pDevice->pMgmt;
u32 mc_filter[2];
struct netdev_hw_addr *ha;
VNSvInPortB(pDevice->PortOffset + MAC_REG_RCR, &(pDevice->byRxMode));
if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
pr_notice("%s: Promiscuous mode enabled\n", dev->name);
/* Unconditionally log net taps. */
pDevice->byRxMode |= (RCR_MULTICAST|RCR_BROADCAST|RCR_UNICAST);
} else if ((netdev_mc_count(dev) > pDevice->multicast_limit)
|| (dev->flags & IFF_ALLMULTI)) {
MACvSelectPage1(pDevice->PortOffset);
VNSvOutPortD(pDevice->PortOffset + MAC_REG_MAR0, 0xffffffff);
VNSvOutPortD(pDevice->PortOffset + MAC_REG_MAR0 + 4, 0xffffffff);
MACvSelectPage0(pDevice->PortOffset);
pDevice->byRxMode |= (RCR_MULTICAST|RCR_BROADCAST);
} else {
memset(mc_filter, 0, sizeof(mc_filter));
netdev_for_each_mc_addr(ha, dev) {
int bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26;
mc_filter[bit_nr >> 5] |= cpu_to_le32(1 << (bit_nr & 31));
}
MACvSelectPage1(pDevice->PortOffset);
VNSvOutPortD(pDevice->PortOffset + MAC_REG_MAR0, mc_filter[0]);
VNSvOutPortD(pDevice->PortOffset + MAC_REG_MAR0 + 4, mc_filter[1]);
MACvSelectPage0(pDevice->PortOffset);
pDevice->byRxMode &= ~(RCR_UNICAST);
pDevice->byRxMode |= (RCR_MULTICAST|RCR_BROADCAST);
}
if (pMgmt->eConfigMode == WMAC_CONFIG_AP) {
// If AP mode, don't enable RCR_UNICAST. Since hw only compare addr1 with local mac.
pDevice->byRxMode |= (RCR_MULTICAST|RCR_BROADCAST);
pDevice->byRxMode &= ~(RCR_UNICAST);
}
VNSvOutPortB(pDevice->PortOffset + MAC_REG_RCR, pDevice->byRxMode);
pr_debug("pDevice->byRxMode = %x\n", pDevice->byRxMode);
}
static int device_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
struct vnt_private *pDevice = netdev_priv(dev);
struct iwreq *wrq = (struct iwreq *)rq;
int rc = 0;
PSMgmtObject pMgmt = pDevice->pMgmt;
PSCmdRequest pReq;
if (pMgmt == NULL) {
rc = -EFAULT;
return rc;
}
switch (cmd) {
case SIOCGIWNAME:
rc = iwctl_giwname(dev, NULL, (char *)&(wrq->u.name), NULL);
break;
case SIOCGIWNWID: //0x8b03 support
rc = -EOPNOTSUPP;
break;
// Set frequency/channel
case SIOCSIWFREQ:
rc = iwctl_siwfreq(dev, NULL, &(wrq->u.freq), NULL);
break;
// Get frequency/channel
case SIOCGIWFREQ:
rc = iwctl_giwfreq(dev, NULL, &(wrq->u.freq), NULL);
break;
// Set desired network name (ESSID)
case SIOCSIWESSID:
{
char essid[IW_ESSID_MAX_SIZE+1];
if (wrq->u.essid.length > IW_ESSID_MAX_SIZE) {
rc = -E2BIG;
break;
}
if (copy_from_user(essid, wrq->u.essid.pointer,
wrq->u.essid.length)) {
rc = -EFAULT;
break;
}
rc = iwctl_siwessid(dev, NULL,
&(wrq->u.essid), essid);
}
break;
// Get current network name (ESSID)
case SIOCGIWESSID:
{
char essid[IW_ESSID_MAX_SIZE+1];
if (wrq->u.essid.pointer)
rc = iwctl_giwessid(dev, NULL,
&(wrq->u.essid), essid);
if (copy_to_user(wrq->u.essid.pointer,
essid,
wrq->u.essid.length))
rc = -EFAULT;
}
break;
case SIOCSIWAP:
rc = iwctl_siwap(dev, NULL, &(wrq->u.ap_addr), NULL);
break;
// Get current Access Point (BSSID)
case SIOCGIWAP:
rc = iwctl_giwap(dev, NULL, &(wrq->u.ap_addr), NULL);
break;
// Set desired station name
case SIOCSIWNICKN:
pr_debug(" SIOCSIWNICKN\n");
rc = -EOPNOTSUPP;
break;
// Get current station name
case SIOCGIWNICKN:
pr_debug(" SIOCGIWNICKN\n");
rc = -EOPNOTSUPP;
break;
// Set the desired bit-rate
case SIOCSIWRATE:
rc = iwctl_siwrate(dev, NULL, &(wrq->u.bitrate), NULL);
break;
// Get the current bit-rate
case SIOCGIWRATE:
rc = iwctl_giwrate(dev, NULL, &(wrq->u.bitrate), NULL);
break;
// Set the desired RTS threshold
case SIOCSIWRTS:
rc = iwctl_siwrts(dev, NULL, &(wrq->u.rts), NULL);
break;
// Get the current RTS threshold
case SIOCGIWRTS:
rc = iwctl_giwrts(dev, NULL, &(wrq->u.rts), NULL);
break;
// Set the desired fragmentation threshold
case SIOCSIWFRAG:
rc = iwctl_siwfrag(dev, NULL, &(wrq->u.frag), NULL);
break;
// Get the current fragmentation threshold
case SIOCGIWFRAG:
rc = iwctl_giwfrag(dev, NULL, &(wrq->u.frag), NULL);
break;
// Set mode of operation
case SIOCSIWMODE:
rc = iwctl_siwmode(dev, NULL, &(wrq->u.mode), NULL);
break;
// Get mode of operation
case SIOCGIWMODE:
rc = iwctl_giwmode(dev, NULL, &(wrq->u.mode), NULL);
break;
// Set WEP keys and mode
case SIOCSIWENCODE: {
char abyKey[WLAN_WEP232_KEYLEN];
if (wrq->u.encoding.pointer) {
if (wrq->u.encoding.length > WLAN_WEP232_KEYLEN) {
rc = -E2BIG;
break;
}
memset(abyKey, 0, WLAN_WEP232_KEYLEN);
if (copy_from_user(abyKey,
wrq->u.encoding.pointer,
wrq->u.encoding.length)) {
rc = -EFAULT;
break;
}
} else if (wrq->u.encoding.length != 0) {
rc = -EINVAL;
break;
}
rc = iwctl_siwencode(dev, NULL, &(wrq->u.encoding), abyKey);
}
break;
// Get the WEP keys and mode
case SIOCGIWENCODE:
if (!capable(CAP_NET_ADMIN)) {
rc = -EPERM;
break;
}
{
char abyKey[WLAN_WEP232_KEYLEN];
rc = iwctl_giwencode(dev, NULL, &(wrq->u.encoding), abyKey);
if (rc != 0)
break;
if (wrq->u.encoding.pointer) {
if (copy_to_user(wrq->u.encoding.pointer,
abyKey,
wrq->u.encoding.length))
rc = -EFAULT;
}
}
break;
// Get the current Tx-Power
case SIOCGIWTXPOW:
pr_debug(" SIOCGIWTXPOW\n");
rc = -EOPNOTSUPP;
break;
case SIOCSIWTXPOW:
pr_debug(" SIOCSIWTXPOW\n");
rc = -EOPNOTSUPP;
break;
case SIOCSIWRETRY:
rc = iwctl_siwretry(dev, NULL, &(wrq->u.retry), NULL);
break;
case SIOCGIWRETRY:
rc = iwctl_giwretry(dev, NULL, &(wrq->u.retry), NULL);
break;
// Get range of parameters
case SIOCGIWRANGE:
{
struct iw_range range;
rc = iwctl_giwrange(dev, NULL, &(wrq->u.data), (char *)&range);
if (copy_to_user(wrq->u.data.pointer, &range, sizeof(struct iw_range)))
rc = -EFAULT;
}
break;
case SIOCGIWPOWER:
rc = iwctl_giwpower(dev, NULL, &(wrq->u.power), NULL);
break;
case SIOCSIWPOWER:
rc = iwctl_siwpower(dev, NULL, &(wrq->u.power), NULL);
break;
case SIOCGIWSENS:
rc = iwctl_giwsens(dev, NULL, &(wrq->u.sens), NULL);
break;
case SIOCSIWSENS:
pr_debug(" SIOCSIWSENS\n");
rc = -EOPNOTSUPP;
break;
case SIOCGIWAPLIST: {
char buffer[IW_MAX_AP * (sizeof(struct sockaddr) + sizeof(struct iw_quality))];
if (wrq->u.data.pointer) {
rc = iwctl_giwaplist(dev, NULL, &(wrq->u.data), buffer);
if (rc == 0) {
if (copy_to_user(wrq->u.data.pointer,
buffer,
(wrq->u.data.length * (sizeof(struct sockaddr) + sizeof(struct iw_quality)))
))
rc = -EFAULT;
}
}
}
break;
#ifdef WIRELESS_SPY
// Set the spy list
case SIOCSIWSPY:
pr_debug(" SIOCSIWSPY\n");
rc = -EOPNOTSUPP;
break;
// Get the spy list
case SIOCGIWSPY:
pr_debug(" SIOCGIWSPY\n");
rc = -EOPNOTSUPP;
break;
#endif // WIRELESS_SPY
case SIOCGIWPRIV:
pr_debug(" SIOCGIWPRIV\n");
rc = -EOPNOTSUPP;
break;
//2008-0409-07, <Add> by Einsn Liu
#ifdef WPA_SUPPLICANT_DRIVER_WEXT_SUPPORT
case SIOCSIWAUTH:
pr_debug(" SIOCSIWAUTH\n");
rc = iwctl_siwauth(dev, NULL, &(wrq->u.param), NULL);
break;
case SIOCGIWAUTH:
pr_debug(" SIOCGIWAUTH\n");
rc = iwctl_giwauth(dev, NULL, &(wrq->u.param), NULL);
break;
case SIOCSIWGENIE:
pr_debug(" SIOCSIWGENIE\n");
rc = iwctl_siwgenie(dev, NULL, &(wrq->u.data), wrq->u.data.pointer);
break;
case SIOCGIWGENIE:
pr_debug(" SIOCGIWGENIE\n");
rc = iwctl_giwgenie(dev, NULL, &(wrq->u.data), wrq->u.data.pointer);
break;
case SIOCSIWENCODEEXT: {
char extra[sizeof(struct iw_encode_ext)+MAX_KEY_LEN+1];
pr_debug(" SIOCSIWENCODEEXT\n");
if (wrq->u.encoding.pointer) {
memset(extra, 0, sizeof(struct iw_encode_ext)+MAX_KEY_LEN + 1);
if (wrq->u.encoding.length > (sizeof(struct iw_encode_ext) + MAX_KEY_LEN)) {
rc = -E2BIG;
break;
}
if (copy_from_user(extra, wrq->u.encoding.pointer, wrq->u.encoding.length)) {
rc = -EFAULT;
break;
}
} else if (wrq->u.encoding.length != 0) {
rc = -EINVAL;
break;
}
rc = iwctl_siwencodeext(dev, NULL, &(wrq->u.encoding), extra);
}
break;
case SIOCGIWENCODEEXT:
pr_debug(" SIOCGIWENCODEEXT\n");
rc = iwctl_giwencodeext(dev, NULL, &(wrq->u.encoding), NULL);
break;
case SIOCSIWMLME:
pr_debug(" SIOCSIWMLME\n");
rc = iwctl_siwmlme(dev, NULL, &(wrq->u.data), wrq->u.data.pointer);
break;
#endif // #ifdef WPA_SUPPLICANT_DRIVER_WEXT_SUPPORT
//End Add -- //2008-0409-07, <Add> by Einsn Liu
case IOCTL_CMD_TEST:
if (!(pDevice->flags & DEVICE_FLAGS_OPENED)) {
rc = -EFAULT;
break;
} else {
rc = 0;
}
pReq = (PSCmdRequest)rq;
pReq->wResult = MAGIC_CODE;
break;
case IOCTL_CMD_SET:
#ifdef SndEvt_ToAPI
if ((((PSCmdRequest)rq)->wCmdCode != WLAN_CMD_SET_EVT) &&
!(pDevice->flags & DEVICE_FLAGS_OPENED))
#else
if (!(pDevice->flags & DEVICE_FLAGS_OPENED) &&
(((PSCmdRequest)rq)->wCmdCode != WLAN_CMD_SET_WPA))
#endif
{
rc = -EFAULT;
break;
} else {
rc = 0;
}
if (test_and_set_bit(0, (void *)&(pMgmt->uCmdBusy)))
return -EBUSY;
rc = private_ioctl(pDevice, rq);
clear_bit(0, (void *)&(pMgmt->uCmdBusy));
break;
case IOCTL_CMD_HOSTAPD:
rc = vt6655_hostap_ioctl(pDevice, &wrq->u.data);
break;
case IOCTL_CMD_WPA:
rc = wpa_ioctl(pDevice, &wrq->u.data);
break;
case SIOCETHTOOL:
return ethtool_ioctl(dev, rq->ifr_data);
// All other calls are currently unsupported
default:
rc = -EOPNOTSUPP;
pr_debug("Ioctl command not support..%x\n", cmd);
}
if (pDevice->bCommit) {
if (pMgmt->eConfigMode == WMAC_CONFIG_AP) {
netif_stop_queue(pDevice->dev);
spin_lock_irq(&pDevice->lock);
bScheduleCommand((void *)pDevice, WLAN_CMD_RUN_AP, NULL);
spin_unlock_irq(&pDevice->lock);
} else {
pr_debug("Commit the settings\n");
spin_lock_irq(&pDevice->lock);
pDevice->bLinkPass = false;
memset(pMgmt->abyCurrBSSID, 0, 6);
pMgmt->eCurrState = WMAC_STATE_IDLE;
netif_stop_queue(pDevice->dev);
#ifdef WPA_SUPPLICANT_DRIVER_WEXT_SUPPORT
pMgmt->eScanType = WMAC_SCAN_ACTIVE;
if (!pDevice->bWPASuppWextEnabled)
#endif
bScheduleCommand((void *)pDevice, WLAN_CMD_BSSID_SCAN, pMgmt->abyDesireSSID);
bScheduleCommand((void *)pDevice, WLAN_CMD_SSID, NULL);
spin_unlock_irq(&pDevice->lock);
}
pDevice->bCommit = false;
}
return rc;
}
static int ethtool_ioctl(struct net_device *dev, void __user *useraddr)
{
u32 ethcmd;
if (copy_from_user(ðcmd, useraddr, sizeof(ethcmd)))
return -EFAULT;
switch (ethcmd) {
case ETHTOOL_GDRVINFO: {
struct ethtool_drvinfo info = {ETHTOOL_GDRVINFO};
strncpy(info.driver, DEVICE_NAME, sizeof(info.driver)-1);
strncpy(info.version, DEVICE_VERSION, sizeof(info.version)-1);
if (copy_to_user(useraddr, &info, sizeof(info)))
return -EFAULT;
return 0;
}
}
return -EOPNOTSUPP;
}
/*------------------------------------------------------------------*/
MODULE_DEVICE_TABLE(pci, vt6655_pci_id_table);
static struct pci_driver device_driver = {
.name = DEVICE_NAME,
.id_table = vt6655_pci_id_table,
.probe = vt6655_probe,
.remove = vt6655_remove,
#ifdef CONFIG_PM
.suspend = viawget_suspend,
.resume = viawget_resume,
#endif
};
static int __init vt6655_init_module(void)
{
int ret;
ret = pci_register_driver(&device_driver);
#ifdef CONFIG_PM
if (ret >= 0)
register_reboot_notifier(&device_notifier);
#endif
return ret;
}
static void __exit vt6655_cleanup_module(void)
{
#ifdef CONFIG_PM
unregister_reboot_notifier(&device_notifier);
#endif
pci_unregister_driver(&device_driver);
}
module_init(vt6655_init_module);
module_exit(vt6655_cleanup_module);
#ifdef CONFIG_PM
static int
device_notify_reboot(struct notifier_block *nb, unsigned long event, void *p)
{
struct pci_dev *pdev = NULL;
switch (event) {
case SYS_DOWN:
case SYS_HALT:
case SYS_POWER_OFF:
for_each_pci_dev(pdev) {
if (pci_dev_driver(pdev) == &device_driver) {
if (pci_get_drvdata(pdev))
viawget_suspend(pdev, PMSG_HIBERNATE);
}
}
}
return NOTIFY_DONE;
}
static int
viawget_suspend(struct pci_dev *pcid, pm_message_t state)
{
int power_status; // to silence the compiler
struct vnt_private *pDevice = pci_get_drvdata(pcid);
PSMgmtObject pMgmt = pDevice->pMgmt;
netif_stop_queue(pDevice->dev);
spin_lock_irq(&pDevice->lock);
pci_save_state(pcid);
del_timer(&pDevice->sTimerCommand);
del_timer(&pMgmt->sTimerSecondCallback);
pDevice->cbFreeCmdQueue = CMD_Q_SIZE;
pDevice->uCmdDequeueIdx = 0;
pDevice->uCmdEnqueueIdx = 0;
pDevice->bCmdRunning = false;
MACbShutdown(pDevice->PortOffset);
MACvSaveContext(pDevice->PortOffset, pDevice->abyMacContext);
pDevice->bLinkPass = false;
memset(pMgmt->abyCurrBSSID, 0, 6);
pMgmt->eCurrState = WMAC_STATE_IDLE;
pci_disable_device(pcid);
power_status = pci_set_power_state(pcid, pci_choose_state(pcid, state));
spin_unlock_irq(&pDevice->lock);
return 0;
}
static int
viawget_resume(struct pci_dev *pcid)
{
struct vnt_private *pDevice = pci_get_drvdata(pcid);
PSMgmtObject pMgmt = pDevice->pMgmt;
int power_status; // to silence the compiler
power_status = pci_set_power_state(pcid, PCI_D0);
power_status = pci_enable_wake(pcid, PCI_D0, 0);
pci_restore_state(pcid);
if (netif_running(pDevice->dev)) {
spin_lock_irq(&pDevice->lock);
MACvRestoreContext(pDevice->PortOffset, pDevice->abyMacContext);
device_init_registers(pDevice);
if (pMgmt->sNodeDBTable[0].bActive) { // Assoc with BSS
pMgmt->sNodeDBTable[0].bActive = false;
pDevice->bLinkPass = false;
if (pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) {
// In Adhoc, BSS state set back to started.
pMgmt->eCurrState = WMAC_STATE_STARTED;
} else {
pMgmt->eCurrMode = WMAC_MODE_STANDBY;
pMgmt->eCurrState = WMAC_STATE_IDLE;
}
}
init_timer(&pMgmt->sTimerSecondCallback);
init_timer(&pDevice->sTimerCommand);
MACvIntEnable(pDevice->PortOffset, IMR_MASK_VALUE);
BSSvClearBSSList((void *)pDevice, pDevice->bLinkPass);
bScheduleCommand((void *)pDevice, WLAN_CMD_BSSID_SCAN, NULL);
bScheduleCommand((void *)pDevice, WLAN_CMD_SSID, NULL);
spin_unlock_irq(&pDevice->lock);
}
return 0;
}
#endif