- 根目录:
- arch
- m68k
- coldfire
- device.c
/*
* device.c -- common ColdFire SoC device support
*
* (C) Copyright 2011, Greg Ungerer <gerg@uclinux.org>
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file COPYING in the main directory of this archive
* for more details.
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/io.h>
#include <linux/spi/spi.h>
#include <linux/gpio.h>
#include <linux/fec.h>
#include <asm/traps.h>
#include <asm/coldfire.h>
#include <asm/mcfsim.h>
#include <asm/mcfuart.h>
#include <asm/mcfqspi.h>
/*
* All current ColdFire parts contain from 2, 3, 4 or 10 UARTS.
*/
static struct mcf_platform_uart mcf_uart_platform_data[] = {
{
.mapbase = MCFUART_BASE0,
.irq = MCF_IRQ_UART0,
},
{
.mapbase = MCFUART_BASE1,
.irq = MCF_IRQ_UART1,
},
#ifdef MCFUART_BASE2
{
.mapbase = MCFUART_BASE2,
.irq = MCF_IRQ_UART2,
},
#endif
#ifdef MCFUART_BASE3
{
.mapbase = MCFUART_BASE3,
.irq = MCF_IRQ_UART3,
},
#endif
#ifdef MCFUART_BASE4
{
.mapbase = MCFUART_BASE4,
.irq = MCF_IRQ_UART4,
},
#endif
#ifdef MCFUART_BASE5
{
.mapbase = MCFUART_BASE5,
.irq = MCF_IRQ_UART5,
},
#endif
#ifdef MCFUART_BASE6
{
.mapbase = MCFUART_BASE6,
.irq = MCF_IRQ_UART6,
},
#endif
#ifdef MCFUART_BASE7
{
.mapbase = MCFUART_BASE7,
.irq = MCF_IRQ_UART7,
},
#endif
#ifdef MCFUART_BASE8
{
.mapbase = MCFUART_BASE8,
.irq = MCF_IRQ_UART8,
},
#endif
#ifdef MCFUART_BASE9
{
.mapbase = MCFUART_BASE9,
.irq = MCF_IRQ_UART9,
},
#endif
{ },
};
static struct platform_device mcf_uart = {
.name = "mcfuart",
.id = 0,
.dev.platform_data = mcf_uart_platform_data,
};
#ifdef CONFIG_FEC
#ifdef CONFIG_M5441x
#define FEC_NAME "enet-fec"
static struct fec_platform_data fec_pdata = {
.phy = PHY_INTERFACE_MODE_RMII,
};
#define FEC_PDATA (&fec_pdata)
#else
#define FEC_NAME "fec"
#define FEC_PDATA NULL
#endif
/*
* Some ColdFire cores contain the Fast Ethernet Controller (FEC)
* block. It is Freescale's own hardware block. Some ColdFires
* have 2 of these.
*/
static struct resource mcf_fec0_resources[] = {
{
.start = MCFFEC_BASE0,
.end = MCFFEC_BASE0 + MCFFEC_SIZE0 - 1,
.flags = IORESOURCE_MEM,
},
{
.start = MCF_IRQ_FECRX0,
.end = MCF_IRQ_FECRX0,
.flags = IORESOURCE_IRQ,
},
{
.start = MCF_IRQ_FECTX0,
.end = MCF_IRQ_FECTX0,
.flags = IORESOURCE_IRQ,
},
{
.start = MCF_IRQ_FECENTC0,
.end = MCF_IRQ_FECENTC0,
.flags = IORESOURCE_IRQ,
},
};
static struct platform_device mcf_fec0 = {
.name = FEC_NAME,
.id = 0,
.num_resources = ARRAY_SIZE(mcf_fec0_resources),
.resource = mcf_fec0_resources,
.dev.platform_data = FEC_PDATA,
};
#ifdef MCFFEC_BASE1
static struct resource mcf_fec1_resources[] = {
{
.start = MCFFEC_BASE1,
.end = MCFFEC_BASE1 + MCFFEC_SIZE1 - 1,
.flags = IORESOURCE_MEM,
},
{
.start = MCF_IRQ_FECRX1,
.end = MCF_IRQ_FECRX1,
.flags = IORESOURCE_IRQ,
},
{
.start = MCF_IRQ_FECTX1,
.end = MCF_IRQ_FECTX1,
.flags = IORESOURCE_IRQ,
},
{
.start = MCF_IRQ_FECENTC1,
.end = MCF_IRQ_FECENTC1,
.flags = IORESOURCE_IRQ,
},
};
static struct platform_device mcf_fec1 = {
.name = FEC_NAME,
.id = 1,
.num_resources = ARRAY_SIZE(mcf_fec1_resources),
.resource = mcf_fec1_resources,
.dev.platform_data = FEC_PDATA,
};
#endif /* MCFFEC_BASE1 */
#endif /* CONFIG_FEC */
#if IS_ENABLED(CONFIG_SPI_COLDFIRE_QSPI)
/*
* The ColdFire QSPI module is an SPI protocol hardware block used
* on a number of different ColdFire CPUs.
*/
static struct resource mcf_qspi_resources[] = {
{
.start = MCFQSPI_BASE,
.end = MCFQSPI_BASE + MCFQSPI_SIZE - 1,
.flags = IORESOURCE_MEM,
},
{
.start = MCF_IRQ_QSPI,
.end = MCF_IRQ_QSPI,
.flags = IORESOURCE_IRQ,
},
};
static int mcf_cs_setup(struct mcfqspi_cs_control *cs_control)
{
int status;
status = gpio_request(MCFQSPI_CS0, "MCFQSPI_CS0");
if (status) {
pr_debug("gpio_request for MCFQSPI_CS0 failed\n");
goto fail0;
}
status = gpio_direction_output(MCFQSPI_CS0, 1);
if (status) {
pr_debug("gpio_direction_output for MCFQSPI_CS0 failed\n");
goto fail1;
}
status = gpio_request(MCFQSPI_CS1, "MCFQSPI_CS1");
if (status) {
pr_debug("gpio_request for MCFQSPI_CS1 failed\n");
goto fail1;
}
status = gpio_direction_output(MCFQSPI_CS1, 1);
if (status) {
pr_debug("gpio_direction_output for MCFQSPI_CS1 failed\n");
goto fail2;
}
status = gpio_request(MCFQSPI_CS2, "MCFQSPI_CS2");
if (status) {
pr_debug("gpio_request for MCFQSPI_CS2 failed\n");
goto fail2;
}
status = gpio_direction_output(MCFQSPI_CS2, 1);
if (status) {
pr_debug("gpio_direction_output for MCFQSPI_CS2 failed\n");
goto fail3;
}
#ifdef MCFQSPI_CS3
status = gpio_request(MCFQSPI_CS3, "MCFQSPI_CS3");
if (status) {
pr_debug("gpio_request for MCFQSPI_CS3 failed\n");
goto fail3;
}
status = gpio_direction_output(MCFQSPI_CS3, 1);
if (status) {
pr_debug("gpio_direction_output for MCFQSPI_CS3 failed\n");
gpio_free(MCFQSPI_CS3);
goto fail3;
}
#endif
return 0;
fail3:
gpio_free(MCFQSPI_CS2);
fail2:
gpio_free(MCFQSPI_CS1);
fail1:
gpio_free(MCFQSPI_CS0);
fail0:
return status;
}
static void mcf_cs_teardown(struct mcfqspi_cs_control *cs_control)
{
#ifdef MCFQSPI_CS3
gpio_free(MCFQSPI_CS3);
#endif
gpio_free(MCFQSPI_CS2);
gpio_free(MCFQSPI_CS1);
gpio_free(MCFQSPI_CS0);
}
static void mcf_cs_select(struct mcfqspi_cs_control *cs_control,
u8 chip_select, bool cs_high)
{
switch (chip_select) {
case 0:
gpio_set_value(MCFQSPI_CS0, cs_high);
break;
case 1:
gpio_set_value(MCFQSPI_CS1, cs_high);
break;
case 2:
gpio_set_value(MCFQSPI_CS2, cs_high);
break;
#ifdef MCFQSPI_CS3
case 3:
gpio_set_value(MCFQSPI_CS3, cs_high);
break;
#endif
}
}
static void mcf_cs_deselect(struct mcfqspi_cs_control *cs_control,
u8 chip_select, bool cs_high)
{
switch (chip_select) {
case 0:
gpio_set_value(MCFQSPI_CS0, !cs_high);
break;
case 1:
gpio_set_value(MCFQSPI_CS1, !cs_high);
break;
case 2:
gpio_set_value(MCFQSPI_CS2, !cs_high);
break;
#ifdef MCFQSPI_CS3
case 3:
gpio_set_value(MCFQSPI_CS3, !cs_high);
break;
#endif
}
}
static struct mcfqspi_cs_control mcf_cs_control = {
.setup = mcf_cs_setup,
.teardown = mcf_cs_teardown,
.select = mcf_cs_select,
.deselect = mcf_cs_deselect,
};
static struct mcfqspi_platform_data mcf_qspi_data = {
.bus_num = 0,
.num_chipselect = 4,
.cs_control = &mcf_cs_control,
};
static struct platform_device mcf_qspi = {
.name = "mcfqspi",
.id = 0,
.num_resources = ARRAY_SIZE(mcf_qspi_resources),
.resource = mcf_qspi_resources,
.dev.platform_data = &mcf_qspi_data,
};
#endif /* IS_ENABLED(CONFIG_SPI_COLDFIRE_QSPI) */
static struct platform_device *mcf_devices[] __initdata = {
&mcf_uart,
#ifdef CONFIG_FEC
&mcf_fec0,
#ifdef MCFFEC_BASE1
&mcf_fec1,
#endif
#endif
#if IS_ENABLED(CONFIG_SPI_COLDFIRE_QSPI)
&mcf_qspi,
#endif
};
/*
* Some ColdFire UARTs let you set the IRQ line to use.
*/
static void __init mcf_uart_set_irq(void)
{
#ifdef MCFUART_UIVR
/* UART0 interrupt setup */
writeb(MCFSIM_ICR_LEVEL6 | MCFSIM_ICR_PRI1, MCFSIM_UART1ICR);
writeb(MCF_IRQ_UART0, MCFUART_BASE0 + MCFUART_UIVR);
mcf_mapirq2imr(MCF_IRQ_UART0, MCFINTC_UART0);
/* UART1 interrupt setup */
writeb(MCFSIM_ICR_LEVEL6 | MCFSIM_ICR_PRI2, MCFSIM_UART2ICR);
writeb(MCF_IRQ_UART1, MCFUART_BASE1 + MCFUART_UIVR);
mcf_mapirq2imr(MCF_IRQ_UART1, MCFINTC_UART1);
#endif
}
static int __init mcf_init_devices(void)
{
mcf_uart_set_irq();
platform_add_devices(mcf_devices, ARRAY_SIZE(mcf_devices));
return 0;
}
arch_initcall(mcf_init_devices);