/* * Copyright (c) by James Courtier-Dutton <James@superbug.demon.co.uk> * Driver p16v chips * Version: 0.25 * * FEATURES currently supported: * Output fixed at S32_LE, 2 channel to hw:0,0 * Rates: 44.1, 48, 96, 192. * * Changelog: * 0.8 * Use separate card based buffer for periods table. * 0.9 * Use 2 channel output streams instead of 8 channel. * (8 channel output streams might be good for ASIO type output) * Corrected speaker output, so Front -> Front etc. * 0.10 * Fixed missed interrupts. * 0.11 * Add Sound card model number and names. * Add Analog volume controls. * 0.12 * Corrected playback interrupts. Now interrupt per period, instead of half period. * 0.13 * Use single trigger for multichannel. * 0.14 * Mic capture now works at fixed: S32_LE, 96000Hz, Stereo. * 0.15 * Force buffer_size / period_size == INTEGER. * 0.16 * Update p16v.c to work with changed alsa api. * 0.17 * Update p16v.c to work with changed alsa api. Removed boot_devs. * 0.18 * Merging with snd-emu10k1 driver. * 0.19 * One stereo channel at 24bit now works. * 0.20 * Added better register defines. * 0.21 * Integrated with snd-emu10k1 driver. * 0.22 * Removed #if 0 ... #endif * 0.23 * Implement different capture rates. * 0.24 * Implement different capture source channels. * e.g. When HD Capture source is set to SPDIF, * setting HD Capture channel to 0 captures from CDROM digital input. * setting HD Capture channel to 1 captures from SPDIF in. * 0.25 * Include capture buffer sizes. * * BUGS: * Some stability problems when unloading the snd-p16v kernel module. * -- * * TODO: * SPDIF out. * Find out how to change capture sample rates. E.g. To record SPDIF at 48000Hz. * Currently capture fixed at 48000Hz. * * -- * GENERAL INFO: * Model: SB0240 * P16V Chip: CA0151-DBS * Audigy 2 Chip: CA0102-IAT * AC97 Codec: STAC 9721 * ADC: Philips 1361T (Stereo 24bit) * DAC: CS4382-K (8-channel, 24bit, 192Khz) * * This code was initially based on code from ALSA's emu10k1x.c which is: * Copyright (c) by Francisco Moraes <fmoraes@nc.rr.com> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ #include <linux/delay.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/pci.h> #include <linux/slab.h> #include <linux/vmalloc.h> #include <linux/moduleparam.h> #include <sound/core.h> #include <sound/initval.h> #include <sound/pcm.h> #include <sound/ac97_codec.h> #include <sound/info.h> #include <sound/tlv.h> #include <sound/emu10k1.h> #include "p16v.h" #define SET_CHANNEL 0 /* Testing channel outputs 0=Front, 1=Center/LFE, 2=Unknown, 3=Rear */ #define PCM_FRONT_CHANNEL 0 #define PCM_REAR_CHANNEL 1 #define PCM_CENTER_LFE_CHANNEL 2 #define PCM_SIDE_CHANNEL 3 #define CONTROL_FRONT_CHANNEL 0 #define CONTROL_REAR_CHANNEL 3 #define CONTROL_CENTER_LFE_CHANNEL 1 #define CONTROL_SIDE_CHANNEL 2 /* Card IDs: * Class 0401: 1102:0004 (rev 04) Subsystem: 1102:2002 -> Audigy2 ZS 7.1 Model:SB0350 * Class 0401: 1102:0004 (rev 04) Subsystem: 1102:1007 -> Audigy2 6.1 Model:SB0240 * Class 0401: 1102:0004 (rev 04) Subsystem: 1102:1002 -> Audigy2 Platinum Model:SB msb0240230009266 * Class 0401: 1102:0004 (rev 04) Subsystem: 1102:2007 -> Audigy4 Pro Model:SB0380 M1SB0380472001901E * */ /* hardware definition */ static struct snd_pcm_hardware snd_p16v_playback_hw = { .info = SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_SYNC_START, .formats = SNDRV_PCM_FMTBIT_S32_LE, /* Only supports 24-bit samples padded to 32 bits. */ .rates = SNDRV_PCM_RATE_192000 | SNDRV_PCM_RATE_96000 | SNDRV_PCM_RATE_48000 | SNDRV_PCM_RATE_44100, .rate_min = 44100, .rate_max = 192000, .channels_min = 8, .channels_max = 8, .buffer_bytes_max = ((65536 - 64) * 8), .period_bytes_min = 64, .period_bytes_max = (65536 - 64), .periods_min = 2, .periods_max = 8, .fifo_size = 0, }; static struct snd_pcm_hardware snd_p16v_capture_hw = { .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID), .formats = SNDRV_PCM_FMTBIT_S32_LE, .rates = SNDRV_PCM_RATE_192000 | SNDRV_PCM_RATE_96000 | SNDRV_PCM_RATE_48000 | SNDRV_PCM_RATE_44100, .rate_min = 44100, .rate_max = 192000, .channels_min = 2, .channels_max = 2, .buffer_bytes_max = (65536 - 64), .period_bytes_min = 64, .period_bytes_max = (65536 - 128) >> 1, /* size has to be N*64 bytes */ .periods_min = 2, .periods_max = 2, .fifo_size = 0, }; static void snd_p16v_pcm_free_substream(struct snd_pcm_runtime *runtime) { struct snd_emu10k1_pcm *epcm = runtime->private_data; if (epcm) { /* dev_dbg(emu->card->dev, "epcm free: %p\n", epcm); */ kfree(epcm); } } /* open_playback callback */ static int snd_p16v_pcm_open_playback_channel(struct snd_pcm_substream *substream, int channel_id) { struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream); struct snd_emu10k1_voice *channel = &(emu->p16v_voices[channel_id]); struct snd_emu10k1_pcm *epcm; struct snd_pcm_runtime *runtime = substream->runtime; int err; epcm = kzalloc(sizeof(*epcm), GFP_KERNEL); /* dev_dbg(emu->card->dev, "epcm kcalloc: %p\n", epcm); */ if (epcm == NULL) return -ENOMEM; epcm->emu = emu; epcm->substream = substream; /* dev_dbg(emu->card->dev, "epcm device=%d, channel_id=%d\n", substream->pcm->device, channel_id); */ runtime->private_data = epcm; runtime->private_free = snd_p16v_pcm_free_substream; runtime->hw = snd_p16v_playback_hw; channel->emu = emu; channel->number = channel_id; channel->use=1; #if 0 /* debug */ dev_dbg(emu->card->dev, "p16v: open channel_id=%d, channel=%p, use=0x%x\n", channel_id, channel, channel->use); dev_dbg(emu->card->dev, "open:channel_id=%d, chip=%p, channel=%p\n", channel_id, chip, channel); #endif /* debug */ /* channel->interrupt = snd_p16v_pcm_channel_interrupt; */ channel->epcm = epcm; if ((err = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS)) < 0) return err; runtime->sync.id32[0] = substream->pcm->card->number; runtime->sync.id32[1] = 'P'; runtime->sync.id32[2] = 16; runtime->sync.id32[3] = 'V'; return 0; } /* open_capture callback */ static int snd_p16v_pcm_open_capture_channel(struct snd_pcm_substream *substream, int channel_id) { struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream); struct snd_emu10k1_voice *channel = &(emu->p16v_capture_voice); struct snd_emu10k1_pcm *epcm; struct snd_pcm_runtime *runtime = substream->runtime; int err; epcm = kzalloc(sizeof(*epcm), GFP_KERNEL); /* dev_dbg(emu->card->dev, "epcm kcalloc: %p\n", epcm); */ if (epcm == NULL) return -ENOMEM; epcm->emu = emu; epcm->substream = substream; /* dev_dbg(emu->card->dev, "epcm device=%d, channel_id=%d\n", substream->pcm->device, channel_id); */ runtime->private_data = epcm; runtime->private_free = snd_p16v_pcm_free_substream; runtime->hw = snd_p16v_capture_hw; channel->emu = emu; channel->number = channel_id; channel->use=1; #if 0 /* debug */ dev_dbg(emu->card->dev, "p16v: open channel_id=%d, channel=%p, use=0x%x\n", channel_id, channel, channel->use); dev_dbg(emu->card->dev, "open:channel_id=%d, chip=%p, channel=%p\n", channel_id, chip, channel); #endif /* debug */ /* channel->interrupt = snd_p16v_pcm_channel_interrupt; */ channel->epcm = epcm; if ((err = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS)) < 0) return err; return 0; } /* close callback */ static int snd_p16v_pcm_close_playback(struct snd_pcm_substream *substream) { struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream); //struct snd_pcm_runtime *runtime = substream->runtime; //struct snd_emu10k1_pcm *epcm = runtime->private_data; emu->p16v_voices[substream->pcm->device - emu->p16v_device_offset].use = 0; /* FIXME: maybe zero others */ return 0; } /* close callback */ static int snd_p16v_pcm_close_capture(struct snd_pcm_substream *substream) { struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream); //struct snd_pcm_runtime *runtime = substream->runtime; //struct snd_emu10k1_pcm *epcm = runtime->private_data; emu->p16v_capture_voice.use = 0; /* FIXME: maybe zero others */ return 0; } static int snd_p16v_pcm_open_playback_front(struct snd_pcm_substream *substream) { return snd_p16v_pcm_open_playback_channel(substream, PCM_FRONT_CHANNEL); } static int snd_p16v_pcm_open_capture(struct snd_pcm_substream *substream) { // Only using channel 0 for now, but the card has 2 channels. return snd_p16v_pcm_open_capture_channel(substream, 0); } /* hw_params callback */ static int snd_p16v_pcm_hw_params_playback(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *hw_params) { int result; result = snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params)); return result; } /* hw_params callback */ static int snd_p16v_pcm_hw_params_capture(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *hw_params) { int result; result = snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params)); return result; } /* hw_free callback */ static int snd_p16v_pcm_hw_free_playback(struct snd_pcm_substream *substream) { int result; result = snd_pcm_lib_free_pages(substream); return result; } /* hw_free callback */ static int snd_p16v_pcm_hw_free_capture(struct snd_pcm_substream *substream) { int result; result = snd_pcm_lib_free_pages(substream); return result; } /* prepare playback callback */ static int snd_p16v_pcm_prepare_playback(struct snd_pcm_substream *substream) { struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; int channel = substream->pcm->device - emu->p16v_device_offset; u32 *table_base = (u32 *)(emu->p16v_buffer.area+(8*16*channel)); u32 period_size_bytes = frames_to_bytes(runtime, runtime->period_size); int i; u32 tmp; #if 0 /* debug */ dev_dbg(emu->card->dev, "prepare:channel_number=%d, rate=%d, " "format=0x%x, channels=%d, buffer_size=%ld, " "period_size=%ld, periods=%u, frames_to_bytes=%d\n", channel, runtime->rate, runtime->format, runtime->channels, runtime->buffer_size, runtime->period_size, runtime->periods, frames_to_bytes(runtime, 1)); dev_dbg(emu->card->dev, "dma_addr=%x, dma_area=%p, table_base=%p\n", runtime->dma_addr, runtime->dma_area, table_base); dev_dbg(emu->card->dev, "dma_addr=%x, dma_area=%p, dma_bytes(size)=%x\n", emu->p16v_buffer.addr, emu->p16v_buffer.area, emu->p16v_buffer.bytes); #endif /* debug */ tmp = snd_emu10k1_ptr_read(emu, A_SPDIF_SAMPLERATE, channel); switch (runtime->rate) { case 44100: snd_emu10k1_ptr_write(emu, A_SPDIF_SAMPLERATE, channel, (tmp & ~0xe0e0) | 0x8080); break; case 96000: snd_emu10k1_ptr_write(emu, A_SPDIF_SAMPLERATE, channel, (tmp & ~0xe0e0) | 0x4040); break; case 192000: snd_emu10k1_ptr_write(emu, A_SPDIF_SAMPLERATE, channel, (tmp & ~0xe0e0) | 0x2020); break; case 48000: default: snd_emu10k1_ptr_write(emu, A_SPDIF_SAMPLERATE, channel, (tmp & ~0xe0e0) | 0x0000); break; } /* FIXME: Check emu->buffer.size before actually writing to it. */ for(i = 0; i < runtime->periods; i++) { table_base[i*2]=runtime->dma_addr+(i*period_size_bytes); table_base[(i*2)+1]=period_size_bytes<<16; } snd_emu10k1_ptr20_write(emu, PLAYBACK_LIST_ADDR, channel, emu->p16v_buffer.addr+(8*16*channel)); snd_emu10k1_ptr20_write(emu, PLAYBACK_LIST_SIZE, channel, (runtime->periods - 1) << 19); snd_emu10k1_ptr20_write(emu, PLAYBACK_LIST_PTR, channel, 0); snd_emu10k1_ptr20_write(emu, PLAYBACK_DMA_ADDR, channel, runtime->dma_addr); //snd_emu10k1_ptr20_write(emu, PLAYBACK_PERIOD_SIZE, channel, frames_to_bytes(runtime, runtime->period_size)<<16); // buffer size in bytes snd_emu10k1_ptr20_write(emu, PLAYBACK_PERIOD_SIZE, channel, 0); // buffer size in bytes snd_emu10k1_ptr20_write(emu, PLAYBACK_POINTER, channel, 0); snd_emu10k1_ptr20_write(emu, 0x07, channel, 0x0); snd_emu10k1_ptr20_write(emu, 0x08, channel, 0); return 0; } /* prepare capture callback */ static int snd_p16v_pcm_prepare_capture(struct snd_pcm_substream *substream) { struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; int channel = substream->pcm->device - emu->p16v_device_offset; u32 tmp; /* dev_dbg(emu->card->dev, "prepare capture:channel_number=%d, rate=%d, " "format=0x%x, channels=%d, buffer_size=%ld, period_size=%ld, " "frames_to_bytes=%d\n", channel, runtime->rate, runtime->format, runtime->channels, runtime->buffer_size, runtime->period_size, frames_to_bytes(runtime, 1)); */ tmp = snd_emu10k1_ptr_read(emu, A_SPDIF_SAMPLERATE, channel); switch (runtime->rate) { case 44100: snd_emu10k1_ptr_write(emu, A_SPDIF_SAMPLERATE, channel, (tmp & ~0x0e00) | 0x0800); break; case 96000: snd_emu10k1_ptr_write(emu, A_SPDIF_SAMPLERATE, channel, (tmp & ~0x0e00) | 0x0400); break; case 192000: snd_emu10k1_ptr_write(emu, A_SPDIF_SAMPLERATE, channel, (tmp & ~0x0e00) | 0x0200); break; case 48000: default: snd_emu10k1_ptr_write(emu, A_SPDIF_SAMPLERATE, channel, (tmp & ~0x0e00) | 0x0000); break; } /* FIXME: Check emu->buffer.size before actually writing to it. */ snd_emu10k1_ptr20_write(emu, 0x13, channel, 0); snd_emu10k1_ptr20_write(emu, CAPTURE_DMA_ADDR, channel, runtime->dma_addr); snd_emu10k1_ptr20_write(emu, CAPTURE_BUFFER_SIZE, channel, frames_to_bytes(runtime, runtime->buffer_size) << 16); // buffer size in bytes snd_emu10k1_ptr20_write(emu, CAPTURE_POINTER, channel, 0); //snd_emu10k1_ptr20_write(emu, CAPTURE_SOURCE, 0x0, 0x333300e4); /* Select MIC or Line in */ //snd_emu10k1_ptr20_write(emu, EXTENDED_INT_MASK, 0, snd_emu10k1_ptr20_read(emu, EXTENDED_INT_MASK, 0) | (0x110000<<channel)); return 0; } static void snd_p16v_intr_enable(struct snd_emu10k1 *emu, unsigned int intrenb) { unsigned long flags; unsigned int enable; spin_lock_irqsave(&emu->emu_lock, flags); enable = inl(emu->port + INTE2) | intrenb; outl(enable, emu->port + INTE2); spin_unlock_irqrestore(&emu->emu_lock, flags); } static void snd_p16v_intr_disable(struct snd_emu10k1 *emu, unsigned int intrenb) { unsigned long flags; unsigned int disable; spin_lock_irqsave(&emu->emu_lock, flags); disable = inl(emu->port + INTE2) & (~intrenb); outl(disable, emu->port + INTE2); spin_unlock_irqrestore(&emu->emu_lock, flags); } /* trigger_playback callback */ static int snd_p16v_pcm_trigger_playback(struct snd_pcm_substream *substream, int cmd) { struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime; struct snd_emu10k1_pcm *epcm; int channel; int result = 0; struct snd_pcm_substream *s; u32 basic = 0; u32 inte = 0; int running = 0; switch (cmd) { case SNDRV_PCM_TRIGGER_START: running=1; break; case SNDRV_PCM_TRIGGER_STOP: default: running = 0; break; } snd_pcm_group_for_each_entry(s, substream) { if (snd_pcm_substream_chip(s) != emu || s->stream != SNDRV_PCM_STREAM_PLAYBACK) continue; runtime = s->runtime; epcm = runtime->private_data; channel = substream->pcm->device-emu->p16v_device_offset; /* dev_dbg(emu->card->dev, "p16v channel=%d\n", channel); */ epcm->running = running; basic |= (0x1<<channel); inte |= (INTE2_PLAYBACK_CH_0_LOOP<<channel); snd_pcm_trigger_done(s, substream); } /* dev_dbg(emu->card->dev, "basic=0x%x, inte=0x%x\n", basic, inte); */ switch (cmd) { case SNDRV_PCM_TRIGGER_START: snd_p16v_intr_enable(emu, inte); snd_emu10k1_ptr20_write(emu, BASIC_INTERRUPT, 0, snd_emu10k1_ptr20_read(emu, BASIC_INTERRUPT, 0)| (basic)); break; case SNDRV_PCM_TRIGGER_STOP: snd_emu10k1_ptr20_write(emu, BASIC_INTERRUPT, 0, snd_emu10k1_ptr20_read(emu, BASIC_INTERRUPT, 0) & ~(basic)); snd_p16v_intr_disable(emu, inte); break; default: result = -EINVAL; break; } return result; } /* trigger_capture callback */ static int snd_p16v_pcm_trigger_capture(struct snd_pcm_substream *substream, int cmd) { struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; struct snd_emu10k1_pcm *epcm = runtime->private_data; int channel = 0; int result = 0; u32 inte = INTE2_CAPTURE_CH_0_LOOP | INTE2_CAPTURE_CH_0_HALF_LOOP; switch (cmd) { case SNDRV_PCM_TRIGGER_START: snd_p16v_intr_enable(emu, inte); snd_emu10k1_ptr20_write(emu, BASIC_INTERRUPT, 0, snd_emu10k1_ptr20_read(emu, BASIC_INTERRUPT, 0)|(0x100<<channel)); epcm->running = 1; break; case SNDRV_PCM_TRIGGER_STOP: snd_emu10k1_ptr20_write(emu, BASIC_INTERRUPT, 0, snd_emu10k1_ptr20_read(emu, BASIC_INTERRUPT, 0) & ~(0x100<<channel)); snd_p16v_intr_disable(emu, inte); //snd_emu10k1_ptr20_write(emu, EXTENDED_INT_MASK, 0, snd_emu10k1_ptr20_read(emu, EXTENDED_INT_MASK, 0) & ~(0x110000<<channel)); epcm->running = 0; break; default: result = -EINVAL; break; } return result; } /* pointer_playback callback */ static snd_pcm_uframes_t snd_p16v_pcm_pointer_playback(struct snd_pcm_substream *substream) { struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; struct snd_emu10k1_pcm *epcm = runtime->private_data; snd_pcm_uframes_t ptr, ptr1, ptr2,ptr3,ptr4 = 0; int channel = substream->pcm->device - emu->p16v_device_offset; if (!epcm->running) return 0; ptr3 = snd_emu10k1_ptr20_read(emu, PLAYBACK_LIST_PTR, channel); ptr1 = snd_emu10k1_ptr20_read(emu, PLAYBACK_POINTER, channel); ptr4 = snd_emu10k1_ptr20_read(emu, PLAYBACK_LIST_PTR, channel); if (ptr3 != ptr4) ptr1 = snd_emu10k1_ptr20_read(emu, PLAYBACK_POINTER, channel); ptr2 = bytes_to_frames(runtime, ptr1); ptr2+= (ptr4 >> 3) * runtime->period_size; ptr=ptr2; if (ptr >= runtime->buffer_size) ptr -= runtime->buffer_size; return ptr; } /* pointer_capture callback */ static snd_pcm_uframes_t snd_p16v_pcm_pointer_capture(struct snd_pcm_substream *substream) { struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; struct snd_emu10k1_pcm *epcm = runtime->private_data; snd_pcm_uframes_t ptr, ptr1, ptr2 = 0; int channel = 0; if (!epcm->running) return 0; ptr1 = snd_emu10k1_ptr20_read(emu, CAPTURE_POINTER, channel); ptr2 = bytes_to_frames(runtime, ptr1); ptr=ptr2; if (ptr >= runtime->buffer_size) { ptr -= runtime->buffer_size; dev_warn(emu->card->dev, "buffer capture limited!\n"); } /* dev_dbg(emu->card->dev, "ptr1 = 0x%lx, ptr2=0x%lx, ptr=0x%lx, " "buffer_size = 0x%x, period_size = 0x%x, bits=%d, rate=%d\n", ptr1, ptr2, ptr, (int)runtime->buffer_size, (int)runtime->period_size, (int)runtime->frame_bits, (int)runtime->rate); */ return ptr; } /* operators */ static struct snd_pcm_ops snd_p16v_playback_front_ops = { .open = snd_p16v_pcm_open_playback_front, .close = snd_p16v_pcm_close_playback, .ioctl = snd_pcm_lib_ioctl, .hw_params = snd_p16v_pcm_hw_params_playback, .hw_free = snd_p16v_pcm_hw_free_playback, .prepare = snd_p16v_pcm_prepare_playback, .trigger = snd_p16v_pcm_trigger_playback, .pointer = snd_p16v_pcm_pointer_playback, }; static struct snd_pcm_ops snd_p16v_capture_ops = { .open = snd_p16v_pcm_open_capture, .close = snd_p16v_pcm_close_capture, .ioctl = snd_pcm_lib_ioctl, .hw_params = snd_p16v_pcm_hw_params_capture, .hw_free = snd_p16v_pcm_hw_free_capture, .prepare = snd_p16v_pcm_prepare_capture, .trigger = snd_p16v_pcm_trigger_capture, .pointer = snd_p16v_pcm_pointer_capture, }; int snd_p16v_free(struct snd_emu10k1 *chip) { // release the data if (chip->p16v_buffer.area) { snd_dma_free_pages(&chip->p16v_buffer); /* dev_dbg(chip->card->dev, "period lables free: %p\n", &chip->p16v_buffer); */ } return 0; } int snd_p16v_pcm(struct snd_emu10k1 *emu, int device, struct snd_pcm **rpcm) { struct snd_pcm *pcm; struct snd_pcm_substream *substream; int err; int capture=1; /* dev_dbg(emu->card->dev, "snd_p16v_pcm called. device=%d\n", device); */ emu->p16v_device_offset = device; if (rpcm) *rpcm = NULL; if ((err = snd_pcm_new(emu->card, "p16v", device, 1, capture, &pcm)) < 0) return err; pcm->private_data = emu; // Single playback 8 channel device. // Single capture 2 channel device. snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_p16v_playback_front_ops); snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_p16v_capture_ops); pcm->info_flags = 0; pcm->dev_subclass = SNDRV_PCM_SUBCLASS_GENERIC_MIX; strcpy(pcm->name, "p16v"); emu->pcm_p16v = pcm; for(substream = pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream; substream; substream = substream->next) { if ((err = snd_pcm_lib_preallocate_pages(substream, SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(emu->pci), ((65536 - 64) * 8), ((65536 - 64) * 8))) < 0) return err; /* dev_dbg(emu->card->dev, "preallocate playback substream: err=%d\n", err); */ } for (substream = pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream; substream; substream = substream->next) { if ((err = snd_pcm_lib_preallocate_pages(substream, SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(emu->pci), 65536 - 64, 65536 - 64)) < 0) return err; /* dev_dbg(emu->card->dev, "preallocate capture substream: err=%d\n", err); */ } if (rpcm) *rpcm = pcm; return 0; } static int snd_p16v_volume_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 2; uinfo->value.integer.min = 0; uinfo->value.integer.max = 255; return 0; } static int snd_p16v_volume_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_emu10k1 *emu = snd_kcontrol_chip(kcontrol); int high_low = (kcontrol->private_value >> 8) & 0xff; int reg = kcontrol->private_value & 0xff; u32 value; value = snd_emu10k1_ptr20_read(emu, reg, high_low); if (high_low) { ucontrol->value.integer.value[0] = 0xff - ((value >> 24) & 0xff); /* Left */ ucontrol->value.integer.value[1] = 0xff - ((value >> 16) & 0xff); /* Right */ } else { ucontrol->value.integer.value[0] = 0xff - ((value >> 8) & 0xff); /* Left */ ucontrol->value.integer.value[1] = 0xff - ((value >> 0) & 0xff); /* Right */ } return 0; } static int snd_p16v_volume_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_emu10k1 *emu = snd_kcontrol_chip(kcontrol); int high_low = (kcontrol->private_value >> 8) & 0xff; int reg = kcontrol->private_value & 0xff; u32 value, oval; oval = value = snd_emu10k1_ptr20_read(emu, reg, 0); if (high_low == 1) { value &= 0xffff; value |= ((0xff - ucontrol->value.integer.value[0]) << 24) | ((0xff - ucontrol->value.integer.value[1]) << 16); } else { value &= 0xffff0000; value |= ((0xff - ucontrol->value.integer.value[0]) << 8) | ((0xff - ucontrol->value.integer.value[1]) ); } if (value != oval) { snd_emu10k1_ptr20_write(emu, reg, 0, value); return 1; } return 0; } static int snd_p16v_capture_source_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { static char *texts[8] = { "SPDIF", "I2S", "SRC48", "SRCMulti_SPDIF", "SRCMulti_I2S", "CDIF", "FX", "AC97" }; uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; uinfo->count = 1; uinfo->value.enumerated.items = 8; if (uinfo->value.enumerated.item > 7) uinfo->value.enumerated.item = 7; strcpy(uinfo->value.enumerated.name, texts[uinfo->value.enumerated.item]); return 0; } static int snd_p16v_capture_source_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_emu10k1 *emu = snd_kcontrol_chip(kcontrol); ucontrol->value.enumerated.item[0] = emu->p16v_capture_source; return 0; } static int snd_p16v_capture_source_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_emu10k1 *emu = snd_kcontrol_chip(kcontrol); unsigned int val; int change = 0; u32 mask; u32 source; val = ucontrol->value.enumerated.item[0] ; if (val > 7) return -EINVAL; change = (emu->p16v_capture_source != val); if (change) { emu->p16v_capture_source = val; source = (val << 28) | (val << 24) | (val << 20) | (val << 16); mask = snd_emu10k1_ptr20_read(emu, BASIC_INTERRUPT, 0) & 0xffff; snd_emu10k1_ptr20_write(emu, BASIC_INTERRUPT, 0, source | mask); } return change; } static int snd_p16v_capture_channel_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { static char *texts[4] = { "0", "1", "2", "3", }; uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; uinfo->count = 1; uinfo->value.enumerated.items = 4; if (uinfo->value.enumerated.item > 3) uinfo->value.enumerated.item = 3; strcpy(uinfo->value.enumerated.name, texts[uinfo->value.enumerated.item]); return 0; } static int snd_p16v_capture_channel_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_emu10k1 *emu = snd_kcontrol_chip(kcontrol); ucontrol->value.enumerated.item[0] = emu->p16v_capture_channel; return 0; } static int snd_p16v_capture_channel_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_emu10k1 *emu = snd_kcontrol_chip(kcontrol); unsigned int val; int change = 0; u32 tmp; val = ucontrol->value.enumerated.item[0] ; if (val > 3) return -EINVAL; change = (emu->p16v_capture_channel != val); if (change) { emu->p16v_capture_channel = val; tmp = snd_emu10k1_ptr20_read(emu, CAPTURE_P16V_SOURCE, 0) & 0xfffc; snd_emu10k1_ptr20_write(emu, CAPTURE_P16V_SOURCE, 0, tmp | val); } return change; } static const DECLARE_TLV_DB_SCALE(snd_p16v_db_scale1, -5175, 25, 1); #define P16V_VOL(xname,xreg,xhl) { \ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | \ SNDRV_CTL_ELEM_ACCESS_TLV_READ, \ .info = snd_p16v_volume_info, \ .get = snd_p16v_volume_get, \ .put = snd_p16v_volume_put, \ .tlv = { .p = snd_p16v_db_scale1 }, \ .private_value = ((xreg) | ((xhl) << 8)) \ } static struct snd_kcontrol_new p16v_mixer_controls[] = { P16V_VOL("HD Analog Front Playback Volume", PLAYBACK_VOLUME_MIXER9, 0), P16V_VOL("HD Analog Rear Playback Volume", PLAYBACK_VOLUME_MIXER10, 1), P16V_VOL("HD Analog Center/LFE Playback Volume", PLAYBACK_VOLUME_MIXER9, 1), P16V_VOL("HD Analog Side Playback Volume", PLAYBACK_VOLUME_MIXER10, 0), P16V_VOL("HD SPDIF Front Playback Volume", PLAYBACK_VOLUME_MIXER7, 0), P16V_VOL("HD SPDIF Rear Playback Volume", PLAYBACK_VOLUME_MIXER8, 1), P16V_VOL("HD SPDIF Center/LFE Playback Volume", PLAYBACK_VOLUME_MIXER7, 1), P16V_VOL("HD SPDIF Side Playback Volume", PLAYBACK_VOLUME_MIXER8, 0), { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "HD source Capture", .info = snd_p16v_capture_source_info, .get = snd_p16v_capture_source_get, .put = snd_p16v_capture_source_put }, { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "HD channel Capture", .info = snd_p16v_capture_channel_info, .get = snd_p16v_capture_channel_get, .put = snd_p16v_capture_channel_put }, }; int snd_p16v_mixer(struct snd_emu10k1 *emu) { int i, err; struct snd_card *card = emu->card; for (i = 0; i < ARRAY_SIZE(p16v_mixer_controls); i++) { if ((err = snd_ctl_add(card, snd_ctl_new1(&p16v_mixer_controls[i], emu))) < 0) return err; } return 0; } #ifdef CONFIG_PM_SLEEP #define NUM_CHS 1 /* up to 4, but only first channel is used */ int snd_p16v_alloc_pm_buffer(struct snd_emu10k1 *emu) { emu->p16v_saved = vmalloc(NUM_CHS * 4 * 0x80); if (! emu->p16v_saved) return -ENOMEM; return 0; } void snd_p16v_free_pm_buffer(struct snd_emu10k1 *emu) { vfree(emu->p16v_saved); } void snd_p16v_suspend(struct snd_emu10k1 *emu) { int i, ch; unsigned int *val; val = emu->p16v_saved; for (ch = 0; ch < NUM_CHS; ch++) for (i = 0; i < 0x80; i++, val++) *val = snd_emu10k1_ptr20_read(emu, i, ch); } void snd_p16v_resume(struct snd_emu10k1 *emu) { int i, ch; unsigned int *val; val = emu->p16v_saved; for (ch = 0; ch < NUM_CHS; ch++) for (i = 0; i < 0x80; i++, val++) snd_emu10k1_ptr20_write(emu, i, ch, *val); } #endif