/* * linux/sound/oss/soundcard.c * * Sound card driver for Linux * * * Copyright (C) by Hannu Savolainen 1993-1997 * * OSS/Free for Linux is distributed under the GNU GENERAL PUBLIC LICENSE (GPL) * Version 2 (June 1991). See the "COPYING" file distributed with this software * for more info. * * * Thomas Sailer : ioctl code reworked (vmalloc/vfree removed) * integrated sound_switch.c * Stefan Reinauer : integrated /proc/sound (equals to /dev/sndstat, * which should disappear in the near future) * Eric Dumas : devfs support (22-Jan-98) <dumas@linux.eu.org> with * fixups by C. Scott Ananian <cananian@alumni.princeton.edu> * Richard Gooch : moved common (non OSS-specific) devices to sound_core.c * Rob Riggs : Added persistent DMA buffers support (1998/10/17) * Christoph Hellwig : Some cleanup work (2000/03/01) */ #include "sound_config.h" #include <linux/init.h> #include <linux/types.h> #include <linux/errno.h> #include <linux/signal.h> #include <linux/fcntl.h> #include <linux/ctype.h> #include <linux/stddef.h> #include <linux/kmod.h> #include <linux/kernel.h> #include <asm/dma.h> #include <asm/io.h> #include <linux/wait.h> #include <linux/ioport.h> #include <linux/major.h> #include <linux/delay.h> #include <linux/proc_fs.h> #include <linux/mutex.h> #include <linux/module.h> #include <linux/mm.h> #include <linux/device.h> /* * This ought to be moved into include/asm/dma.h */ #ifndef valid_dma #define valid_dma(n) ((n) >= 0 && (n) < MAX_DMA_CHANNELS && (n) != 4) #endif /* * Table for permanently allocated memory (used when unloading the module) */ void * sound_mem_blocks[MAX_MEM_BLOCKS]; static DEFINE_MUTEX(soundcard_mutex); int sound_nblocks = 0; /* Persistent DMA buffers */ #ifdef CONFIG_SOUND_DMAP int sound_dmap_flag = 1; #else int sound_dmap_flag = 0; #endif static char dma_alloc_map[MAX_DMA_CHANNELS]; #define DMA_MAP_UNAVAIL 0 #define DMA_MAP_FREE 1 #define DMA_MAP_BUSY 2 unsigned long seq_time = 0; /* Time for /dev/sequencer */ extern struct class *sound_class; /* * Table for configurable mixer volume handling */ static mixer_vol_table mixer_vols[MAX_MIXER_DEV]; static int num_mixer_volumes; int *load_mixer_volumes(char *name, int *levels, int present) { int i, n; for (i = 0; i < num_mixer_volumes; i++) { if (strncmp(name, mixer_vols[i].name, 32) == 0) { if (present) mixer_vols[i].num = i; return mixer_vols[i].levels; } } if (num_mixer_volumes >= MAX_MIXER_DEV) { printk(KERN_ERR "Sound: Too many mixers (%s)\n", name); return levels; } n = num_mixer_volumes++; strncpy(mixer_vols[n].name, name, 32); if (present) mixer_vols[n].num = n; else mixer_vols[n].num = -1; for (i = 0; i < 32; i++) mixer_vols[n].levels[i] = levels[i]; return mixer_vols[n].levels; } EXPORT_SYMBOL(load_mixer_volumes); static int set_mixer_levels(void __user * arg) { /* mixer_vol_table is 174 bytes, so IMHO no reason to not allocate it on the stack */ mixer_vol_table buf; if (__copy_from_user(&buf, arg, sizeof(buf))) return -EFAULT; load_mixer_volumes(buf.name, buf.levels, 0); if (__copy_to_user(arg, &buf, sizeof(buf))) return -EFAULT; return 0; } static int get_mixer_levels(void __user * arg) { int n; if (__get_user(n, (int __user *)(&(((mixer_vol_table __user *)arg)->num)))) return -EFAULT; if (n < 0 || n >= num_mixer_volumes) return -EINVAL; if (__copy_to_user(arg, &mixer_vols[n], sizeof(mixer_vol_table))) return -EFAULT; return 0; } /* 4K page size but our output routines use some slack for overruns */ #define PROC_BLOCK_SIZE (3*1024) static ssize_t sound_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) { int dev = iminor(file_inode(file)); int ret = -EINVAL; /* * The OSS drivers aren't remotely happy without this locking, * and unless someone fixes them when they are about to bite the * big one anyway, we might as well bandage here.. */ mutex_lock(&soundcard_mutex); switch (dev & 0x0f) { case SND_DEV_DSP: case SND_DEV_DSP16: case SND_DEV_AUDIO: ret = audio_read(dev, file, buf, count); break; case SND_DEV_SEQ: case SND_DEV_SEQ2: ret = sequencer_read(dev, file, buf, count); break; case SND_DEV_MIDIN: ret = MIDIbuf_read(dev, file, buf, count); } mutex_unlock(&soundcard_mutex); return ret; } static ssize_t sound_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos) { int dev = iminor(file_inode(file)); int ret = -EINVAL; mutex_lock(&soundcard_mutex); switch (dev & 0x0f) { case SND_DEV_SEQ: case SND_DEV_SEQ2: ret = sequencer_write(dev, file, buf, count); break; case SND_DEV_DSP: case SND_DEV_DSP16: case SND_DEV_AUDIO: ret = audio_write(dev, file, buf, count); break; case SND_DEV_MIDIN: ret = MIDIbuf_write(dev, file, buf, count); break; } mutex_unlock(&soundcard_mutex); return ret; } static int sound_open(struct inode *inode, struct file *file) { int dev = iminor(inode); int retval; if ((dev >= SND_NDEVS) || (dev < 0)) { printk(KERN_ERR "Invalid minor device %d\n", dev); return -ENXIO; } mutex_lock(&soundcard_mutex); switch (dev & 0x0f) { case SND_DEV_CTL: dev >>= 4; if (dev >= 0 && dev < MAX_MIXER_DEV && mixer_devs[dev] == NULL) { request_module("mixer%d", dev); } retval = -ENXIO; if (dev && (dev >= num_mixers || mixer_devs[dev] == NULL)) break; if (!try_module_get(mixer_devs[dev]->owner)) break; retval = 0; break; case SND_DEV_SEQ: case SND_DEV_SEQ2: retval = sequencer_open(dev, file); break; case SND_DEV_MIDIN: retval = MIDIbuf_open(dev, file); break; case SND_DEV_DSP: case SND_DEV_DSP16: case SND_DEV_AUDIO: retval = audio_open(dev, file); break; default: printk(KERN_ERR "Invalid minor device %d\n", dev); retval = -ENXIO; } mutex_unlock(&soundcard_mutex); return retval; } static int sound_release(struct inode *inode, struct file *file) { int dev = iminor(inode); mutex_lock(&soundcard_mutex); switch (dev & 0x0f) { case SND_DEV_CTL: module_put(mixer_devs[dev >> 4]->owner); break; case SND_DEV_SEQ: case SND_DEV_SEQ2: sequencer_release(dev, file); break; case SND_DEV_MIDIN: MIDIbuf_release(dev, file); break; case SND_DEV_DSP: case SND_DEV_DSP16: case SND_DEV_AUDIO: audio_release(dev, file); break; default: printk(KERN_ERR "Sound error: Releasing unknown device 0x%02x\n", dev); } mutex_unlock(&soundcard_mutex); return 0; } static int get_mixer_info(int dev, void __user *arg) { mixer_info info; memset(&info, 0, sizeof(info)); strlcpy(info.id, mixer_devs[dev]->id, sizeof(info.id)); strlcpy(info.name, mixer_devs[dev]->name, sizeof(info.name)); info.modify_counter = mixer_devs[dev]->modify_counter; if (__copy_to_user(arg, &info, sizeof(info))) return -EFAULT; return 0; } static int get_old_mixer_info(int dev, void __user *arg) { _old_mixer_info info; memset(&info, 0, sizeof(info)); strlcpy(info.id, mixer_devs[dev]->id, sizeof(info.id)); strlcpy(info.name, mixer_devs[dev]->name, sizeof(info.name)); if (copy_to_user(arg, &info, sizeof(info))) return -EFAULT; return 0; } static int sound_mixer_ioctl(int mixdev, unsigned int cmd, void __user *arg) { if (mixdev < 0 || mixdev >= MAX_MIXER_DEV) return -ENXIO; /* Try to load the mixer... */ if (mixer_devs[mixdev] == NULL) { request_module("mixer%d", mixdev); } if (mixdev >= num_mixers || !mixer_devs[mixdev]) return -ENXIO; if (cmd == SOUND_MIXER_INFO) return get_mixer_info(mixdev, arg); if (cmd == SOUND_OLD_MIXER_INFO) return get_old_mixer_info(mixdev, arg); if (_SIOC_DIR(cmd) & _SIOC_WRITE) mixer_devs[mixdev]->modify_counter++; if (!mixer_devs[mixdev]->ioctl) return -EINVAL; return mixer_devs[mixdev]->ioctl(mixdev, cmd, arg); } static long sound_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { int len = 0, dtype; int dev = iminor(file_inode(file)); long ret = -EINVAL; void __user *p = (void __user *)arg; if (_SIOC_DIR(cmd) != _SIOC_NONE && _SIOC_DIR(cmd) != 0) { /* * Have to validate the address given by the process. */ len = _SIOC_SIZE(cmd); if (len < 1 || len > 65536 || !p) return -EFAULT; if (_SIOC_DIR(cmd) & _SIOC_WRITE) if (!access_ok(VERIFY_READ, p, len)) return -EFAULT; if (_SIOC_DIR(cmd) & _SIOC_READ) if (!access_ok(VERIFY_WRITE, p, len)) return -EFAULT; } if (cmd == OSS_GETVERSION) return __put_user(SOUND_VERSION, (int __user *)p); mutex_lock(&soundcard_mutex); if (_IOC_TYPE(cmd) == 'M' && num_mixers > 0 && /* Mixer ioctl */ (dev & 0x0f) != SND_DEV_CTL) { dtype = dev & 0x0f; switch (dtype) { case SND_DEV_DSP: case SND_DEV_DSP16: case SND_DEV_AUDIO: ret = sound_mixer_ioctl(audio_devs[dev >> 4]->mixer_dev, cmd, p); break; default: ret = sound_mixer_ioctl(dev >> 4, cmd, p); break; } mutex_unlock(&soundcard_mutex); return ret; } switch (dev & 0x0f) { case SND_DEV_CTL: if (cmd == SOUND_MIXER_GETLEVELS) ret = get_mixer_levels(p); else if (cmd == SOUND_MIXER_SETLEVELS) ret = set_mixer_levels(p); else ret = sound_mixer_ioctl(dev >> 4, cmd, p); break; case SND_DEV_SEQ: case SND_DEV_SEQ2: ret = sequencer_ioctl(dev, file, cmd, p); break; case SND_DEV_DSP: case SND_DEV_DSP16: case SND_DEV_AUDIO: ret = audio_ioctl(dev, file, cmd, p); break; case SND_DEV_MIDIN: ret = MIDIbuf_ioctl(dev, file, cmd, p); break; } mutex_unlock(&soundcard_mutex); return ret; } static unsigned int sound_poll(struct file *file, poll_table * wait) { struct inode *inode = file_inode(file); int dev = iminor(inode); switch (dev & 0x0f) { case SND_DEV_SEQ: case SND_DEV_SEQ2: return sequencer_poll(dev, file, wait); case SND_DEV_MIDIN: return MIDIbuf_poll(dev, file, wait); case SND_DEV_DSP: case SND_DEV_DSP16: case SND_DEV_AUDIO: return DMAbuf_poll(file, dev >> 4, wait); } return 0; } static int sound_mmap(struct file *file, struct vm_area_struct *vma) { int dev_class; unsigned long size; struct dma_buffparms *dmap = NULL; int dev = iminor(file_inode(file)); dev_class = dev & 0x0f; dev >>= 4; if (dev_class != SND_DEV_DSP && dev_class != SND_DEV_DSP16 && dev_class != SND_DEV_AUDIO) { printk(KERN_ERR "Sound: mmap() not supported for other than audio devices\n"); return -EINVAL; } mutex_lock(&soundcard_mutex); if (vma->vm_flags & VM_WRITE) /* Map write and read/write to the output buf */ dmap = audio_devs[dev]->dmap_out; else if (vma->vm_flags & VM_READ) dmap = audio_devs[dev]->dmap_in; else { printk(KERN_ERR "Sound: Undefined mmap() access\n"); mutex_unlock(&soundcard_mutex); return -EINVAL; } if (dmap == NULL) { printk(KERN_ERR "Sound: mmap() error. dmap == NULL\n"); mutex_unlock(&soundcard_mutex); return -EIO; } if (dmap->raw_buf == NULL) { printk(KERN_ERR "Sound: mmap() called when raw_buf == NULL\n"); mutex_unlock(&soundcard_mutex); return -EIO; } if (dmap->mapping_flags) { printk(KERN_ERR "Sound: mmap() called twice for the same DMA buffer\n"); mutex_unlock(&soundcard_mutex); return -EIO; } if (vma->vm_pgoff != 0) { printk(KERN_ERR "Sound: mmap() offset must be 0.\n"); mutex_unlock(&soundcard_mutex); return -EINVAL; } size = vma->vm_end - vma->vm_start; if (size != dmap->bytes_in_use) { printk(KERN_WARNING "Sound: mmap() size = %ld. Should be %d\n", size, dmap->bytes_in_use); } if (remap_pfn_range(vma, vma->vm_start, virt_to_phys(dmap->raw_buf) >> PAGE_SHIFT, vma->vm_end - vma->vm_start, vma->vm_page_prot)) { mutex_unlock(&soundcard_mutex); return -EAGAIN; } dmap->mapping_flags |= DMA_MAP_MAPPED; if( audio_devs[dev]->d->mmap) audio_devs[dev]->d->mmap(dev); memset(dmap->raw_buf, dmap->neutral_byte, dmap->bytes_in_use); mutex_unlock(&soundcard_mutex); return 0; } const struct file_operations oss_sound_fops = { .owner = THIS_MODULE, .llseek = no_llseek, .read = sound_read, .write = sound_write, .poll = sound_poll, .unlocked_ioctl = sound_ioctl, .mmap = sound_mmap, .open = sound_open, .release = sound_release, }; /* * Create the required special subdevices */ static int create_special_devices(void) { int seq1,seq2; seq1=register_sound_special(&oss_sound_fops, 1); if(seq1==-1) goto bad; seq2=register_sound_special(&oss_sound_fops, 8); if(seq2!=-1) return 0; unregister_sound_special(1); bad: return -1; } static int dmabuf; static int dmabug; module_param(dmabuf, int, 0444); module_param(dmabug, int, 0444); /* additional minors for compatibility */ struct oss_minor_dev { unsigned short minor; unsigned int enabled; } dev_list[] = { { SND_DEV_DSP16 }, { SND_DEV_AUDIO }, }; static int __init oss_init(void) { int err; int i, j; #ifdef CONFIG_PCI if(dmabug) isa_dma_bridge_buggy = dmabug; #endif err = create_special_devices(); if (err) { printk(KERN_ERR "sound: driver already loaded/included in kernel\n"); return err; } /* Protecting the innocent */ sound_dmap_flag = (dmabuf > 0 ? 1 : 0); for (i = 0; i < ARRAY_SIZE(dev_list); i++) { j = 0; do { unsigned short minor = dev_list[i].minor + j * 0x10; if (!register_sound_special(&oss_sound_fops, minor)) dev_list[i].enabled = (1 << j); } while (++j < num_audiodevs); } if (sound_nblocks >= MAX_MEM_BLOCKS - 1) printk(KERN_ERR "Sound warning: Deallocation table was too small.\n"); return 0; } static void __exit oss_cleanup(void) { int i, j; for (i = 0; i < ARRAY_SIZE(dev_list); i++) { j = 0; do { if (dev_list[i].enabled & (1 << j)) unregister_sound_special(dev_list[i].minor); } while (++j < num_audiodevs); } unregister_sound_special(1); unregister_sound_special(8); sound_stop_timer(); sequencer_unload(); for (i = 0; i < MAX_DMA_CHANNELS; i++) if (dma_alloc_map[i] != DMA_MAP_UNAVAIL) { printk(KERN_ERR "Sound: Hmm, DMA%d was left allocated - fixed\n", i); sound_free_dma(i); } for (i = 0; i < sound_nblocks; i++) vfree(sound_mem_blocks[i]); } module_init(oss_init); module_exit(oss_cleanup); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("OSS Sound subsystem"); MODULE_AUTHOR("Hannu Savolainen, et al."); int sound_alloc_dma(int chn, char *deviceID) { int err; if ((err = request_dma(chn, deviceID)) != 0) return err; dma_alloc_map[chn] = DMA_MAP_FREE; return 0; } EXPORT_SYMBOL(sound_alloc_dma); int sound_open_dma(int chn, char *deviceID) { if (!valid_dma(chn)) { printk(KERN_ERR "sound_open_dma: Invalid DMA channel %d\n", chn); return 1; } if (dma_alloc_map[chn] != DMA_MAP_FREE) { printk("sound_open_dma: DMA channel %d busy or not allocated (%d)\n", chn, dma_alloc_map[chn]); return 1; } dma_alloc_map[chn] = DMA_MAP_BUSY; return 0; } EXPORT_SYMBOL(sound_open_dma); void sound_free_dma(int chn) { if (dma_alloc_map[chn] == DMA_MAP_UNAVAIL) { /* printk( "sound_free_dma: Bad access to DMA channel %d\n", chn); */ return; } free_dma(chn); dma_alloc_map[chn] = DMA_MAP_UNAVAIL; } EXPORT_SYMBOL(sound_free_dma); void sound_close_dma(int chn) { if (dma_alloc_map[chn] != DMA_MAP_BUSY) { printk(KERN_ERR "sound_close_dma: Bad access to DMA channel %d\n", chn); return; } dma_alloc_map[chn] = DMA_MAP_FREE; } EXPORT_SYMBOL(sound_close_dma); static void do_sequencer_timer(unsigned long dummy) { sequencer_timer(0); } static DEFINE_TIMER(seq_timer, do_sequencer_timer, 0, 0); void request_sound_timer(int count) { extern unsigned long seq_time; if (count < 0) { seq_timer.expires = (-count) + jiffies; add_timer(&seq_timer); return; } count += seq_time; count -= jiffies; if (count < 1) count = 1; seq_timer.expires = (count) + jiffies; add_timer(&seq_timer); } void sound_stop_timer(void) { del_timer(&seq_timer); } void conf_printf(char *name, struct address_info *hw_config) { #ifndef CONFIG_SOUND_TRACEINIT return; #else printk("<%s> at 0x%03x", name, hw_config->io_base); if (hw_config->irq) printk(" irq %d", (hw_config->irq > 0) ? hw_config->irq : -hw_config->irq); if (hw_config->dma != -1 || hw_config->dma2 != -1) { printk(" dma %d", hw_config->dma); if (hw_config->dma2 != -1) printk(",%d", hw_config->dma2); } printk("\n"); #endif } EXPORT_SYMBOL(conf_printf); void conf_printf2(char *name, int base, int irq, int dma, int dma2) { #ifndef CONFIG_SOUND_TRACEINIT return; #else printk("<%s> at 0x%03x", name, base); if (irq) printk(" irq %d", (irq > 0) ? irq : -irq); if (dma != -1 || dma2 != -1) { printk(" dma %d", dma); if (dma2 != -1) printk(",%d", dma2); } printk("\n"); #endif } EXPORT_SYMBOL(conf_printf2);