/* * Copyright (c) by Jaroslav Kysela <perex@perex.cz>, * Hannu Savolainen 1993-1996, * Rob Hooft * * Routines for control of AdLib FM cards (OPL2/OPL3/OPL4 chips) * * Most if code is ported from OSS/Lite. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ #include <sound/opl3.h> #include <asm/io.h> #include <linux/delay.h> #include <linux/module.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/ioport.h> #include <sound/minors.h> MODULE_AUTHOR("Jaroslav Kysela <perex@perex.cz>, Hannu Savolainen 1993-1996, Rob Hooft"); MODULE_DESCRIPTION("Routines for control of AdLib FM cards (OPL2/OPL3/OPL4 chips)"); MODULE_LICENSE("GPL"); extern char snd_opl3_regmap[MAX_OPL2_VOICES][4]; static void snd_opl2_command(struct snd_opl3 * opl3, unsigned short cmd, unsigned char val) { unsigned long flags; unsigned long port; /* * The original 2-OP synth requires a quite long delay * after writing to a register. */ port = (cmd & OPL3_RIGHT) ? opl3->r_port : opl3->l_port; spin_lock_irqsave(&opl3->reg_lock, flags); outb((unsigned char) cmd, port); udelay(10); outb((unsigned char) val, port + 1); udelay(30); spin_unlock_irqrestore(&opl3->reg_lock, flags); } static void snd_opl3_command(struct snd_opl3 * opl3, unsigned short cmd, unsigned char val) { unsigned long flags; unsigned long port; /* * The OPL-3 survives with just two INBs * after writing to a register. */ port = (cmd & OPL3_RIGHT) ? opl3->r_port : opl3->l_port; spin_lock_irqsave(&opl3->reg_lock, flags); outb((unsigned char) cmd, port); inb(opl3->l_port); inb(opl3->l_port); outb((unsigned char) val, port + 1); inb(opl3->l_port); inb(opl3->l_port); spin_unlock_irqrestore(&opl3->reg_lock, flags); } static int snd_opl3_detect(struct snd_opl3 * opl3) { /* * This function returns 1 if the FM chip is present at the given I/O port * The detection algorithm plays with the timer built in the FM chip and * looks for a change in the status register. * * Note! The timers of the FM chip are not connected to AdLib (and compatible) * boards. * * Note2! The chip is initialized if detected. */ unsigned char stat1, stat2, signature; /* Reset timers 1 and 2 */ opl3->command(opl3, OPL3_LEFT | OPL3_REG_TIMER_CONTROL, OPL3_TIMER1_MASK | OPL3_TIMER2_MASK); /* Reset the IRQ of the FM chip */ opl3->command(opl3, OPL3_LEFT | OPL3_REG_TIMER_CONTROL, OPL3_IRQ_RESET); signature = stat1 = inb(opl3->l_port); /* Status register */ if ((stat1 & 0xe0) != 0x00) { /* Should be 0x00 */ snd_printd("OPL3: stat1 = 0x%x\n", stat1); return -ENODEV; } /* Set timer1 to 0xff */ opl3->command(opl3, OPL3_LEFT | OPL3_REG_TIMER1, 0xff); /* Unmask and start timer 1 */ opl3->command(opl3, OPL3_LEFT | OPL3_REG_TIMER_CONTROL, OPL3_TIMER2_MASK | OPL3_TIMER1_START); /* Now we have to delay at least 80us */ udelay(200); /* Read status after timers have expired */ stat2 = inb(opl3->l_port); /* Stop the timers */ opl3->command(opl3, OPL3_LEFT | OPL3_REG_TIMER_CONTROL, OPL3_TIMER1_MASK | OPL3_TIMER2_MASK); /* Reset the IRQ of the FM chip */ opl3->command(opl3, OPL3_LEFT | OPL3_REG_TIMER_CONTROL, OPL3_IRQ_RESET); if ((stat2 & 0xe0) != 0xc0) { /* There is no YM3812 */ snd_printd("OPL3: stat2 = 0x%x\n", stat2); return -ENODEV; } /* If the toplevel code knows exactly the type of chip, don't try to detect it. */ if (opl3->hardware != OPL3_HW_AUTO) return 0; /* There is a FM chip on this address. Detect the type (OPL2 to OPL4) */ if (signature == 0x06) { /* OPL2 */ opl3->hardware = OPL3_HW_OPL2; } else { /* * If we had an OPL4 chip, opl3->hardware would have been set * by the OPL4 driver; so we can assume OPL3 here. */ if (snd_BUG_ON(!opl3->r_port)) return -ENODEV; opl3->hardware = OPL3_HW_OPL3; } return 0; } /* * AdLib timers */ /* * Timer 1 - 80us */ static int snd_opl3_timer1_start(struct snd_timer * timer) { unsigned long flags; unsigned char tmp; unsigned int ticks; struct snd_opl3 *opl3; opl3 = snd_timer_chip(timer); spin_lock_irqsave(&opl3->timer_lock, flags); ticks = timer->sticks; tmp = (opl3->timer_enable | OPL3_TIMER1_START) & ~OPL3_TIMER1_MASK; opl3->timer_enable = tmp; opl3->command(opl3, OPL3_LEFT | OPL3_REG_TIMER1, 256 - ticks); /* timer 1 count */ opl3->command(opl3, OPL3_LEFT | OPL3_REG_TIMER_CONTROL, tmp); /* enable timer 1 IRQ */ spin_unlock_irqrestore(&opl3->timer_lock, flags); return 0; } static int snd_opl3_timer1_stop(struct snd_timer * timer) { unsigned long flags; unsigned char tmp; struct snd_opl3 *opl3; opl3 = snd_timer_chip(timer); spin_lock_irqsave(&opl3->timer_lock, flags); tmp = (opl3->timer_enable | OPL3_TIMER1_MASK) & ~OPL3_TIMER1_START; opl3->timer_enable = tmp; opl3->command(opl3, OPL3_LEFT | OPL3_REG_TIMER_CONTROL, tmp); /* disable timer #1 */ spin_unlock_irqrestore(&opl3->timer_lock, flags); return 0; } /* * Timer 2 - 320us */ static int snd_opl3_timer2_start(struct snd_timer * timer) { unsigned long flags; unsigned char tmp; unsigned int ticks; struct snd_opl3 *opl3; opl3 = snd_timer_chip(timer); spin_lock_irqsave(&opl3->timer_lock, flags); ticks = timer->sticks; tmp = (opl3->timer_enable | OPL3_TIMER2_START) & ~OPL3_TIMER2_MASK; opl3->timer_enable = tmp; opl3->command(opl3, OPL3_LEFT | OPL3_REG_TIMER2, 256 - ticks); /* timer 1 count */ opl3->command(opl3, OPL3_LEFT | OPL3_REG_TIMER_CONTROL, tmp); /* enable timer 1 IRQ */ spin_unlock_irqrestore(&opl3->timer_lock, flags); return 0; } static int snd_opl3_timer2_stop(struct snd_timer * timer) { unsigned long flags; unsigned char tmp; struct snd_opl3 *opl3; opl3 = snd_timer_chip(timer); spin_lock_irqsave(&opl3->timer_lock, flags); tmp = (opl3->timer_enable | OPL3_TIMER2_MASK) & ~OPL3_TIMER2_START; opl3->timer_enable = tmp; opl3->command(opl3, OPL3_LEFT | OPL3_REG_TIMER_CONTROL, tmp); /* disable timer #1 */ spin_unlock_irqrestore(&opl3->timer_lock, flags); return 0; } /* */ static struct snd_timer_hardware snd_opl3_timer1 = { .flags = SNDRV_TIMER_HW_STOP, .resolution = 80000, .ticks = 256, .start = snd_opl3_timer1_start, .stop = snd_opl3_timer1_stop, }; static struct snd_timer_hardware snd_opl3_timer2 = { .flags = SNDRV_TIMER_HW_STOP, .resolution = 320000, .ticks = 256, .start = snd_opl3_timer2_start, .stop = snd_opl3_timer2_stop, }; static int snd_opl3_timer1_init(struct snd_opl3 * opl3, int timer_no) { struct snd_timer *timer = NULL; struct snd_timer_id tid; int err; tid.dev_class = SNDRV_TIMER_CLASS_CARD; tid.dev_sclass = SNDRV_TIMER_SCLASS_NONE; tid.card = opl3->card->number; tid.device = timer_no; tid.subdevice = 0; if ((err = snd_timer_new(opl3->card, "AdLib timer #1", &tid, &timer)) >= 0) { strcpy(timer->name, "AdLib timer #1"); timer->private_data = opl3; timer->hw = snd_opl3_timer1; } opl3->timer1 = timer; return err; } static int snd_opl3_timer2_init(struct snd_opl3 * opl3, int timer_no) { struct snd_timer *timer = NULL; struct snd_timer_id tid; int err; tid.dev_class = SNDRV_TIMER_CLASS_CARD; tid.dev_sclass = SNDRV_TIMER_SCLASS_NONE; tid.card = opl3->card->number; tid.device = timer_no; tid.subdevice = 0; if ((err = snd_timer_new(opl3->card, "AdLib timer #2", &tid, &timer)) >= 0) { strcpy(timer->name, "AdLib timer #2"); timer->private_data = opl3; timer->hw = snd_opl3_timer2; } opl3->timer2 = timer; return err; } /* */ void snd_opl3_interrupt(struct snd_hwdep * hw) { unsigned char status; struct snd_opl3 *opl3; struct snd_timer *timer; if (hw == NULL) return; opl3 = hw->private_data; status = inb(opl3->l_port); #if 0 snd_printk(KERN_DEBUG "AdLib IRQ status = 0x%x\n", status); #endif if (!(status & 0x80)) return; if (status & 0x40) { timer = opl3->timer1; snd_timer_interrupt(timer, timer->sticks); } if (status & 0x20) { timer = opl3->timer2; snd_timer_interrupt(timer, timer->sticks); } } EXPORT_SYMBOL(snd_opl3_interrupt); /* */ static int snd_opl3_free(struct snd_opl3 *opl3) { if (snd_BUG_ON(!opl3)) return -ENXIO; if (opl3->private_free) opl3->private_free(opl3); snd_opl3_clear_patches(opl3); release_and_free_resource(opl3->res_l_port); release_and_free_resource(opl3->res_r_port); kfree(opl3); return 0; } static int snd_opl3_dev_free(struct snd_device *device) { struct snd_opl3 *opl3 = device->device_data; return snd_opl3_free(opl3); } int snd_opl3_new(struct snd_card *card, unsigned short hardware, struct snd_opl3 **ropl3) { static struct snd_device_ops ops = { .dev_free = snd_opl3_dev_free, }; struct snd_opl3 *opl3; int err; *ropl3 = NULL; opl3 = kzalloc(sizeof(*opl3), GFP_KERNEL); if (opl3 == NULL) { snd_printk(KERN_ERR "opl3: cannot allocate\n"); return -ENOMEM; } opl3->card = card; opl3->hardware = hardware; spin_lock_init(&opl3->reg_lock); spin_lock_init(&opl3->timer_lock); if ((err = snd_device_new(card, SNDRV_DEV_CODEC, opl3, &ops)) < 0) { snd_opl3_free(opl3); return err; } *ropl3 = opl3; return 0; } EXPORT_SYMBOL(snd_opl3_new); int snd_opl3_init(struct snd_opl3 *opl3) { if (! opl3->command) { printk(KERN_ERR "snd_opl3_init: command not defined!\n"); return -EINVAL; } opl3->command(opl3, OPL3_LEFT | OPL3_REG_TEST, OPL3_ENABLE_WAVE_SELECT); /* Melodic mode */ opl3->command(opl3, OPL3_LEFT | OPL3_REG_PERCUSSION, 0x00); switch (opl3->hardware & OPL3_HW_MASK) { case OPL3_HW_OPL2: opl3->max_voices = MAX_OPL2_VOICES; break; case OPL3_HW_OPL3: case OPL3_HW_OPL4: opl3->max_voices = MAX_OPL3_VOICES; /* Enter OPL3 mode */ opl3->command(opl3, OPL3_RIGHT | OPL3_REG_MODE, OPL3_OPL3_ENABLE); } return 0; } EXPORT_SYMBOL(snd_opl3_init); int snd_opl3_create(struct snd_card *card, unsigned long l_port, unsigned long r_port, unsigned short hardware, int integrated, struct snd_opl3 ** ropl3) { struct snd_opl3 *opl3; int err; *ropl3 = NULL; if ((err = snd_opl3_new(card, hardware, &opl3)) < 0) return err; if (! integrated) { if ((opl3->res_l_port = request_region(l_port, 2, "OPL2/3 (left)")) == NULL) { snd_printk(KERN_ERR "opl3: can't grab left port 0x%lx\n", l_port); snd_device_free(card, opl3); return -EBUSY; } if (r_port != 0 && (opl3->res_r_port = request_region(r_port, 2, "OPL2/3 (right)")) == NULL) { snd_printk(KERN_ERR "opl3: can't grab right port 0x%lx\n", r_port); snd_device_free(card, opl3); return -EBUSY; } } opl3->l_port = l_port; opl3->r_port = r_port; switch (opl3->hardware) { /* some hardware doesn't support timers */ case OPL3_HW_OPL3_SV: case OPL3_HW_OPL3_CS: case OPL3_HW_OPL3_FM801: opl3->command = &snd_opl3_command; break; default: opl3->command = &snd_opl2_command; if ((err = snd_opl3_detect(opl3)) < 0) { snd_printd("OPL2/3 chip not detected at 0x%lx/0x%lx\n", opl3->l_port, opl3->r_port); snd_device_free(card, opl3); return err; } /* detect routine returns correct hardware type */ switch (opl3->hardware & OPL3_HW_MASK) { case OPL3_HW_OPL3: case OPL3_HW_OPL4: opl3->command = &snd_opl3_command; } } snd_opl3_init(opl3); *ropl3 = opl3; return 0; } EXPORT_SYMBOL(snd_opl3_create); int snd_opl3_timer_new(struct snd_opl3 * opl3, int timer1_dev, int timer2_dev) { int err; if (timer1_dev >= 0) if ((err = snd_opl3_timer1_init(opl3, timer1_dev)) < 0) return err; if (timer2_dev >= 0) { if ((err = snd_opl3_timer2_init(opl3, timer2_dev)) < 0) { snd_device_free(opl3->card, opl3->timer1); opl3->timer1 = NULL; return err; } } return 0; } EXPORT_SYMBOL(snd_opl3_timer_new); int snd_opl3_hwdep_new(struct snd_opl3 * opl3, int device, int seq_device, struct snd_hwdep ** rhwdep) { struct snd_hwdep *hw; struct snd_card *card = opl3->card; int err; if (rhwdep) *rhwdep = NULL; /* create hardware dependent device (direct FM) */ if ((err = snd_hwdep_new(card, "OPL2/OPL3", device, &hw)) < 0) { snd_device_free(card, opl3); return err; } hw->private_data = opl3; hw->exclusive = 1; #ifdef CONFIG_SND_OSSEMUL if (device == 0) hw->oss_type = SNDRV_OSS_DEVICE_TYPE_DMFM; #endif strcpy(hw->name, hw->id); switch (opl3->hardware & OPL3_HW_MASK) { case OPL3_HW_OPL2: strcpy(hw->name, "OPL2 FM"); hw->iface = SNDRV_HWDEP_IFACE_OPL2; break; case OPL3_HW_OPL3: strcpy(hw->name, "OPL3 FM"); hw->iface = SNDRV_HWDEP_IFACE_OPL3; break; case OPL3_HW_OPL4: strcpy(hw->name, "OPL4 FM"); hw->iface = SNDRV_HWDEP_IFACE_OPL4; break; } /* operators - only ioctl */ hw->ops.open = snd_opl3_open; hw->ops.ioctl = snd_opl3_ioctl; hw->ops.write = snd_opl3_write; hw->ops.release = snd_opl3_release; opl3->hwdep = hw; opl3->seq_dev_num = seq_device; #if defined(CONFIG_SND_SEQUENCER) || (defined(MODULE) && defined(CONFIG_SND_SEQUENCER_MODULE)) if (snd_seq_device_new(card, seq_device, SNDRV_SEQ_DEV_ID_OPL3, sizeof(struct snd_opl3 *), &opl3->seq_dev) >= 0) { strcpy(opl3->seq_dev->name, hw->name); *(struct snd_opl3 **)SNDRV_SEQ_DEVICE_ARGPTR(opl3->seq_dev) = opl3; } #endif if (rhwdep) *rhwdep = hw; return 0; } EXPORT_SYMBOL(snd_opl3_hwdep_new); /* * INIT part */ static int __init alsa_opl3_init(void) { return 0; } static void __exit alsa_opl3_exit(void) { } module_init(alsa_opl3_init) module_exit(alsa_opl3_exit)