/********************************************************************* * * Filename: ircomm_tty.c * Version: 1.0 * Description: IrCOMM serial TTY driver * Status: Experimental. * Author: Dag Brattli <dagb@cs.uit.no> * Created at: Sun Jun 6 21:00:56 1999 * Modified at: Wed Feb 23 00:09:02 2000 * Modified by: Dag Brattli <dagb@cs.uit.no> * Sources: serial.c and previous IrCOMM work by Takahide Higuchi * * Copyright (c) 1999-2000 Dag Brattli, All Rights Reserved. * Copyright (c) 2000-2003 Jean Tourrilhes <jt@hpl.hp.com> * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see <http://www.gnu.org/licenses/>. * ********************************************************************/ #include <linux/init.h> #include <linux/module.h> #include <linux/fs.h> #include <linux/slab.h> #include <linux/sched.h> #include <linux/seq_file.h> #include <linux/termios.h> #include <linux/tty.h> #include <linux/tty_flip.h> #include <linux/interrupt.h> #include <linux/device.h> /* for MODULE_ALIAS_CHARDEV_MAJOR */ #include <asm/uaccess.h> #include <net/irda/irda.h> #include <net/irda/irmod.h> #include <net/irda/ircomm_core.h> #include <net/irda/ircomm_param.h> #include <net/irda/ircomm_tty_attach.h> #include <net/irda/ircomm_tty.h> static int ircomm_tty_install(struct tty_driver *driver, struct tty_struct *tty); static int ircomm_tty_open(struct tty_struct *tty, struct file *filp); static void ircomm_tty_close(struct tty_struct * tty, struct file *filp); static int ircomm_tty_write(struct tty_struct * tty, const unsigned char *buf, int count); static int ircomm_tty_write_room(struct tty_struct *tty); static void ircomm_tty_throttle(struct tty_struct *tty); static void ircomm_tty_unthrottle(struct tty_struct *tty); static int ircomm_tty_chars_in_buffer(struct tty_struct *tty); static void ircomm_tty_flush_buffer(struct tty_struct *tty); static void ircomm_tty_send_xchar(struct tty_struct *tty, char ch); static void ircomm_tty_wait_until_sent(struct tty_struct *tty, int timeout); static void ircomm_tty_hangup(struct tty_struct *tty); static void ircomm_tty_do_softint(struct work_struct *work); static void ircomm_tty_shutdown(struct ircomm_tty_cb *self); static void ircomm_tty_stop(struct tty_struct *tty); static int ircomm_tty_data_indication(void *instance, void *sap, struct sk_buff *skb); static int ircomm_tty_control_indication(void *instance, void *sap, struct sk_buff *skb); static void ircomm_tty_flow_indication(void *instance, void *sap, LOCAL_FLOW cmd); #ifdef CONFIG_PROC_FS static const struct file_operations ircomm_tty_proc_fops; #endif /* CONFIG_PROC_FS */ static struct tty_driver *driver; static hashbin_t *ircomm_tty = NULL; static const struct tty_operations ops = { .install = ircomm_tty_install, .open = ircomm_tty_open, .close = ircomm_tty_close, .write = ircomm_tty_write, .write_room = ircomm_tty_write_room, .chars_in_buffer = ircomm_tty_chars_in_buffer, .flush_buffer = ircomm_tty_flush_buffer, .ioctl = ircomm_tty_ioctl, /* ircomm_tty_ioctl.c */ .tiocmget = ircomm_tty_tiocmget, /* ircomm_tty_ioctl.c */ .tiocmset = ircomm_tty_tiocmset, /* ircomm_tty_ioctl.c */ .throttle = ircomm_tty_throttle, .unthrottle = ircomm_tty_unthrottle, .send_xchar = ircomm_tty_send_xchar, .set_termios = ircomm_tty_set_termios, .stop = ircomm_tty_stop, .start = ircomm_tty_start, .hangup = ircomm_tty_hangup, .wait_until_sent = ircomm_tty_wait_until_sent, #ifdef CONFIG_PROC_FS .proc_fops = &ircomm_tty_proc_fops, #endif /* CONFIG_PROC_FS */ }; static void ircomm_port_raise_dtr_rts(struct tty_port *port, int raise) { struct ircomm_tty_cb *self = container_of(port, struct ircomm_tty_cb, port); /* * Here, we use to lock those two guys, but as ircomm_param_request() * does it itself, I don't see the point (and I see the deadlock). * Jean II */ if (raise) self->settings.dte |= IRCOMM_RTS | IRCOMM_DTR; else self->settings.dte &= ~(IRCOMM_RTS | IRCOMM_DTR); ircomm_param_request(self, IRCOMM_DTE, TRUE); } static int ircomm_port_carrier_raised(struct tty_port *port) { struct ircomm_tty_cb *self = container_of(port, struct ircomm_tty_cb, port); return self->settings.dce & IRCOMM_CD; } static const struct tty_port_operations ircomm_port_ops = { .dtr_rts = ircomm_port_raise_dtr_rts, .carrier_raised = ircomm_port_carrier_raised, }; /* * Function ircomm_tty_init() * * Init IrCOMM TTY layer/driver * */ static int __init ircomm_tty_init(void) { driver = alloc_tty_driver(IRCOMM_TTY_PORTS); if (!driver) return -ENOMEM; ircomm_tty = hashbin_new(HB_LOCK); if (ircomm_tty == NULL) { IRDA_ERROR("%s(), can't allocate hashbin!\n", __func__); put_tty_driver(driver); return -ENOMEM; } driver->driver_name = "ircomm"; driver->name = "ircomm"; driver->major = IRCOMM_TTY_MAJOR; driver->minor_start = IRCOMM_TTY_MINOR; driver->type = TTY_DRIVER_TYPE_SERIAL; driver->subtype = SERIAL_TYPE_NORMAL; driver->init_termios = tty_std_termios; driver->init_termios.c_cflag = B9600 | CS8 | CREAD | HUPCL | CLOCAL; driver->flags = TTY_DRIVER_REAL_RAW; tty_set_operations(driver, &ops); if (tty_register_driver(driver)) { IRDA_ERROR("%s(): Couldn't register serial driver\n", __func__); put_tty_driver(driver); return -1; } return 0; } static void __exit __ircomm_tty_cleanup(struct ircomm_tty_cb *self) { IRDA_DEBUG(0, "%s()\n", __func__ ); IRDA_ASSERT(self != NULL, return;); IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return;); ircomm_tty_shutdown(self); self->magic = 0; tty_port_destroy(&self->port); kfree(self); } /* * Function ircomm_tty_cleanup () * * Remove IrCOMM TTY layer/driver * */ static void __exit ircomm_tty_cleanup(void) { int ret; IRDA_DEBUG(4, "%s()\n", __func__ ); ret = tty_unregister_driver(driver); if (ret) { IRDA_ERROR("%s(), failed to unregister driver\n", __func__); return; } hashbin_delete(ircomm_tty, (FREE_FUNC) __ircomm_tty_cleanup); put_tty_driver(driver); } /* * Function ircomm_startup (self) * * * */ static int ircomm_tty_startup(struct ircomm_tty_cb *self) { notify_t notify; int ret = -ENODEV; IRDA_DEBUG(2, "%s()\n", __func__ ); IRDA_ASSERT(self != NULL, return -1;); IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return -1;); /* Check if already open */ if (test_and_set_bit(ASYNCB_INITIALIZED, &self->port.flags)) { IRDA_DEBUG(2, "%s(), already open so break out!\n", __func__ ); return 0; } /* Register with IrCOMM */ irda_notify_init(¬ify); /* These callbacks we must handle ourselves */ notify.data_indication = ircomm_tty_data_indication; notify.udata_indication = ircomm_tty_control_indication; notify.flow_indication = ircomm_tty_flow_indication; /* Use the ircomm_tty interface for these ones */ notify.disconnect_indication = ircomm_tty_disconnect_indication; notify.connect_confirm = ircomm_tty_connect_confirm; notify.connect_indication = ircomm_tty_connect_indication; strlcpy(notify.name, "ircomm_tty", sizeof(notify.name)); notify.instance = self; if (!self->ircomm) { self->ircomm = ircomm_open(¬ify, self->service_type, self->line); } if (!self->ircomm) goto err; self->slsap_sel = self->ircomm->slsap_sel; /* Connect IrCOMM link with remote device */ ret = ircomm_tty_attach_cable(self); if (ret < 0) { IRDA_ERROR("%s(), error attaching cable!\n", __func__); goto err; } return 0; err: clear_bit(ASYNCB_INITIALIZED, &self->port.flags); return ret; } /* * Function ircomm_block_til_ready (self, filp) * * * */ static int ircomm_tty_block_til_ready(struct ircomm_tty_cb *self, struct tty_struct *tty, struct file *filp) { struct tty_port *port = &self->port; DECLARE_WAITQUEUE(wait, current); int retval; int do_clocal = 0; unsigned long flags; IRDA_DEBUG(2, "%s()\n", __func__ ); /* * If non-blocking mode is set, or the port is not enabled, * then make the check up front and then exit. */ if (test_bit(TTY_IO_ERROR, &tty->flags)) { port->flags |= ASYNC_NORMAL_ACTIVE; return 0; } if (filp->f_flags & O_NONBLOCK) { /* nonblock mode is set */ if (tty->termios.c_cflag & CBAUD) tty_port_raise_dtr_rts(port); port->flags |= ASYNC_NORMAL_ACTIVE; IRDA_DEBUG(1, "%s(), O_NONBLOCK requested!\n", __func__ ); return 0; } if (tty->termios.c_cflag & CLOCAL) { IRDA_DEBUG(1, "%s(), doing CLOCAL!\n", __func__ ); do_clocal = 1; } /* Wait for carrier detect and the line to become * free (i.e., not in use by the callout). While we are in * this loop, port->count is dropped by one, so that * mgsl_close() knows when to free things. We restore it upon * exit, either normal or abnormal. */ retval = 0; add_wait_queue(&port->open_wait, &wait); IRDA_DEBUG(2, "%s(%d):block_til_ready before block on %s open_count=%d\n", __FILE__, __LINE__, tty->driver->name, port->count); spin_lock_irqsave(&port->lock, flags); port->count--; port->blocked_open++; spin_unlock_irqrestore(&port->lock, flags); while (1) { if (C_BAUD(tty) && test_bit(ASYNCB_INITIALIZED, &port->flags)) tty_port_raise_dtr_rts(port); set_current_state(TASK_INTERRUPTIBLE); if (tty_hung_up_p(filp) || !test_bit(ASYNCB_INITIALIZED, &port->flags)) { retval = (port->flags & ASYNC_HUP_NOTIFY) ? -EAGAIN : -ERESTARTSYS; break; } /* * Check if link is ready now. Even if CLOCAL is * specified, we cannot return before the IrCOMM link is * ready */ if (!test_bit(ASYNCB_CLOSING, &port->flags) && (do_clocal || tty_port_carrier_raised(port)) && self->state == IRCOMM_TTY_READY) { break; } if (signal_pending(current)) { retval = -ERESTARTSYS; break; } IRDA_DEBUG(1, "%s(%d):block_til_ready blocking on %s open_count=%d\n", __FILE__, __LINE__, tty->driver->name, port->count); schedule(); } __set_current_state(TASK_RUNNING); remove_wait_queue(&port->open_wait, &wait); spin_lock_irqsave(&port->lock, flags); if (!tty_hung_up_p(filp)) port->count++; port->blocked_open--; spin_unlock_irqrestore(&port->lock, flags); IRDA_DEBUG(1, "%s(%d):block_til_ready after blocking on %s open_count=%d\n", __FILE__, __LINE__, tty->driver->name, port->count); if (!retval) port->flags |= ASYNC_NORMAL_ACTIVE; return retval; } static int ircomm_tty_install(struct tty_driver *driver, struct tty_struct *tty) { struct ircomm_tty_cb *self; unsigned int line = tty->index; /* Check if instance already exists */ self = hashbin_lock_find(ircomm_tty, line, NULL); if (!self) { /* No, so make new instance */ self = kzalloc(sizeof(struct ircomm_tty_cb), GFP_KERNEL); if (self == NULL) { IRDA_ERROR("%s(), kmalloc failed!\n", __func__); return -ENOMEM; } tty_port_init(&self->port); self->port.ops = &ircomm_port_ops; self->magic = IRCOMM_TTY_MAGIC; self->flow = FLOW_STOP; self->line = line; INIT_WORK(&self->tqueue, ircomm_tty_do_softint); self->max_header_size = IRCOMM_TTY_HDR_UNINITIALISED; self->max_data_size = IRCOMM_TTY_DATA_UNINITIALISED; /* Init some important stuff */ init_timer(&self->watchdog_timer); spin_lock_init(&self->spinlock); /* * Force TTY into raw mode by default which is usually what * we want for IrCOMM and IrLPT. This way applications will * not have to twiddle with printcap etc. * * Note this is completely usafe and doesn't work properly */ tty->termios.c_iflag = 0; tty->termios.c_oflag = 0; /* Insert into hash */ hashbin_insert(ircomm_tty, (irda_queue_t *) self, line, NULL); } tty->driver_data = self; return tty_port_install(&self->port, driver, tty); } /* * Function ircomm_tty_open (tty, filp) * * This routine is called when a particular tty device is opened. This * routine is mandatory; if this routine is not filled in, the attempted * open will fail with ENODEV. */ static int ircomm_tty_open(struct tty_struct *tty, struct file *filp) { struct ircomm_tty_cb *self = tty->driver_data; unsigned long flags; int ret; IRDA_DEBUG(2, "%s()\n", __func__ ); /* ++ is not atomic, so this should be protected - Jean II */ spin_lock_irqsave(&self->port.lock, flags); self->port.count++; spin_unlock_irqrestore(&self->port.lock, flags); tty_port_tty_set(&self->port, tty); IRDA_DEBUG(1, "%s(), %s%d, count = %d\n", __func__ , tty->driver->name, self->line, self->port.count); /* Not really used by us, but lets do it anyway */ self->port.low_latency = (self->port.flags & ASYNC_LOW_LATENCY) ? 1 : 0; /* * If the port is the middle of closing, bail out now */ if (test_bit(ASYNCB_CLOSING, &self->port.flags)) { /* Hm, why are we blocking on ASYNC_CLOSING if we * do return -EAGAIN/-ERESTARTSYS below anyway? * IMHO it's either not needed in the first place * or for some reason we need to make sure the async * closing has been finished - if so, wouldn't we * probably better sleep uninterruptible? */ if (wait_event_interruptible(self->port.close_wait, !test_bit(ASYNCB_CLOSING, &self->port.flags))) { IRDA_WARNING("%s - got signal while blocking on ASYNC_CLOSING!\n", __func__); return -ERESTARTSYS; } #ifdef SERIAL_DO_RESTART return (self->port.flags & ASYNC_HUP_NOTIFY) ? -EAGAIN : -ERESTARTSYS; #else return -EAGAIN; #endif } /* Check if this is a "normal" ircomm device, or an irlpt device */ if (self->line < 0x10) { self->service_type = IRCOMM_3_WIRE | IRCOMM_9_WIRE; self->settings.service_type = IRCOMM_9_WIRE; /* 9 wire as default */ /* Jan Kiszka -> add DSR/RI -> Conform to IrCOMM spec */ self->settings.dce = IRCOMM_CTS | IRCOMM_CD | IRCOMM_DSR | IRCOMM_RI; /* Default line settings */ IRDA_DEBUG(2, "%s(), IrCOMM device\n", __func__ ); } else { IRDA_DEBUG(2, "%s(), IrLPT device\n", __func__ ); self->service_type = IRCOMM_3_WIRE_RAW; self->settings.service_type = IRCOMM_3_WIRE_RAW; /* Default */ } ret = ircomm_tty_startup(self); if (ret) return ret; ret = ircomm_tty_block_til_ready(self, tty, filp); if (ret) { IRDA_DEBUG(2, "%s(), returning after block_til_ready with %d\n", __func__ , ret); return ret; } return 0; } /* * Function ircomm_tty_close (tty, filp) * * This routine is called when a particular tty device is closed. * */ static void ircomm_tty_close(struct tty_struct *tty, struct file *filp) { struct ircomm_tty_cb *self = (struct ircomm_tty_cb *) tty->driver_data; struct tty_port *port = &self->port; IRDA_DEBUG(0, "%s()\n", __func__ ); IRDA_ASSERT(self != NULL, return;); IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return;); if (tty_port_close_start(port, tty, filp) == 0) return; ircomm_tty_shutdown(self); tty_driver_flush_buffer(tty); tty_port_close_end(port, tty); tty_port_tty_set(port, NULL); } /* * Function ircomm_tty_flush_buffer (tty) * * * */ static void ircomm_tty_flush_buffer(struct tty_struct *tty) { struct ircomm_tty_cb *self = (struct ircomm_tty_cb *) tty->driver_data; IRDA_ASSERT(self != NULL, return;); IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return;); /* * Let do_softint() do this to avoid race condition with * do_softint() ;-) */ schedule_work(&self->tqueue); } /* * Function ircomm_tty_do_softint (work) * * We use this routine to give the write wakeup to the user at at a * safe time (as fast as possible after write have completed). This * can be compared to the Tx interrupt. */ static void ircomm_tty_do_softint(struct work_struct *work) { struct ircomm_tty_cb *self = container_of(work, struct ircomm_tty_cb, tqueue); struct tty_struct *tty; unsigned long flags; struct sk_buff *skb, *ctrl_skb; IRDA_DEBUG(2, "%s()\n", __func__ ); if (!self || self->magic != IRCOMM_TTY_MAGIC) return; tty = tty_port_tty_get(&self->port); if (!tty) return; /* Unlink control buffer */ spin_lock_irqsave(&self->spinlock, flags); ctrl_skb = self->ctrl_skb; self->ctrl_skb = NULL; spin_unlock_irqrestore(&self->spinlock, flags); /* Flush control buffer if any */ if(ctrl_skb) { if(self->flow == FLOW_START) ircomm_control_request(self->ircomm, ctrl_skb); /* Drop reference count - see ircomm_ttp_data_request(). */ dev_kfree_skb(ctrl_skb); } if (tty->hw_stopped) goto put; /* Unlink transmit buffer */ spin_lock_irqsave(&self->spinlock, flags); skb = self->tx_skb; self->tx_skb = NULL; spin_unlock_irqrestore(&self->spinlock, flags); /* Flush transmit buffer if any */ if (skb) { ircomm_tty_do_event(self, IRCOMM_TTY_DATA_REQUEST, skb, NULL); /* Drop reference count - see ircomm_ttp_data_request(). */ dev_kfree_skb(skb); } /* Check if user (still) wants to be waken up */ tty_wakeup(tty); put: tty_kref_put(tty); } /* * Function ircomm_tty_write (tty, buf, count) * * This routine is called by the kernel to write a series of characters * to the tty device. The characters may come from user space or kernel * space. This routine will return the number of characters actually * accepted for writing. This routine is mandatory. */ static int ircomm_tty_write(struct tty_struct *tty, const unsigned char *buf, int count) { struct ircomm_tty_cb *self = (struct ircomm_tty_cb *) tty->driver_data; unsigned long flags; struct sk_buff *skb; int tailroom = 0; int len = 0; int size; IRDA_DEBUG(2, "%s(), count=%d, hw_stopped=%d\n", __func__ , count, tty->hw_stopped); IRDA_ASSERT(self != NULL, return -1;); IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return -1;); /* We may receive packets from the TTY even before we have finished * our setup. Not cool. * The problem is that we don't know the final header and data size * to create the proper skb, so any skb we would create would have * bogus header and data size, so need care. * We use a bogus header size to safely detect this condition. * Another problem is that hw_stopped was set to 0 way before it * should be, so we would drop this skb. It should now be fixed. * One option is to not accept data until we are properly setup. * But, I suspect that when it happens, the ppp line discipline * just "drops" the data, which might screw up connect scripts. * The second option is to create a "safe skb", with large header * and small size (see ircomm_tty_open() for values). * We just need to make sure that when the real values get filled, * we don't mess up the original "safe skb" (see tx_data_size). * Jean II */ if (self->max_header_size == IRCOMM_TTY_HDR_UNINITIALISED) { IRDA_DEBUG(1, "%s() : not initialised\n", __func__); #ifdef IRCOMM_NO_TX_BEFORE_INIT /* We didn't consume anything, TTY will retry */ return 0; #endif } if (count < 1) return 0; /* Protect our manipulation of self->tx_skb and related */ spin_lock_irqsave(&self->spinlock, flags); /* Fetch current transmit buffer */ skb = self->tx_skb; /* * Send out all the data we get, possibly as multiple fragmented * frames, but this will only happen if the data is larger than the * max data size. The normal case however is just the opposite, and * this function may be called multiple times, and will then actually * defragment the data and send it out as one packet as soon as * possible, but at a safer point in time */ while (count) { size = count; /* Adjust data size to the max data size */ if (size > self->max_data_size) size = self->max_data_size; /* * Do we already have a buffer ready for transmit, or do * we need to allocate a new frame */ if (skb) { /* * Any room for more data at the end of the current * transmit buffer? Cannot use skb_tailroom, since * dev_alloc_skb gives us a larger skb than we * requested * Note : use tx_data_size, because max_data_size * may have changed and we don't want to overwrite * the skb. - Jean II */ if ((tailroom = (self->tx_data_size - skb->len)) > 0) { /* Adjust data to tailroom */ if (size > tailroom) size = tailroom; } else { /* * Current transmit frame is full, so break * out, so we can send it as soon as possible */ break; } } else { /* Prepare a full sized frame */ skb = alloc_skb(self->max_data_size+ self->max_header_size, GFP_ATOMIC); if (!skb) { spin_unlock_irqrestore(&self->spinlock, flags); return -ENOBUFS; } skb_reserve(skb, self->max_header_size); self->tx_skb = skb; /* Remember skb size because max_data_size may * change later on - Jean II */ self->tx_data_size = self->max_data_size; } /* Copy data */ memcpy(skb_put(skb,size), buf + len, size); count -= size; len += size; } spin_unlock_irqrestore(&self->spinlock, flags); /* * Schedule a new thread which will transmit the frame as soon * as possible, but at a safe point in time. We do this so the * "user" can give us data multiple times, as PPP does (because of * its 256 byte tx buffer). We will then defragment and send out * all this data as one single packet. */ schedule_work(&self->tqueue); return len; } /* * Function ircomm_tty_write_room (tty) * * This routine returns the numbers of characters the tty driver will * accept for queuing to be written. This number is subject to change as * output buffers get emptied, or if the output flow control is acted. */ static int ircomm_tty_write_room(struct tty_struct *tty) { struct ircomm_tty_cb *self = (struct ircomm_tty_cb *) tty->driver_data; unsigned long flags; int ret; IRDA_ASSERT(self != NULL, return -1;); IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return -1;); #ifdef IRCOMM_NO_TX_BEFORE_INIT /* max_header_size tells us if the channel is initialised or not. */ if (self->max_header_size == IRCOMM_TTY_HDR_UNINITIALISED) /* Don't bother us yet */ return 0; #endif /* Check if we are allowed to transmit any data. * hw_stopped is the regular flow control. * Jean II */ if (tty->hw_stopped) ret = 0; else { spin_lock_irqsave(&self->spinlock, flags); if (self->tx_skb) ret = self->tx_data_size - self->tx_skb->len; else ret = self->max_data_size; spin_unlock_irqrestore(&self->spinlock, flags); } IRDA_DEBUG(2, "%s(), ret=%d\n", __func__ , ret); return ret; } /* * Function ircomm_tty_wait_until_sent (tty, timeout) * * This routine waits until the device has written out all of the * characters in its transmitter FIFO. */ static void ircomm_tty_wait_until_sent(struct tty_struct *tty, int timeout) { struct ircomm_tty_cb *self = (struct ircomm_tty_cb *) tty->driver_data; unsigned long orig_jiffies, poll_time; unsigned long flags; IRDA_DEBUG(2, "%s()\n", __func__ ); IRDA_ASSERT(self != NULL, return;); IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return;); orig_jiffies = jiffies; /* Set poll time to 200 ms */ poll_time = IRDA_MIN(timeout, msecs_to_jiffies(200)); spin_lock_irqsave(&self->spinlock, flags); while (self->tx_skb && self->tx_skb->len) { spin_unlock_irqrestore(&self->spinlock, flags); schedule_timeout_interruptible(poll_time); spin_lock_irqsave(&self->spinlock, flags); if (signal_pending(current)) break; if (timeout && time_after(jiffies, orig_jiffies + timeout)) break; } spin_unlock_irqrestore(&self->spinlock, flags); current->state = TASK_RUNNING; } /* * Function ircomm_tty_throttle (tty) * * This routine notifies the tty driver that input buffers for the line * discipline are close to full, and it should somehow signal that no * more characters should be sent to the tty. */ static void ircomm_tty_throttle(struct tty_struct *tty) { struct ircomm_tty_cb *self = (struct ircomm_tty_cb *) tty->driver_data; IRDA_DEBUG(2, "%s()\n", __func__ ); IRDA_ASSERT(self != NULL, return;); IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return;); /* Software flow control? */ if (I_IXOFF(tty)) ircomm_tty_send_xchar(tty, STOP_CHAR(tty)); /* Hardware flow control? */ if (tty->termios.c_cflag & CRTSCTS) { self->settings.dte &= ~IRCOMM_RTS; self->settings.dte |= IRCOMM_DELTA_RTS; ircomm_param_request(self, IRCOMM_DTE, TRUE); } ircomm_flow_request(self->ircomm, FLOW_STOP); } /* * Function ircomm_tty_unthrottle (tty) * * This routine notifies the tty drivers that it should signals that * characters can now be sent to the tty without fear of overrunning the * input buffers of the line disciplines. */ static void ircomm_tty_unthrottle(struct tty_struct *tty) { struct ircomm_tty_cb *self = (struct ircomm_tty_cb *) tty->driver_data; IRDA_DEBUG(2, "%s()\n", __func__ ); IRDA_ASSERT(self != NULL, return;); IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return;); /* Using software flow control? */ if (I_IXOFF(tty)) { ircomm_tty_send_xchar(tty, START_CHAR(tty)); } /* Using hardware flow control? */ if (tty->termios.c_cflag & CRTSCTS) { self->settings.dte |= (IRCOMM_RTS|IRCOMM_DELTA_RTS); ircomm_param_request(self, IRCOMM_DTE, TRUE); IRDA_DEBUG(1, "%s(), FLOW_START\n", __func__ ); } ircomm_flow_request(self->ircomm, FLOW_START); } /* * Function ircomm_tty_chars_in_buffer (tty) * * Indicates if there are any data in the buffer * */ static int ircomm_tty_chars_in_buffer(struct tty_struct *tty) { struct ircomm_tty_cb *self = (struct ircomm_tty_cb *) tty->driver_data; unsigned long flags; int len = 0; IRDA_ASSERT(self != NULL, return -1;); IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return -1;); spin_lock_irqsave(&self->spinlock, flags); if (self->tx_skb) len = self->tx_skb->len; spin_unlock_irqrestore(&self->spinlock, flags); return len; } static void ircomm_tty_shutdown(struct ircomm_tty_cb *self) { unsigned long flags; IRDA_ASSERT(self != NULL, return;); IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return;); IRDA_DEBUG(0, "%s()\n", __func__ ); if (!test_and_clear_bit(ASYNCB_INITIALIZED, &self->port.flags)) return; ircomm_tty_detach_cable(self); spin_lock_irqsave(&self->spinlock, flags); del_timer(&self->watchdog_timer); /* Free parameter buffer */ if (self->ctrl_skb) { dev_kfree_skb(self->ctrl_skb); self->ctrl_skb = NULL; } /* Free transmit buffer */ if (self->tx_skb) { dev_kfree_skb(self->tx_skb); self->tx_skb = NULL; } if (self->ircomm) { ircomm_close(self->ircomm); self->ircomm = NULL; } spin_unlock_irqrestore(&self->spinlock, flags); } /* * Function ircomm_tty_hangup (tty) * * This routine notifies the tty driver that it should hangup the tty * device. * */ static void ircomm_tty_hangup(struct tty_struct *tty) { struct ircomm_tty_cb *self = (struct ircomm_tty_cb *) tty->driver_data; struct tty_port *port = &self->port; unsigned long flags; IRDA_DEBUG(0, "%s()\n", __func__ ); IRDA_ASSERT(self != NULL, return;); IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return;); /* ircomm_tty_flush_buffer(tty); */ ircomm_tty_shutdown(self); spin_lock_irqsave(&port->lock, flags); port->flags &= ~ASYNC_NORMAL_ACTIVE; if (port->tty) { set_bit(TTY_IO_ERROR, &port->tty->flags); tty_kref_put(port->tty); } port->tty = NULL; port->count = 0; spin_unlock_irqrestore(&port->lock, flags); wake_up_interruptible(&port->open_wait); } /* * Function ircomm_tty_send_xchar (tty, ch) * * This routine is used to send a high-priority XON/XOFF character to * the device. */ static void ircomm_tty_send_xchar(struct tty_struct *tty, char ch) { IRDA_DEBUG(0, "%s(), not impl\n", __func__ ); } /* * Function ircomm_tty_start (tty) * * This routine notifies the tty driver that it resume sending * characters to the tty device. */ void ircomm_tty_start(struct tty_struct *tty) { struct ircomm_tty_cb *self = (struct ircomm_tty_cb *) tty->driver_data; ircomm_flow_request(self->ircomm, FLOW_START); } /* * Function ircomm_tty_stop (tty) * * This routine notifies the tty driver that it should stop outputting * characters to the tty device. */ static void ircomm_tty_stop(struct tty_struct *tty) { struct ircomm_tty_cb *self = (struct ircomm_tty_cb *) tty->driver_data; IRDA_ASSERT(self != NULL, return;); IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return;); ircomm_flow_request(self->ircomm, FLOW_STOP); } /* * Function ircomm_check_modem_status (self) * * Check for any changes in the DCE's line settings. This function should * be called whenever the dce parameter settings changes, to update the * flow control settings and other things */ void ircomm_tty_check_modem_status(struct ircomm_tty_cb *self) { struct tty_struct *tty; int status; IRDA_DEBUG(0, "%s()\n", __func__ ); IRDA_ASSERT(self != NULL, return;); IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return;); tty = tty_port_tty_get(&self->port); status = self->settings.dce; if (status & IRCOMM_DCE_DELTA_ANY) { /*wake_up_interruptible(&self->delta_msr_wait);*/ } if ((self->port.flags & ASYNC_CHECK_CD) && (status & IRCOMM_DELTA_CD)) { IRDA_DEBUG(2, "%s(), ircomm%d CD now %s...\n", __func__ , self->line, (status & IRCOMM_CD) ? "on" : "off"); if (status & IRCOMM_CD) { wake_up_interruptible(&self->port.open_wait); } else { IRDA_DEBUG(2, "%s(), Doing serial hangup..\n", __func__ ); if (tty) tty_hangup(tty); /* Hangup will remote the tty, so better break out */ goto put; } } if (tty && tty_port_cts_enabled(&self->port)) { if (tty->hw_stopped) { if (status & IRCOMM_CTS) { IRDA_DEBUG(2, "%s(), CTS tx start...\n", __func__ ); tty->hw_stopped = 0; /* Wake up processes blocked on open */ wake_up_interruptible(&self->port.open_wait); schedule_work(&self->tqueue); goto put; } } else { if (!(status & IRCOMM_CTS)) { IRDA_DEBUG(2, "%s(), CTS tx stop...\n", __func__ ); tty->hw_stopped = 1; } } } put: tty_kref_put(tty); } /* * Function ircomm_tty_data_indication (instance, sap, skb) * * Handle incoming data, and deliver it to the line discipline * */ static int ircomm_tty_data_indication(void *instance, void *sap, struct sk_buff *skb) { struct ircomm_tty_cb *self = (struct ircomm_tty_cb *) instance; struct tty_struct *tty; IRDA_DEBUG(2, "%s()\n", __func__ ); IRDA_ASSERT(self != NULL, return -1;); IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return -1;); IRDA_ASSERT(skb != NULL, return -1;); tty = tty_port_tty_get(&self->port); if (!tty) { IRDA_DEBUG(0, "%s(), no tty!\n", __func__ ); return 0; } /* * If we receive data when hardware is stopped then something is wrong. * We try to poll the peers line settings to check if we are up todate. * Devices like WinCE can do this, and since they don't send any * params, we can just as well declare the hardware for running. */ if (tty->hw_stopped && (self->flow == FLOW_START)) { IRDA_DEBUG(0, "%s(), polling for line settings!\n", __func__ ); ircomm_param_request(self, IRCOMM_POLL, TRUE); /* We can just as well declare the hardware for running */ ircomm_tty_send_initial_parameters(self); ircomm_tty_link_established(self); } tty_kref_put(tty); /* * Use flip buffer functions since the code may be called from interrupt * context */ tty_insert_flip_string(&self->port, skb->data, skb->len); tty_flip_buffer_push(&self->port); /* No need to kfree_skb - see ircomm_ttp_data_indication() */ return 0; } /* * Function ircomm_tty_control_indication (instance, sap, skb) * * Parse all incoming parameters (easy!) * */ static int ircomm_tty_control_indication(void *instance, void *sap, struct sk_buff *skb) { struct ircomm_tty_cb *self = (struct ircomm_tty_cb *) instance; int clen; IRDA_DEBUG(4, "%s()\n", __func__ ); IRDA_ASSERT(self != NULL, return -1;); IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return -1;); IRDA_ASSERT(skb != NULL, return -1;); clen = skb->data[0]; irda_param_extract_all(self, skb->data+1, IRDA_MIN(skb->len-1, clen), &ircomm_param_info); /* No need to kfree_skb - see ircomm_control_indication() */ return 0; } /* * Function ircomm_tty_flow_indication (instance, sap, cmd) * * This function is called by IrTTP when it wants us to slow down the * transmission of data. We just mark the hardware as stopped, and wait * for IrTTP to notify us that things are OK again. */ static void ircomm_tty_flow_indication(void *instance, void *sap, LOCAL_FLOW cmd) { struct ircomm_tty_cb *self = (struct ircomm_tty_cb *) instance; struct tty_struct *tty; IRDA_ASSERT(self != NULL, return;); IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return;); tty = tty_port_tty_get(&self->port); switch (cmd) { case FLOW_START: IRDA_DEBUG(2, "%s(), hw start!\n", __func__ ); if (tty) tty->hw_stopped = 0; /* ircomm_tty_do_softint will take care of the rest */ schedule_work(&self->tqueue); break; default: /* If we get here, something is very wrong, better stop */ case FLOW_STOP: IRDA_DEBUG(2, "%s(), hw stopped!\n", __func__ ); if (tty) tty->hw_stopped = 1; break; } tty_kref_put(tty); self->flow = cmd; } #ifdef CONFIG_PROC_FS static void ircomm_tty_line_info(struct ircomm_tty_cb *self, struct seq_file *m) { struct tty_struct *tty; char sep; seq_printf(m, "State: %s\n", ircomm_tty_state[self->state]); seq_puts(m, "Service type: "); if (self->service_type & IRCOMM_9_WIRE) seq_puts(m, "9_WIRE"); else if (self->service_type & IRCOMM_3_WIRE) seq_puts(m, "3_WIRE"); else if (self->service_type & IRCOMM_3_WIRE_RAW) seq_puts(m, "3_WIRE_RAW"); else seq_puts(m, "No common service type!\n"); seq_putc(m, '\n'); seq_printf(m, "Port name: %s\n", self->settings.port_name); seq_printf(m, "DTE status:"); sep = ' '; if (self->settings.dte & IRCOMM_RTS) { seq_printf(m, "%cRTS", sep); sep = '|'; } if (self->settings.dte & IRCOMM_DTR) { seq_printf(m, "%cDTR", sep); sep = '|'; } seq_putc(m, '\n'); seq_puts(m, "DCE status:"); sep = ' '; if (self->settings.dce & IRCOMM_CTS) { seq_printf(m, "%cCTS", sep); sep = '|'; } if (self->settings.dce & IRCOMM_DSR) { seq_printf(m, "%cDSR", sep); sep = '|'; } if (self->settings.dce & IRCOMM_CD) { seq_printf(m, "%cCD", sep); sep = '|'; } if (self->settings.dce & IRCOMM_RI) { seq_printf(m, "%cRI", sep); sep = '|'; } seq_putc(m, '\n'); seq_puts(m, "Configuration: "); if (!self->settings.null_modem) seq_puts(m, "DTE <-> DCE\n"); else seq_puts(m, "DTE <-> DTE (null modem emulation)\n"); seq_printf(m, "Data rate: %d\n", self->settings.data_rate); seq_puts(m, "Flow control:"); sep = ' '; if (self->settings.flow_control & IRCOMM_XON_XOFF_IN) { seq_printf(m, "%cXON_XOFF_IN", sep); sep = '|'; } if (self->settings.flow_control & IRCOMM_XON_XOFF_OUT) { seq_printf(m, "%cXON_XOFF_OUT", sep); sep = '|'; } if (self->settings.flow_control & IRCOMM_RTS_CTS_IN) { seq_printf(m, "%cRTS_CTS_IN", sep); sep = '|'; } if (self->settings.flow_control & IRCOMM_RTS_CTS_OUT) { seq_printf(m, "%cRTS_CTS_OUT", sep); sep = '|'; } if (self->settings.flow_control & IRCOMM_DSR_DTR_IN) { seq_printf(m, "%cDSR_DTR_IN", sep); sep = '|'; } if (self->settings.flow_control & IRCOMM_DSR_DTR_OUT) { seq_printf(m, "%cDSR_DTR_OUT", sep); sep = '|'; } if (self->settings.flow_control & IRCOMM_ENQ_ACK_IN) { seq_printf(m, "%cENQ_ACK_IN", sep); sep = '|'; } if (self->settings.flow_control & IRCOMM_ENQ_ACK_OUT) { seq_printf(m, "%cENQ_ACK_OUT", sep); sep = '|'; } seq_putc(m, '\n'); seq_puts(m, "Flags:"); sep = ' '; if (tty_port_cts_enabled(&self->port)) { seq_printf(m, "%cASYNC_CTS_FLOW", sep); sep = '|'; } if (self->port.flags & ASYNC_CHECK_CD) { seq_printf(m, "%cASYNC_CHECK_CD", sep); sep = '|'; } if (self->port.flags & ASYNC_INITIALIZED) { seq_printf(m, "%cASYNC_INITIALIZED", sep); sep = '|'; } if (self->port.flags & ASYNC_LOW_LATENCY) { seq_printf(m, "%cASYNC_LOW_LATENCY", sep); sep = '|'; } if (self->port.flags & ASYNC_CLOSING) { seq_printf(m, "%cASYNC_CLOSING", sep); sep = '|'; } if (self->port.flags & ASYNC_NORMAL_ACTIVE) { seq_printf(m, "%cASYNC_NORMAL_ACTIVE", sep); sep = '|'; } seq_putc(m, '\n'); seq_printf(m, "Role: %s\n", self->client ? "client" : "server"); seq_printf(m, "Open count: %d\n", self->port.count); seq_printf(m, "Max data size: %d\n", self->max_data_size); seq_printf(m, "Max header size: %d\n", self->max_header_size); tty = tty_port_tty_get(&self->port); if (tty) { seq_printf(m, "Hardware: %s\n", tty->hw_stopped ? "Stopped" : "Running"); tty_kref_put(tty); } } static int ircomm_tty_proc_show(struct seq_file *m, void *v) { struct ircomm_tty_cb *self; unsigned long flags; spin_lock_irqsave(&ircomm_tty->hb_spinlock, flags); self = (struct ircomm_tty_cb *) hashbin_get_first(ircomm_tty); while (self != NULL) { if (self->magic != IRCOMM_TTY_MAGIC) break; ircomm_tty_line_info(self, m); self = (struct ircomm_tty_cb *) hashbin_get_next(ircomm_tty); } spin_unlock_irqrestore(&ircomm_tty->hb_spinlock, flags); return 0; } static int ircomm_tty_proc_open(struct inode *inode, struct file *file) { return single_open(file, ircomm_tty_proc_show, NULL); } static const struct file_operations ircomm_tty_proc_fops = { .owner = THIS_MODULE, .open = ircomm_tty_proc_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; #endif /* CONFIG_PROC_FS */ MODULE_AUTHOR("Dag Brattli <dagb@cs.uit.no>"); MODULE_DESCRIPTION("IrCOMM serial TTY driver"); MODULE_LICENSE("GPL"); MODULE_ALIAS_CHARDEV_MAJOR(IRCOMM_TTY_MAJOR); module_init(ircomm_tty_init); module_exit(ircomm_tty_cleanup);