/* * Copyright (c) 2014 Christoph Hellwig. */ #include <linux/sunrpc/svc.h> #include <linux/blkdev.h> #include <linux/nfs4.h> #include <linux/nfs_fs.h> #include <linux/nfs_xdr.h> #include "blocklayout.h" #define NFSDBG_FACILITY NFSDBG_PNFS_LD static void bl_free_device(struct pnfs_block_dev *dev) { if (dev->nr_children) { int i; for (i = 0; i < dev->nr_children; i++) bl_free_device(&dev->children[i]); kfree(dev->children); } else { if (dev->bdev) blkdev_put(dev->bdev, FMODE_READ); } } void bl_free_deviceid_node(struct nfs4_deviceid_node *d) { struct pnfs_block_dev *dev = container_of(d, struct pnfs_block_dev, node); bl_free_device(dev); kfree(dev); } static int nfs4_block_decode_volume(struct xdr_stream *xdr, struct pnfs_block_volume *b) { __be32 *p; int i; p = xdr_inline_decode(xdr, 4); if (!p) return -EIO; b->type = be32_to_cpup(p++); switch (b->type) { case PNFS_BLOCK_VOLUME_SIMPLE: p = xdr_inline_decode(xdr, 4); if (!p) return -EIO; b->simple.nr_sigs = be32_to_cpup(p++); if (!b->simple.nr_sigs) { dprintk("no signature\n"); return -EIO; } b->simple.len = 4 + 4; for (i = 0; i < b->simple.nr_sigs; i++) { p = xdr_inline_decode(xdr, 8 + 4); if (!p) return -EIO; p = xdr_decode_hyper(p, &b->simple.sigs[i].offset); b->simple.sigs[i].sig_len = be32_to_cpup(p++); p = xdr_inline_decode(xdr, b->simple.sigs[i].sig_len); if (!p) return -EIO; memcpy(&b->simple.sigs[i].sig, p, b->simple.sigs[i].sig_len); b->simple.len += 8 + 4 + b->simple.sigs[i].sig_len; } break; case PNFS_BLOCK_VOLUME_SLICE: p = xdr_inline_decode(xdr, 8 + 8 + 4); if (!p) return -EIO; p = xdr_decode_hyper(p, &b->slice.start); p = xdr_decode_hyper(p, &b->slice.len); b->slice.volume = be32_to_cpup(p++); break; case PNFS_BLOCK_VOLUME_CONCAT: p = xdr_inline_decode(xdr, 4); if (!p) return -EIO; b->concat.volumes_count = be32_to_cpup(p++); p = xdr_inline_decode(xdr, b->concat.volumes_count * 4); if (!p) return -EIO; for (i = 0; i < b->concat.volumes_count; i++) b->concat.volumes[i] = be32_to_cpup(p++); break; case PNFS_BLOCK_VOLUME_STRIPE: p = xdr_inline_decode(xdr, 8 + 4); if (!p) return -EIO; p = xdr_decode_hyper(p, &b->stripe.chunk_size); b->stripe.volumes_count = be32_to_cpup(p++); p = xdr_inline_decode(xdr, b->stripe.volumes_count * 4); if (!p) return -EIO; for (i = 0; i < b->stripe.volumes_count; i++) b->stripe.volumes[i] = be32_to_cpup(p++); break; default: dprintk("unknown volume type!\n"); return -EIO; } return 0; } static bool bl_map_simple(struct pnfs_block_dev *dev, u64 offset, struct pnfs_block_dev_map *map) { map->start = dev->start; map->len = dev->len; map->disk_offset = dev->disk_offset; map->bdev = dev->bdev; return true; } static bool bl_map_concat(struct pnfs_block_dev *dev, u64 offset, struct pnfs_block_dev_map *map) { int i; for (i = 0; i < dev->nr_children; i++) { struct pnfs_block_dev *child = &dev->children[i]; if (child->start > offset || child->start + child->len <= offset) continue; child->map(child, offset - child->start, map); return true; } dprintk("%s: ran off loop!\n", __func__); return false; } static bool bl_map_stripe(struct pnfs_block_dev *dev, u64 offset, struct pnfs_block_dev_map *map) { struct pnfs_block_dev *child; u64 chunk; u32 chunk_idx; u64 disk_offset; chunk = div_u64(offset, dev->chunk_size); div_u64_rem(chunk, dev->nr_children, &chunk_idx); if (chunk_idx > dev->nr_children) { dprintk("%s: invalid chunk idx %d (%lld/%lld)\n", __func__, chunk_idx, offset, dev->chunk_size); /* error, should not happen */ return false; } /* truncate offset to the beginning of the stripe */ offset = chunk * dev->chunk_size; /* disk offset of the stripe */ disk_offset = div_u64(offset, dev->nr_children); child = &dev->children[chunk_idx]; child->map(child, disk_offset, map); map->start += offset; map->disk_offset += disk_offset; map->len = dev->chunk_size; return true; } static int bl_parse_deviceid(struct nfs_server *server, struct pnfs_block_dev *d, struct pnfs_block_volume *volumes, int idx, gfp_t gfp_mask); static int bl_parse_simple(struct nfs_server *server, struct pnfs_block_dev *d, struct pnfs_block_volume *volumes, int idx, gfp_t gfp_mask) { struct pnfs_block_volume *v = &volumes[idx]; dev_t dev; dev = bl_resolve_deviceid(server, v, gfp_mask); if (!dev) return -EIO; d->bdev = blkdev_get_by_dev(dev, FMODE_READ, NULL); if (IS_ERR(d->bdev)) { printk(KERN_WARNING "pNFS: failed to open device %d:%d (%ld)\n", MAJOR(dev), MINOR(dev), PTR_ERR(d->bdev)); return PTR_ERR(d->bdev); } d->len = i_size_read(d->bdev->bd_inode); d->map = bl_map_simple; printk(KERN_INFO "pNFS: using block device %s\n", d->bdev->bd_disk->disk_name); return 0; } static int bl_parse_slice(struct nfs_server *server, struct pnfs_block_dev *d, struct pnfs_block_volume *volumes, int idx, gfp_t gfp_mask) { struct pnfs_block_volume *v = &volumes[idx]; int ret; ret = bl_parse_deviceid(server, d, volumes, v->slice.volume, gfp_mask); if (ret) return ret; d->disk_offset = v->slice.start; d->len = v->slice.len; return 0; } static int bl_parse_concat(struct nfs_server *server, struct pnfs_block_dev *d, struct pnfs_block_volume *volumes, int idx, gfp_t gfp_mask) { struct pnfs_block_volume *v = &volumes[idx]; u64 len = 0; int ret, i; d->children = kcalloc(v->concat.volumes_count, sizeof(struct pnfs_block_dev), GFP_KERNEL); if (!d->children) return -ENOMEM; for (i = 0; i < v->concat.volumes_count; i++) { ret = bl_parse_deviceid(server, &d->children[i], volumes, v->concat.volumes[i], gfp_mask); if (ret) return ret; d->nr_children++; d->children[i].start += len; len += d->children[i].len; } d->len = len; d->map = bl_map_concat; return 0; } static int bl_parse_stripe(struct nfs_server *server, struct pnfs_block_dev *d, struct pnfs_block_volume *volumes, int idx, gfp_t gfp_mask) { struct pnfs_block_volume *v = &volumes[idx]; u64 len = 0; int ret, i; d->children = kcalloc(v->stripe.volumes_count, sizeof(struct pnfs_block_dev), GFP_KERNEL); if (!d->children) return -ENOMEM; for (i = 0; i < v->stripe.volumes_count; i++) { ret = bl_parse_deviceid(server, &d->children[i], volumes, v->stripe.volumes[i], gfp_mask); if (ret) return ret; d->nr_children++; len += d->children[i].len; } d->len = len; d->chunk_size = v->stripe.chunk_size; d->map = bl_map_stripe; return 0; } static int bl_parse_deviceid(struct nfs_server *server, struct pnfs_block_dev *d, struct pnfs_block_volume *volumes, int idx, gfp_t gfp_mask) { switch (volumes[idx].type) { case PNFS_BLOCK_VOLUME_SIMPLE: return bl_parse_simple(server, d, volumes, idx, gfp_mask); case PNFS_BLOCK_VOLUME_SLICE: return bl_parse_slice(server, d, volumes, idx, gfp_mask); case PNFS_BLOCK_VOLUME_CONCAT: return bl_parse_concat(server, d, volumes, idx, gfp_mask); case PNFS_BLOCK_VOLUME_STRIPE: return bl_parse_stripe(server, d, volumes, idx, gfp_mask); default: dprintk("unsupported volume type: %d\n", volumes[idx].type); return -EIO; } } struct nfs4_deviceid_node * bl_alloc_deviceid_node(struct nfs_server *server, struct pnfs_device *pdev, gfp_t gfp_mask) { struct nfs4_deviceid_node *node = NULL; struct pnfs_block_volume *volumes; struct pnfs_block_dev *top; struct xdr_stream xdr; struct xdr_buf buf; struct page *scratch; int nr_volumes, ret, i; __be32 *p; scratch = alloc_page(gfp_mask); if (!scratch) goto out; xdr_init_decode_pages(&xdr, &buf, pdev->pages, pdev->pglen); xdr_set_scratch_buffer(&xdr, page_address(scratch), PAGE_SIZE); p = xdr_inline_decode(&xdr, sizeof(__be32)); if (!p) goto out_free_scratch; nr_volumes = be32_to_cpup(p++); volumes = kcalloc(nr_volumes, sizeof(struct pnfs_block_volume), gfp_mask); if (!volumes) goto out_free_scratch; for (i = 0; i < nr_volumes; i++) { ret = nfs4_block_decode_volume(&xdr, &volumes[i]); if (ret < 0) goto out_free_volumes; } top = kzalloc(sizeof(*top), gfp_mask); if (!top) goto out_free_volumes; ret = bl_parse_deviceid(server, top, volumes, nr_volumes - 1, gfp_mask); if (ret) { bl_free_device(top); kfree(top); goto out_free_volumes; } node = &top->node; nfs4_init_deviceid_node(node, server, &pdev->dev_id); out_free_volumes: kfree(volumes); out_free_scratch: __free_page(scratch); out: return node; }