/* * fs/ext4/extents_status.c * * Written by Yongqiang Yang <xiaoqiangnk@gmail.com> * Modified by * Allison Henderson <achender@linux.vnet.ibm.com> * Hugh Dickins <hughd@google.com> * Zheng Liu <wenqing.lz@taobao.com> * * Ext4 extents status tree core functions. */ #include <linux/rbtree.h> #include <linux/list_sort.h> #include <linux/proc_fs.h> #include <linux/seq_file.h> #include "ext4.h" #include "extents_status.h" #include <trace/events/ext4.h> /* * According to previous discussion in Ext4 Developer Workshop, we * will introduce a new structure called io tree to track all extent * status in order to solve some problems that we have met * (e.g. Reservation space warning), and provide extent-level locking. * Delay extent tree is the first step to achieve this goal. It is * original built by Yongqiang Yang. At that time it is called delay * extent tree, whose goal is only track delayed extents in memory to * simplify the implementation of fiemap and bigalloc, and introduce * lseek SEEK_DATA/SEEK_HOLE support. That is why it is still called * delay extent tree at the first commit. But for better understand * what it does, it has been rename to extent status tree. * * Step1: * Currently the first step has been done. All delayed extents are * tracked in the tree. It maintains the delayed extent when a delayed * allocation is issued, and the delayed extent is written out or * invalidated. Therefore the implementation of fiemap and bigalloc * are simplified, and SEEK_DATA/SEEK_HOLE are introduced. * * The following comment describes the implemenmtation of extent * status tree and future works. * * Step2: * In this step all extent status are tracked by extent status tree. * Thus, we can first try to lookup a block mapping in this tree before * finding it in extent tree. Hence, single extent cache can be removed * because extent status tree can do a better job. Extents in status * tree are loaded on-demand. Therefore, the extent status tree may not * contain all of the extents in a file. Meanwhile we define a shrinker * to reclaim memory from extent status tree because fragmented extent * tree will make status tree cost too much memory. written/unwritten/- * hole extents in the tree will be reclaimed by this shrinker when we * are under high memory pressure. Delayed extents will not be * reclimed because fiemap, bigalloc, and seek_data/hole need it. */ /* * Extent status tree implementation for ext4. * * * ========================================================================== * Extent status tree tracks all extent status. * * 1. Why we need to implement extent status tree? * * Without extent status tree, ext4 identifies a delayed extent by looking * up page cache, this has several deficiencies - complicated, buggy, * and inefficient code. * * FIEMAP, SEEK_HOLE/DATA, bigalloc, and writeout all need to know if a * block or a range of blocks are belonged to a delayed extent. * * Let us have a look at how they do without extent status tree. * -- FIEMAP * FIEMAP looks up page cache to identify delayed allocations from holes. * * -- SEEK_HOLE/DATA * SEEK_HOLE/DATA has the same problem as FIEMAP. * * -- bigalloc * bigalloc looks up page cache to figure out if a block is * already under delayed allocation or not to determine whether * quota reserving is needed for the cluster. * * -- writeout * Writeout looks up whole page cache to see if a buffer is * mapped, If there are not very many delayed buffers, then it is * time comsuming. * * With extent status tree implementation, FIEMAP, SEEK_HOLE/DATA, * bigalloc and writeout can figure out if a block or a range of * blocks is under delayed allocation(belonged to a delayed extent) or * not by searching the extent tree. * * * ========================================================================== * 2. Ext4 extent status tree impelmentation * * -- extent * A extent is a range of blocks which are contiguous logically and * physically. Unlike extent in extent tree, this extent in ext4 is * a in-memory struct, there is no corresponding on-disk data. There * is no limit on length of extent, so an extent can contain as many * blocks as they are contiguous logically and physically. * * -- extent status tree * Every inode has an extent status tree and all allocation blocks * are added to the tree with different status. The extent in the * tree are ordered by logical block no. * * -- operations on a extent status tree * There are three important operations on a delayed extent tree: find * next extent, adding a extent(a range of blocks) and removing a extent. * * -- race on a extent status tree * Extent status tree is protected by inode->i_es_lock. * * -- memory consumption * Fragmented extent tree will make extent status tree cost too much * memory. Hence, we will reclaim written/unwritten/hole extents from * the tree under a heavy memory pressure. * * * ========================================================================== * 3. Performance analysis * * -- overhead * 1. There is a cache extent for write access, so if writes are * not very random, adding space operaions are in O(1) time. * * -- gain * 2. Code is much simpler, more readable, more maintainable and * more efficient. * * * ========================================================================== * 4. TODO list * * -- Refactor delayed space reservation * * -- Extent-level locking */ static struct kmem_cache *ext4_es_cachep; static int __es_insert_extent(struct inode *inode, struct extent_status *newes); static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk, ext4_lblk_t end); static int __es_try_to_reclaim_extents(struct ext4_inode_info *ei, int nr_to_scan); static int __ext4_es_shrink(struct ext4_sb_info *sbi, int nr_to_scan, struct ext4_inode_info *locked_ei); int __init ext4_init_es(void) { ext4_es_cachep = kmem_cache_create("ext4_extent_status", sizeof(struct extent_status), 0, (SLAB_RECLAIM_ACCOUNT), NULL); if (ext4_es_cachep == NULL) return -ENOMEM; return 0; } void ext4_exit_es(void) { if (ext4_es_cachep) kmem_cache_destroy(ext4_es_cachep); } void ext4_es_init_tree(struct ext4_es_tree *tree) { tree->root = RB_ROOT; tree->cache_es = NULL; } #ifdef ES_DEBUG__ static void ext4_es_print_tree(struct inode *inode) { struct ext4_es_tree *tree; struct rb_node *node; printk(KERN_DEBUG "status extents for inode %lu:", inode->i_ino); tree = &EXT4_I(inode)->i_es_tree; node = rb_first(&tree->root); while (node) { struct extent_status *es; es = rb_entry(node, struct extent_status, rb_node); printk(KERN_DEBUG " [%u/%u) %llu %x", es->es_lblk, es->es_len, ext4_es_pblock(es), ext4_es_status(es)); node = rb_next(node); } printk(KERN_DEBUG "\n"); } #else #define ext4_es_print_tree(inode) #endif static inline ext4_lblk_t ext4_es_end(struct extent_status *es) { BUG_ON(es->es_lblk + es->es_len < es->es_lblk); return es->es_lblk + es->es_len - 1; } /* * search through the tree for an delayed extent with a given offset. If * it can't be found, try to find next extent. */ static struct extent_status *__es_tree_search(struct rb_root *root, ext4_lblk_t lblk) { struct rb_node *node = root->rb_node; struct extent_status *es = NULL; while (node) { es = rb_entry(node, struct extent_status, rb_node); if (lblk < es->es_lblk) node = node->rb_left; else if (lblk > ext4_es_end(es)) node = node->rb_right; else return es; } if (es && lblk < es->es_lblk) return es; if (es && lblk > ext4_es_end(es)) { node = rb_next(&es->rb_node); return node ? rb_entry(node, struct extent_status, rb_node) : NULL; } return NULL; } /* * ext4_es_find_delayed_extent_range: find the 1st delayed extent covering * @es->lblk if it exists, otherwise, the next extent after @es->lblk. * * @inode: the inode which owns delayed extents * @lblk: the offset where we start to search * @end: the offset where we stop to search * @es: delayed extent that we found */ void ext4_es_find_delayed_extent_range(struct inode *inode, ext4_lblk_t lblk, ext4_lblk_t end, struct extent_status *es) { struct ext4_es_tree *tree = NULL; struct extent_status *es1 = NULL; struct rb_node *node; BUG_ON(es == NULL); BUG_ON(end < lblk); trace_ext4_es_find_delayed_extent_range_enter(inode, lblk); read_lock(&EXT4_I(inode)->i_es_lock); tree = &EXT4_I(inode)->i_es_tree; /* find extent in cache firstly */ es->es_lblk = es->es_len = es->es_pblk = 0; if (tree->cache_es) { es1 = tree->cache_es; if (in_range(lblk, es1->es_lblk, es1->es_len)) { es_debug("%u cached by [%u/%u) %llu %x\n", lblk, es1->es_lblk, es1->es_len, ext4_es_pblock(es1), ext4_es_status(es1)); goto out; } } es1 = __es_tree_search(&tree->root, lblk); out: if (es1 && !ext4_es_is_delayed(es1)) { while ((node = rb_next(&es1->rb_node)) != NULL) { es1 = rb_entry(node, struct extent_status, rb_node); if (es1->es_lblk > end) { es1 = NULL; break; } if (ext4_es_is_delayed(es1)) break; } } if (es1 && ext4_es_is_delayed(es1)) { tree->cache_es = es1; es->es_lblk = es1->es_lblk; es->es_len = es1->es_len; es->es_pblk = es1->es_pblk; } read_unlock(&EXT4_I(inode)->i_es_lock); trace_ext4_es_find_delayed_extent_range_exit(inode, es); } static struct extent_status * ext4_es_alloc_extent(struct inode *inode, ext4_lblk_t lblk, ext4_lblk_t len, ext4_fsblk_t pblk) { struct extent_status *es; es = kmem_cache_alloc(ext4_es_cachep, GFP_ATOMIC); if (es == NULL) return NULL; es->es_lblk = lblk; es->es_len = len; es->es_pblk = pblk; /* * We don't count delayed extent because we never try to reclaim them */ if (!ext4_es_is_delayed(es)) { EXT4_I(inode)->i_es_lru_nr++; percpu_counter_inc(&EXT4_SB(inode->i_sb)-> s_es_stats.es_stats_lru_cnt); } EXT4_I(inode)->i_es_all_nr++; percpu_counter_inc(&EXT4_SB(inode->i_sb)->s_es_stats.es_stats_all_cnt); return es; } static void ext4_es_free_extent(struct inode *inode, struct extent_status *es) { EXT4_I(inode)->i_es_all_nr--; percpu_counter_dec(&EXT4_SB(inode->i_sb)->s_es_stats.es_stats_all_cnt); /* Decrease the lru counter when this es is not delayed */ if (!ext4_es_is_delayed(es)) { BUG_ON(EXT4_I(inode)->i_es_lru_nr == 0); EXT4_I(inode)->i_es_lru_nr--; percpu_counter_dec(&EXT4_SB(inode->i_sb)-> s_es_stats.es_stats_lru_cnt); } kmem_cache_free(ext4_es_cachep, es); } /* * Check whether or not two extents can be merged * Condition: * - logical block number is contiguous * - physical block number is contiguous * - status is equal */ static int ext4_es_can_be_merged(struct extent_status *es1, struct extent_status *es2) { if (ext4_es_status(es1) != ext4_es_status(es2)) return 0; if (((__u64) es1->es_len) + es2->es_len > EXT_MAX_BLOCKS) { pr_warn("ES assertion failed when merging extents. " "The sum of lengths of es1 (%d) and es2 (%d) " "is bigger than allowed file size (%d)\n", es1->es_len, es2->es_len, EXT_MAX_BLOCKS); WARN_ON(1); return 0; } if (((__u64) es1->es_lblk) + es1->es_len != es2->es_lblk) return 0; if ((ext4_es_is_written(es1) || ext4_es_is_unwritten(es1)) && (ext4_es_pblock(es1) + es1->es_len == ext4_es_pblock(es2))) return 1; if (ext4_es_is_hole(es1)) return 1; /* we need to check delayed extent is without unwritten status */ if (ext4_es_is_delayed(es1) && !ext4_es_is_unwritten(es1)) return 1; return 0; } static struct extent_status * ext4_es_try_to_merge_left(struct inode *inode, struct extent_status *es) { struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree; struct extent_status *es1; struct rb_node *node; node = rb_prev(&es->rb_node); if (!node) return es; es1 = rb_entry(node, struct extent_status, rb_node); if (ext4_es_can_be_merged(es1, es)) { es1->es_len += es->es_len; rb_erase(&es->rb_node, &tree->root); ext4_es_free_extent(inode, es); es = es1; } return es; } static struct extent_status * ext4_es_try_to_merge_right(struct inode *inode, struct extent_status *es) { struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree; struct extent_status *es1; struct rb_node *node; node = rb_next(&es->rb_node); if (!node) return es; es1 = rb_entry(node, struct extent_status, rb_node); if (ext4_es_can_be_merged(es, es1)) { es->es_len += es1->es_len; rb_erase(node, &tree->root); ext4_es_free_extent(inode, es1); } return es; } #ifdef ES_AGGRESSIVE_TEST #include "ext4_extents.h" /* Needed when ES_AGGRESSIVE_TEST is defined */ static void ext4_es_insert_extent_ext_check(struct inode *inode, struct extent_status *es) { struct ext4_ext_path *path = NULL; struct ext4_extent *ex; ext4_lblk_t ee_block; ext4_fsblk_t ee_start; unsigned short ee_len; int depth, ee_status, es_status; path = ext4_find_extent(inode, es->es_lblk, NULL, EXT4_EX_NOCACHE); if (IS_ERR(path)) return; depth = ext_depth(inode); ex = path[depth].p_ext; if (ex) { ee_block = le32_to_cpu(ex->ee_block); ee_start = ext4_ext_pblock(ex); ee_len = ext4_ext_get_actual_len(ex); ee_status = ext4_ext_is_unwritten(ex) ? 1 : 0; es_status = ext4_es_is_unwritten(es) ? 1 : 0; /* * Make sure ex and es are not overlap when we try to insert * a delayed/hole extent. */ if (!ext4_es_is_written(es) && !ext4_es_is_unwritten(es)) { if (in_range(es->es_lblk, ee_block, ee_len)) { pr_warn("ES insert assertion failed for " "inode: %lu we can find an extent " "at block [%d/%d/%llu/%c], but we " "want to add a delayed/hole extent " "[%d/%d/%llu/%x]\n", inode->i_ino, ee_block, ee_len, ee_start, ee_status ? 'u' : 'w', es->es_lblk, es->es_len, ext4_es_pblock(es), ext4_es_status(es)); } goto out; } /* * We don't check ee_block == es->es_lblk, etc. because es * might be a part of whole extent, vice versa. */ if (es->es_lblk < ee_block || ext4_es_pblock(es) != ee_start + es->es_lblk - ee_block) { pr_warn("ES insert assertion failed for inode: %lu " "ex_status [%d/%d/%llu/%c] != " "es_status [%d/%d/%llu/%c]\n", inode->i_ino, ee_block, ee_len, ee_start, ee_status ? 'u' : 'w', es->es_lblk, es->es_len, ext4_es_pblock(es), es_status ? 'u' : 'w'); goto out; } if (ee_status ^ es_status) { pr_warn("ES insert assertion failed for inode: %lu " "ex_status [%d/%d/%llu/%c] != " "es_status [%d/%d/%llu/%c]\n", inode->i_ino, ee_block, ee_len, ee_start, ee_status ? 'u' : 'w', es->es_lblk, es->es_len, ext4_es_pblock(es), es_status ? 'u' : 'w'); } } else { /* * We can't find an extent on disk. So we need to make sure * that we don't want to add an written/unwritten extent. */ if (!ext4_es_is_delayed(es) && !ext4_es_is_hole(es)) { pr_warn("ES insert assertion failed for inode: %lu " "can't find an extent at block %d but we want " "to add a written/unwritten extent " "[%d/%d/%llu/%x]\n", inode->i_ino, es->es_lblk, es->es_lblk, es->es_len, ext4_es_pblock(es), ext4_es_status(es)); } } out: ext4_ext_drop_refs(path); kfree(path); } static void ext4_es_insert_extent_ind_check(struct inode *inode, struct extent_status *es) { struct ext4_map_blocks map; int retval; /* * Here we call ext4_ind_map_blocks to lookup a block mapping because * 'Indirect' structure is defined in indirect.c. So we couldn't * access direct/indirect tree from outside. It is too dirty to define * this function in indirect.c file. */ map.m_lblk = es->es_lblk; map.m_len = es->es_len; retval = ext4_ind_map_blocks(NULL, inode, &map, 0); if (retval > 0) { if (ext4_es_is_delayed(es) || ext4_es_is_hole(es)) { /* * We want to add a delayed/hole extent but this * block has been allocated. */ pr_warn("ES insert assertion failed for inode: %lu " "We can find blocks but we want to add a " "delayed/hole extent [%d/%d/%llu/%x]\n", inode->i_ino, es->es_lblk, es->es_len, ext4_es_pblock(es), ext4_es_status(es)); return; } else if (ext4_es_is_written(es)) { if (retval != es->es_len) { pr_warn("ES insert assertion failed for " "inode: %lu retval %d != es_len %d\n", inode->i_ino, retval, es->es_len); return; } if (map.m_pblk != ext4_es_pblock(es)) { pr_warn("ES insert assertion failed for " "inode: %lu m_pblk %llu != " "es_pblk %llu\n", inode->i_ino, map.m_pblk, ext4_es_pblock(es)); return; } } else { /* * We don't need to check unwritten extent because * indirect-based file doesn't have it. */ BUG_ON(1); } } else if (retval == 0) { if (ext4_es_is_written(es)) { pr_warn("ES insert assertion failed for inode: %lu " "We can't find the block but we want to add " "a written extent [%d/%d/%llu/%x]\n", inode->i_ino, es->es_lblk, es->es_len, ext4_es_pblock(es), ext4_es_status(es)); return; } } } static inline void ext4_es_insert_extent_check(struct inode *inode, struct extent_status *es) { /* * We don't need to worry about the race condition because * caller takes i_data_sem locking. */ BUG_ON(!rwsem_is_locked(&EXT4_I(inode)->i_data_sem)); if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) ext4_es_insert_extent_ext_check(inode, es); else ext4_es_insert_extent_ind_check(inode, es); } #else static inline void ext4_es_insert_extent_check(struct inode *inode, struct extent_status *es) { } #endif static int __es_insert_extent(struct inode *inode, struct extent_status *newes) { struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree; struct rb_node **p = &tree->root.rb_node; struct rb_node *parent = NULL; struct extent_status *es; while (*p) { parent = *p; es = rb_entry(parent, struct extent_status, rb_node); if (newes->es_lblk < es->es_lblk) { if (ext4_es_can_be_merged(newes, es)) { /* * Here we can modify es_lblk directly * because it isn't overlapped. */ es->es_lblk = newes->es_lblk; es->es_len += newes->es_len; if (ext4_es_is_written(es) || ext4_es_is_unwritten(es)) ext4_es_store_pblock(es, newes->es_pblk); es = ext4_es_try_to_merge_left(inode, es); goto out; } p = &(*p)->rb_left; } else if (newes->es_lblk > ext4_es_end(es)) { if (ext4_es_can_be_merged(es, newes)) { es->es_len += newes->es_len; es = ext4_es_try_to_merge_right(inode, es); goto out; } p = &(*p)->rb_right; } else { BUG_ON(1); return -EINVAL; } } es = ext4_es_alloc_extent(inode, newes->es_lblk, newes->es_len, newes->es_pblk); if (!es) return -ENOMEM; rb_link_node(&es->rb_node, parent, p); rb_insert_color(&es->rb_node, &tree->root); out: tree->cache_es = es; return 0; } /* * ext4_es_insert_extent() adds information to an inode's extent * status tree. * * Return 0 on success, error code on failure. */ int ext4_es_insert_extent(struct inode *inode, ext4_lblk_t lblk, ext4_lblk_t len, ext4_fsblk_t pblk, unsigned int status) { struct extent_status newes; ext4_lblk_t end = lblk + len - 1; int err = 0; es_debug("add [%u/%u) %llu %x to extent status tree of inode %lu\n", lblk, len, pblk, status, inode->i_ino); if (!len) return 0; BUG_ON(end < lblk); newes.es_lblk = lblk; newes.es_len = len; ext4_es_store_pblock_status(&newes, pblk, status); trace_ext4_es_insert_extent(inode, &newes); ext4_es_insert_extent_check(inode, &newes); write_lock(&EXT4_I(inode)->i_es_lock); err = __es_remove_extent(inode, lblk, end); if (err != 0) goto error; retry: err = __es_insert_extent(inode, &newes); if (err == -ENOMEM && __ext4_es_shrink(EXT4_SB(inode->i_sb), 1, EXT4_I(inode))) goto retry; if (err == -ENOMEM && !ext4_es_is_delayed(&newes)) err = 0; error: write_unlock(&EXT4_I(inode)->i_es_lock); ext4_es_print_tree(inode); return err; } /* * ext4_es_cache_extent() inserts information into the extent status * tree if and only if there isn't information about the range in * question already. */ void ext4_es_cache_extent(struct inode *inode, ext4_lblk_t lblk, ext4_lblk_t len, ext4_fsblk_t pblk, unsigned int status) { struct extent_status *es; struct extent_status newes; ext4_lblk_t end = lblk + len - 1; newes.es_lblk = lblk; newes.es_len = len; ext4_es_store_pblock_status(&newes, pblk, status); trace_ext4_es_cache_extent(inode, &newes); if (!len) return; BUG_ON(end < lblk); write_lock(&EXT4_I(inode)->i_es_lock); es = __es_tree_search(&EXT4_I(inode)->i_es_tree.root, lblk); if (!es || es->es_lblk > end) __es_insert_extent(inode, &newes); write_unlock(&EXT4_I(inode)->i_es_lock); } /* * ext4_es_lookup_extent() looks up an extent in extent status tree. * * ext4_es_lookup_extent is called by ext4_map_blocks/ext4_da_map_blocks. * * Return: 1 on found, 0 on not */ int ext4_es_lookup_extent(struct inode *inode, ext4_lblk_t lblk, struct extent_status *es) { struct ext4_es_tree *tree; struct ext4_es_stats *stats; struct extent_status *es1 = NULL; struct rb_node *node; int found = 0; trace_ext4_es_lookup_extent_enter(inode, lblk); es_debug("lookup extent in block %u\n", lblk); tree = &EXT4_I(inode)->i_es_tree; read_lock(&EXT4_I(inode)->i_es_lock); /* find extent in cache firstly */ es->es_lblk = es->es_len = es->es_pblk = 0; if (tree->cache_es) { es1 = tree->cache_es; if (in_range(lblk, es1->es_lblk, es1->es_len)) { es_debug("%u cached by [%u/%u)\n", lblk, es1->es_lblk, es1->es_len); found = 1; goto out; } } node = tree->root.rb_node; while (node) { es1 = rb_entry(node, struct extent_status, rb_node); if (lblk < es1->es_lblk) node = node->rb_left; else if (lblk > ext4_es_end(es1)) node = node->rb_right; else { found = 1; break; } } out: stats = &EXT4_SB(inode->i_sb)->s_es_stats; if (found) { BUG_ON(!es1); es->es_lblk = es1->es_lblk; es->es_len = es1->es_len; es->es_pblk = es1->es_pblk; stats->es_stats_cache_hits++; } else { stats->es_stats_cache_misses++; } read_unlock(&EXT4_I(inode)->i_es_lock); trace_ext4_es_lookup_extent_exit(inode, es, found); return found; } static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk, ext4_lblk_t end) { struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree; struct rb_node *node; struct extent_status *es; struct extent_status orig_es; ext4_lblk_t len1, len2; ext4_fsblk_t block; int err; retry: err = 0; es = __es_tree_search(&tree->root, lblk); if (!es) goto out; if (es->es_lblk > end) goto out; /* Simply invalidate cache_es. */ tree->cache_es = NULL; orig_es.es_lblk = es->es_lblk; orig_es.es_len = es->es_len; orig_es.es_pblk = es->es_pblk; len1 = lblk > es->es_lblk ? lblk - es->es_lblk : 0; len2 = ext4_es_end(es) > end ? ext4_es_end(es) - end : 0; if (len1 > 0) es->es_len = len1; if (len2 > 0) { if (len1 > 0) { struct extent_status newes; newes.es_lblk = end + 1; newes.es_len = len2; block = 0x7FDEADBEEFULL; if (ext4_es_is_written(&orig_es) || ext4_es_is_unwritten(&orig_es)) block = ext4_es_pblock(&orig_es) + orig_es.es_len - len2; ext4_es_store_pblock_status(&newes, block, ext4_es_status(&orig_es)); err = __es_insert_extent(inode, &newes); if (err) { es->es_lblk = orig_es.es_lblk; es->es_len = orig_es.es_len; if ((err == -ENOMEM) && __ext4_es_shrink(EXT4_SB(inode->i_sb), 1, EXT4_I(inode))) goto retry; goto out; } } else { es->es_lblk = end + 1; es->es_len = len2; if (ext4_es_is_written(es) || ext4_es_is_unwritten(es)) { block = orig_es.es_pblk + orig_es.es_len - len2; ext4_es_store_pblock(es, block); } } goto out; } if (len1 > 0) { node = rb_next(&es->rb_node); if (node) es = rb_entry(node, struct extent_status, rb_node); else es = NULL; } while (es && ext4_es_end(es) <= end) { node = rb_next(&es->rb_node); rb_erase(&es->rb_node, &tree->root); ext4_es_free_extent(inode, es); if (!node) { es = NULL; break; } es = rb_entry(node, struct extent_status, rb_node); } if (es && es->es_lblk < end + 1) { ext4_lblk_t orig_len = es->es_len; len1 = ext4_es_end(es) - end; es->es_lblk = end + 1; es->es_len = len1; if (ext4_es_is_written(es) || ext4_es_is_unwritten(es)) { block = es->es_pblk + orig_len - len1; ext4_es_store_pblock(es, block); } } out: return err; } /* * ext4_es_remove_extent() removes a space from a extent status tree. * * Return 0 on success, error code on failure. */ int ext4_es_remove_extent(struct inode *inode, ext4_lblk_t lblk, ext4_lblk_t len) { ext4_lblk_t end; int err = 0; trace_ext4_es_remove_extent(inode, lblk, len); es_debug("remove [%u/%u) from extent status tree of inode %lu\n", lblk, len, inode->i_ino); if (!len) return err; end = lblk + len - 1; BUG_ON(end < lblk); write_lock(&EXT4_I(inode)->i_es_lock); err = __es_remove_extent(inode, lblk, end); write_unlock(&EXT4_I(inode)->i_es_lock); ext4_es_print_tree(inode); return err; } static int ext4_inode_touch_time_cmp(void *priv, struct list_head *a, struct list_head *b) { struct ext4_inode_info *eia, *eib; eia = list_entry(a, struct ext4_inode_info, i_es_lru); eib = list_entry(b, struct ext4_inode_info, i_es_lru); if (ext4_test_inode_state(&eia->vfs_inode, EXT4_STATE_EXT_PRECACHED) && !ext4_test_inode_state(&eib->vfs_inode, EXT4_STATE_EXT_PRECACHED)) return 1; if (!ext4_test_inode_state(&eia->vfs_inode, EXT4_STATE_EXT_PRECACHED) && ext4_test_inode_state(&eib->vfs_inode, EXT4_STATE_EXT_PRECACHED)) return -1; if (eia->i_touch_when == eib->i_touch_when) return 0; if (time_after(eia->i_touch_when, eib->i_touch_when)) return 1; else return -1; } static int __ext4_es_shrink(struct ext4_sb_info *sbi, int nr_to_scan, struct ext4_inode_info *locked_ei) { struct ext4_inode_info *ei; struct ext4_es_stats *es_stats; struct list_head *cur, *tmp; LIST_HEAD(skipped); ktime_t start_time; u64 scan_time; int nr_shrunk = 0; int retried = 0, skip_precached = 1, nr_skipped = 0; es_stats = &sbi->s_es_stats; start_time = ktime_get(); spin_lock(&sbi->s_es_lru_lock); retry: list_for_each_safe(cur, tmp, &sbi->s_es_lru) { int shrunk; /* * If we have already reclaimed all extents from extent * status tree, just stop the loop immediately. */ if (percpu_counter_read_positive( &es_stats->es_stats_lru_cnt) == 0) break; ei = list_entry(cur, struct ext4_inode_info, i_es_lru); /* * Skip the inode that is newer than the last_sorted * time. Normally we try hard to avoid shrinking * precached inodes, but we will as a last resort. */ if ((es_stats->es_stats_last_sorted < ei->i_touch_when) || (skip_precached && ext4_test_inode_state(&ei->vfs_inode, EXT4_STATE_EXT_PRECACHED))) { nr_skipped++; list_move_tail(cur, &skipped); continue; } if (ei->i_es_lru_nr == 0 || ei == locked_ei || !write_trylock(&ei->i_es_lock)) continue; shrunk = __es_try_to_reclaim_extents(ei, nr_to_scan); if (ei->i_es_lru_nr == 0) list_del_init(&ei->i_es_lru); write_unlock(&ei->i_es_lock); nr_shrunk += shrunk; nr_to_scan -= shrunk; if (nr_to_scan == 0) break; } /* Move the newer inodes into the tail of the LRU list. */ list_splice_tail(&skipped, &sbi->s_es_lru); INIT_LIST_HEAD(&skipped); /* * If we skipped any inodes, and we weren't able to make any * forward progress, sort the list and try again. */ if ((nr_shrunk == 0) && nr_skipped && !retried) { retried++; list_sort(NULL, &sbi->s_es_lru, ext4_inode_touch_time_cmp); es_stats->es_stats_last_sorted = jiffies; ei = list_first_entry(&sbi->s_es_lru, struct ext4_inode_info, i_es_lru); /* * If there are no non-precached inodes left on the * list, start releasing precached extents. */ if (ext4_test_inode_state(&ei->vfs_inode, EXT4_STATE_EXT_PRECACHED)) skip_precached = 0; goto retry; } spin_unlock(&sbi->s_es_lru_lock); if (locked_ei && nr_shrunk == 0) nr_shrunk = __es_try_to_reclaim_extents(locked_ei, nr_to_scan); scan_time = ktime_to_ns(ktime_sub(ktime_get(), start_time)); if (likely(es_stats->es_stats_scan_time)) es_stats->es_stats_scan_time = (scan_time + es_stats->es_stats_scan_time*3) / 4; else es_stats->es_stats_scan_time = scan_time; if (scan_time > es_stats->es_stats_max_scan_time) es_stats->es_stats_max_scan_time = scan_time; if (likely(es_stats->es_stats_shrunk)) es_stats->es_stats_shrunk = (nr_shrunk + es_stats->es_stats_shrunk*3) / 4; else es_stats->es_stats_shrunk = nr_shrunk; trace_ext4_es_shrink(sbi->s_sb, nr_shrunk, scan_time, skip_precached, nr_skipped, retried); return nr_shrunk; } static unsigned long ext4_es_count(struct shrinker *shrink, struct shrink_control *sc) { unsigned long nr; struct ext4_sb_info *sbi; sbi = container_of(shrink, struct ext4_sb_info, s_es_shrinker); nr = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_lru_cnt); trace_ext4_es_shrink_count(sbi->s_sb, sc->nr_to_scan, nr); return nr; } static unsigned long ext4_es_scan(struct shrinker *shrink, struct shrink_control *sc) { struct ext4_sb_info *sbi = container_of(shrink, struct ext4_sb_info, s_es_shrinker); int nr_to_scan = sc->nr_to_scan; int ret, nr_shrunk; ret = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_lru_cnt); trace_ext4_es_shrink_scan_enter(sbi->s_sb, nr_to_scan, ret); if (!nr_to_scan) return ret; nr_shrunk = __ext4_es_shrink(sbi, nr_to_scan, NULL); trace_ext4_es_shrink_scan_exit(sbi->s_sb, nr_shrunk, ret); return nr_shrunk; } static void *ext4_es_seq_shrinker_info_start(struct seq_file *seq, loff_t *pos) { return *pos ? NULL : SEQ_START_TOKEN; } static void * ext4_es_seq_shrinker_info_next(struct seq_file *seq, void *v, loff_t *pos) { return NULL; } static int ext4_es_seq_shrinker_info_show(struct seq_file *seq, void *v) { struct ext4_sb_info *sbi = seq->private; struct ext4_es_stats *es_stats = &sbi->s_es_stats; struct ext4_inode_info *ei, *max = NULL; unsigned int inode_cnt = 0; if (v != SEQ_START_TOKEN) return 0; /* here we just find an inode that has the max nr. of objects */ spin_lock(&sbi->s_es_lru_lock); list_for_each_entry(ei, &sbi->s_es_lru, i_es_lru) { inode_cnt++; if (max && max->i_es_all_nr < ei->i_es_all_nr) max = ei; else if (!max) max = ei; } spin_unlock(&sbi->s_es_lru_lock); seq_printf(seq, "stats:\n %lld objects\n %lld reclaimable objects\n", percpu_counter_sum_positive(&es_stats->es_stats_all_cnt), percpu_counter_sum_positive(&es_stats->es_stats_lru_cnt)); seq_printf(seq, " %lu/%lu cache hits/misses\n", es_stats->es_stats_cache_hits, es_stats->es_stats_cache_misses); if (es_stats->es_stats_last_sorted != 0) seq_printf(seq, " %u ms last sorted interval\n", jiffies_to_msecs(jiffies - es_stats->es_stats_last_sorted)); if (inode_cnt) seq_printf(seq, " %d inodes on lru list\n", inode_cnt); seq_printf(seq, "average:\n %llu us scan time\n", div_u64(es_stats->es_stats_scan_time, 1000)); seq_printf(seq, " %lu shrunk objects\n", es_stats->es_stats_shrunk); if (inode_cnt) seq_printf(seq, "maximum:\n %lu inode (%u objects, %u reclaimable)\n" " %llu us max scan time\n", max->vfs_inode.i_ino, max->i_es_all_nr, max->i_es_lru_nr, div_u64(es_stats->es_stats_max_scan_time, 1000)); return 0; } static void ext4_es_seq_shrinker_info_stop(struct seq_file *seq, void *v) { } static const struct seq_operations ext4_es_seq_shrinker_info_ops = { .start = ext4_es_seq_shrinker_info_start, .next = ext4_es_seq_shrinker_info_next, .stop = ext4_es_seq_shrinker_info_stop, .show = ext4_es_seq_shrinker_info_show, }; static int ext4_es_seq_shrinker_info_open(struct inode *inode, struct file *file) { int ret; ret = seq_open(file, &ext4_es_seq_shrinker_info_ops); if (!ret) { struct seq_file *m = file->private_data; m->private = PDE_DATA(inode); } return ret; } static int ext4_es_seq_shrinker_info_release(struct inode *inode, struct file *file) { return seq_release(inode, file); } static const struct file_operations ext4_es_seq_shrinker_info_fops = { .owner = THIS_MODULE, .open = ext4_es_seq_shrinker_info_open, .read = seq_read, .llseek = seq_lseek, .release = ext4_es_seq_shrinker_info_release, }; int ext4_es_register_shrinker(struct ext4_sb_info *sbi) { int err; INIT_LIST_HEAD(&sbi->s_es_lru); spin_lock_init(&sbi->s_es_lru_lock); sbi->s_es_stats.es_stats_last_sorted = 0; sbi->s_es_stats.es_stats_shrunk = 0; sbi->s_es_stats.es_stats_cache_hits = 0; sbi->s_es_stats.es_stats_cache_misses = 0; sbi->s_es_stats.es_stats_scan_time = 0; sbi->s_es_stats.es_stats_max_scan_time = 0; err = percpu_counter_init(&sbi->s_es_stats.es_stats_all_cnt, 0, GFP_KERNEL); if (err) return err; err = percpu_counter_init(&sbi->s_es_stats.es_stats_lru_cnt, 0, GFP_KERNEL); if (err) goto err1; sbi->s_es_shrinker.scan_objects = ext4_es_scan; sbi->s_es_shrinker.count_objects = ext4_es_count; sbi->s_es_shrinker.seeks = DEFAULT_SEEKS; err = register_shrinker(&sbi->s_es_shrinker); if (err) goto err2; if (sbi->s_proc) proc_create_data("es_shrinker_info", S_IRUGO, sbi->s_proc, &ext4_es_seq_shrinker_info_fops, sbi); return 0; err2: percpu_counter_destroy(&sbi->s_es_stats.es_stats_lru_cnt); err1: percpu_counter_destroy(&sbi->s_es_stats.es_stats_all_cnt); return err; } void ext4_es_unregister_shrinker(struct ext4_sb_info *sbi) { if (sbi->s_proc) remove_proc_entry("es_shrinker_info", sbi->s_proc); percpu_counter_destroy(&sbi->s_es_stats.es_stats_all_cnt); percpu_counter_destroy(&sbi->s_es_stats.es_stats_lru_cnt); unregister_shrinker(&sbi->s_es_shrinker); } void ext4_es_lru_add(struct inode *inode) { struct ext4_inode_info *ei = EXT4_I(inode); struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); ei->i_touch_when = jiffies; if (!list_empty(&ei->i_es_lru)) return; spin_lock(&sbi->s_es_lru_lock); if (list_empty(&ei->i_es_lru)) list_add_tail(&ei->i_es_lru, &sbi->s_es_lru); spin_unlock(&sbi->s_es_lru_lock); } void ext4_es_lru_del(struct inode *inode) { struct ext4_inode_info *ei = EXT4_I(inode); struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); spin_lock(&sbi->s_es_lru_lock); if (!list_empty(&ei->i_es_lru)) list_del_init(&ei->i_es_lru); spin_unlock(&sbi->s_es_lru_lock); } static int __es_try_to_reclaim_extents(struct ext4_inode_info *ei, int nr_to_scan) { struct inode *inode = &ei->vfs_inode; struct ext4_es_tree *tree = &ei->i_es_tree; struct rb_node *node; struct extent_status *es; unsigned long nr_shrunk = 0; static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL, DEFAULT_RATELIMIT_BURST); if (ei->i_es_lru_nr == 0) return 0; if (ext4_test_inode_state(inode, EXT4_STATE_EXT_PRECACHED) && __ratelimit(&_rs)) ext4_warning(inode->i_sb, "forced shrink of precached extents"); node = rb_first(&tree->root); while (node != NULL) { es = rb_entry(node, struct extent_status, rb_node); node = rb_next(&es->rb_node); /* * We can't reclaim delayed extent from status tree because * fiemap, bigallic, and seek_data/hole need to use it. */ if (!ext4_es_is_delayed(es)) { rb_erase(&es->rb_node, &tree->root); ext4_es_free_extent(inode, es); nr_shrunk++; if (--nr_to_scan == 0) break; } } tree->cache_es = NULL; return nr_shrunk; }