/* linux/drivers/usb/gadget/s3c-hsudc.c
 *
 * Copyright (c) 2010 Samsung Electronics Co., Ltd.
 *		http://www.samsung.com/
 *
 * S3C24XX USB 2.0 High-speed USB controller gadget driver
 *
 * The S3C24XX USB 2.0 high-speed USB controller supports upto 9 endpoints.
 * Each endpoint can be configured as either in or out endpoint. Endpoints
 * can be configured for Bulk or Interrupt transfer mode.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
*/

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/slab.h>
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/usb/ch9.h>
#include <linux/usb/gadget.h>
#include <linux/usb/otg.h>
#include <linux/prefetch.h>
#include <linux/platform_data/s3c-hsudc.h>
#include <linux/regulator/consumer.h>
#include <linux/pm_runtime.h>

#include <mach/regs-s3c2443-clock.h>

#define S3C_HSUDC_REG(x)	(x)

/* Non-Indexed Registers */
#define S3C_IR				S3C_HSUDC_REG(0x00) /* Index Register */
#define S3C_EIR				S3C_HSUDC_REG(0x04) /* EP Intr Status */
#define S3C_EIR_EP0			(1<<0)
#define S3C_EIER			S3C_HSUDC_REG(0x08) /* EP Intr Enable */
#define S3C_FAR				S3C_HSUDC_REG(0x0c) /* Gadget Address */
#define S3C_FNR				S3C_HSUDC_REG(0x10) /* Frame Number */
#define S3C_EDR				S3C_HSUDC_REG(0x14) /* EP Direction */
#define S3C_TR				S3C_HSUDC_REG(0x18) /* Test Register */
#define S3C_SSR				S3C_HSUDC_REG(0x1c) /* System Status */
#define S3C_SSR_DTZIEN_EN		(0xff8f)
#define S3C_SSR_ERR			(0xff80)
#define S3C_SSR_VBUSON			(1 << 8)
#define S3C_SSR_HSP			(1 << 4)
#define S3C_SSR_SDE			(1 << 3)
#define S3C_SSR_RESUME			(1 << 2)
#define S3C_SSR_SUSPEND			(1 << 1)
#define S3C_SSR_RESET			(1 << 0)
#define S3C_SCR				S3C_HSUDC_REG(0x20) /* System Control */
#define S3C_SCR_DTZIEN_EN		(1 << 14)
#define S3C_SCR_RRD_EN			(1 << 5)
#define S3C_SCR_SUS_EN			(1 << 1)
#define S3C_SCR_RST_EN			(1 << 0)
#define S3C_EP0SR			S3C_HSUDC_REG(0x24) /* EP0 Status */
#define S3C_EP0SR_EP0_LWO		(1 << 6)
#define S3C_EP0SR_STALL			(1 << 4)
#define S3C_EP0SR_TX_SUCCESS		(1 << 1)
#define S3C_EP0SR_RX_SUCCESS		(1 << 0)
#define S3C_EP0CR			S3C_HSUDC_REG(0x28) /* EP0 Control */
#define S3C_BR(_x)			S3C_HSUDC_REG(0x60 + (_x * 4))

/* Indexed Registers */
#define S3C_ESR				S3C_HSUDC_REG(0x2c) /* EPn Status */
#define S3C_ESR_FLUSH			(1 << 6)
#define S3C_ESR_STALL			(1 << 5)
#define S3C_ESR_LWO			(1 << 4)
#define S3C_ESR_PSIF_ONE		(1 << 2)
#define S3C_ESR_PSIF_TWO		(2 << 2)
#define S3C_ESR_TX_SUCCESS		(1 << 1)
#define S3C_ESR_RX_SUCCESS		(1 << 0)
#define S3C_ECR				S3C_HSUDC_REG(0x30) /* EPn Control */
#define S3C_ECR_DUEN			(1 << 7)
#define S3C_ECR_FLUSH			(1 << 6)
#define S3C_ECR_STALL			(1 << 1)
#define S3C_ECR_IEMS			(1 << 0)
#define S3C_BRCR			S3C_HSUDC_REG(0x34) /* Read Count */
#define S3C_BWCR			S3C_HSUDC_REG(0x38) /* Write Count */
#define S3C_MPR				S3C_HSUDC_REG(0x3c) /* Max Pkt Size */

#define WAIT_FOR_SETUP			(0)
#define DATA_STATE_XMIT			(1)
#define DATA_STATE_RECV			(2)

static const char * const s3c_hsudc_supply_names[] = {
	"vdda",		/* analog phy supply, 3.3V */
	"vddi",		/* digital phy supply, 1.2V */
	"vddosc",	/* oscillator supply, 1.8V - 3.3V */
};

/**
 * struct s3c_hsudc_ep - Endpoint representation used by driver.
 * @ep: USB gadget layer representation of device endpoint.
 * @name: Endpoint name (as required by ep autoconfiguration).
 * @dev: Reference to the device controller to which this EP belongs.
 * @desc: Endpoint descriptor obtained from the gadget driver.
 * @queue: Transfer request queue for the endpoint.
 * @stopped: Maintains state of endpoint, set if EP is halted.
 * @bEndpointAddress: EP address (including direction bit).
 * @fifo: Base address of EP FIFO.
 */
struct s3c_hsudc_ep {
	struct usb_ep ep;
	char name[20];
	struct s3c_hsudc *dev;
	struct list_head queue;
	u8 stopped;
	u8 wedge;
	u8 bEndpointAddress;
	void __iomem *fifo;
};

/**
 * struct s3c_hsudc_req - Driver encapsulation of USB gadget transfer request.
 * @req: Reference to USB gadget transfer request.
 * @queue: Used for inserting this request to the endpoint request queue.
 */
struct s3c_hsudc_req {
	struct usb_request req;
	struct list_head queue;
};

/**
 * struct s3c_hsudc - Driver's abstraction of the device controller.
 * @gadget: Instance of usb_gadget which is referenced by gadget driver.
 * @driver: Reference to currenty active gadget driver.
 * @dev: The device reference used by probe function.
 * @lock: Lock to synchronize the usage of Endpoints (EP's are indexed).
 * @regs: Remapped base address of controller's register space.
 * irq: IRQ number used by the controller.
 * uclk: Reference to the controller clock.
 * ep0state: Current state of EP0.
 * ep: List of endpoints supported by the controller.
 */
struct s3c_hsudc {
	struct usb_gadget gadget;
	struct usb_gadget_driver *driver;
	struct device *dev;
	struct s3c24xx_hsudc_platdata *pd;
	struct usb_phy *transceiver;
	struct regulator_bulk_data supplies[ARRAY_SIZE(s3c_hsudc_supply_names)];
	spinlock_t lock;
	void __iomem *regs;
	int irq;
	struct clk *uclk;
	int ep0state;
	struct s3c_hsudc_ep ep[];
};

#define ep_maxpacket(_ep)	((_ep)->ep.maxpacket)
#define ep_is_in(_ep)		((_ep)->bEndpointAddress & USB_DIR_IN)
#define ep_index(_ep)		((_ep)->bEndpointAddress & \
					USB_ENDPOINT_NUMBER_MASK)

static const char driver_name[] = "s3c-udc";
static const char ep0name[] = "ep0-control";

static inline struct s3c_hsudc_req *our_req(struct usb_request *req)
{
	return container_of(req, struct s3c_hsudc_req, req);
}

static inline struct s3c_hsudc_ep *our_ep(struct usb_ep *ep)
{
	return container_of(ep, struct s3c_hsudc_ep, ep);
}

static inline struct s3c_hsudc *to_hsudc(struct usb_gadget *gadget)
{
	return container_of(gadget, struct s3c_hsudc, gadget);
}

static inline void set_index(struct s3c_hsudc *hsudc, int ep_addr)
{
	ep_addr &= USB_ENDPOINT_NUMBER_MASK;
	writel(ep_addr, hsudc->regs + S3C_IR);
}

static inline void __orr32(void __iomem *ptr, u32 val)
{
	writel(readl(ptr) | val, ptr);
}

static void s3c_hsudc_init_phy(void)
{
	u32 cfg;

	cfg = readl(S3C2443_PWRCFG) | S3C2443_PWRCFG_USBPHY;
	writel(cfg, S3C2443_PWRCFG);

	cfg = readl(S3C2443_URSTCON);
	cfg |= (S3C2443_URSTCON_FUNCRST | S3C2443_URSTCON_PHYRST);
	writel(cfg, S3C2443_URSTCON);
	mdelay(1);

	cfg = readl(S3C2443_URSTCON);
	cfg &= ~(S3C2443_URSTCON_FUNCRST | S3C2443_URSTCON_PHYRST);
	writel(cfg, S3C2443_URSTCON);

	cfg = readl(S3C2443_PHYCTRL);
	cfg &= ~(S3C2443_PHYCTRL_CLKSEL | S3C2443_PHYCTRL_DSPORT);
	cfg |= (S3C2443_PHYCTRL_EXTCLK | S3C2443_PHYCTRL_PLLSEL);
	writel(cfg, S3C2443_PHYCTRL);

	cfg = readl(S3C2443_PHYPWR);
	cfg &= ~(S3C2443_PHYPWR_FSUSPEND | S3C2443_PHYPWR_PLL_PWRDN |
		S3C2443_PHYPWR_XO_ON | S3C2443_PHYPWR_PLL_REFCLK |
		S3C2443_PHYPWR_ANALOG_PD);
	cfg |= S3C2443_PHYPWR_COMMON_ON;
	writel(cfg, S3C2443_PHYPWR);

	cfg = readl(S3C2443_UCLKCON);
	cfg |= (S3C2443_UCLKCON_DETECT_VBUS | S3C2443_UCLKCON_FUNC_CLKEN |
		S3C2443_UCLKCON_TCLKEN);
	writel(cfg, S3C2443_UCLKCON);
}

static void s3c_hsudc_uninit_phy(void)
{
	u32 cfg;

	cfg = readl(S3C2443_PWRCFG) & ~S3C2443_PWRCFG_USBPHY;
	writel(cfg, S3C2443_PWRCFG);

	writel(S3C2443_PHYPWR_FSUSPEND, S3C2443_PHYPWR);

	cfg = readl(S3C2443_UCLKCON) & ~S3C2443_UCLKCON_FUNC_CLKEN;
	writel(cfg, S3C2443_UCLKCON);
}

/**
 * s3c_hsudc_complete_request - Complete a transfer request.
 * @hsep: Endpoint to which the request belongs.
 * @hsreq: Transfer request to be completed.
 * @status: Transfer completion status for the transfer request.
 */
static void s3c_hsudc_complete_request(struct s3c_hsudc_ep *hsep,
				struct s3c_hsudc_req *hsreq, int status)
{
	unsigned int stopped = hsep->stopped;
	struct s3c_hsudc *hsudc = hsep->dev;

	list_del_init(&hsreq->queue);
	hsreq->req.status = status;

	if (!ep_index(hsep)) {
		hsudc->ep0state = WAIT_FOR_SETUP;
		hsep->bEndpointAddress &= ~USB_DIR_IN;
	}

	hsep->stopped = 1;
	spin_unlock(&hsudc->lock);
	usb_gadget_giveback_request(&hsep->ep, &hsreq->req);
	spin_lock(&hsudc->lock);
	hsep->stopped = stopped;
}

/**
 * s3c_hsudc_nuke_ep - Terminate all requests queued for a endpoint.
 * @hsep: Endpoint for which queued requests have to be terminated.
 * @status: Transfer completion status for the transfer request.
 */
static void s3c_hsudc_nuke_ep(struct s3c_hsudc_ep *hsep, int status)
{
	struct s3c_hsudc_req *hsreq;

	while (!list_empty(&hsep->queue)) {
		hsreq = list_entry(hsep->queue.next,
				struct s3c_hsudc_req, queue);
		s3c_hsudc_complete_request(hsep, hsreq, status);
	}
}

/**
 * s3c_hsudc_stop_activity - Stop activity on all endpoints.
 * @hsudc: Device controller for which EP activity is to be stopped.
 *
 * All the endpoints are stopped and any pending transfer requests if any on
 * the endpoint are terminated.
 */
static void s3c_hsudc_stop_activity(struct s3c_hsudc *hsudc)
{
	struct s3c_hsudc_ep *hsep;
	int epnum;

	hsudc->gadget.speed = USB_SPEED_UNKNOWN;

	for (epnum = 0; epnum < hsudc->pd->epnum; epnum++) {
		hsep = &hsudc->ep[epnum];
		hsep->stopped = 1;
		s3c_hsudc_nuke_ep(hsep, -ESHUTDOWN);
	}
}

/**
 * s3c_hsudc_read_setup_pkt - Read the received setup packet from EP0 fifo.
 * @hsudc: Device controller from which setup packet is to be read.
 * @buf: The buffer into which the setup packet is read.
 *
 * The setup packet received in the EP0 fifo is read and stored into a
 * given buffer address.
 */

static void s3c_hsudc_read_setup_pkt(struct s3c_hsudc *hsudc, u16 *buf)
{
	int count;

	count = readl(hsudc->regs + S3C_BRCR);
	while (count--)
		*buf++ = (u16)readl(hsudc->regs + S3C_BR(0));

	writel(S3C_EP0SR_RX_SUCCESS, hsudc->regs + S3C_EP0SR);
}

/**
 * s3c_hsudc_write_fifo - Write next chunk of transfer data to EP fifo.
 * @hsep: Endpoint to which the data is to be written.
 * @hsreq: Transfer request from which the next chunk of data is written.
 *
 * Write the next chunk of data from a transfer request to the endpoint FIFO.
 * If the transfer request completes, 1 is returned, otherwise 0 is returned.
 */
static int s3c_hsudc_write_fifo(struct s3c_hsudc_ep *hsep,
				struct s3c_hsudc_req *hsreq)
{
	u16 *buf;
	u32 max = ep_maxpacket(hsep);
	u32 count, length;
	bool is_last;
	void __iomem *fifo = hsep->fifo;

	buf = hsreq->req.buf + hsreq->req.actual;
	prefetch(buf);

	length = hsreq->req.length - hsreq->req.actual;
	length = min(length, max);
	hsreq->req.actual += length;

	writel(length, hsep->dev->regs + S3C_BWCR);
	for (count = 0; count < length; count += 2)
		writel(*buf++, fifo);

	if (count != max) {
		is_last = true;
	} else {
		if (hsreq->req.length != hsreq->req.actual || hsreq->req.zero)
			is_last = false;
		else
			is_last = true;
	}

	if (is_last) {
		s3c_hsudc_complete_request(hsep, hsreq, 0);
		return 1;
	}

	return 0;
}

/**
 * s3c_hsudc_read_fifo - Read the next chunk of data from EP fifo.
 * @hsep: Endpoint from which the data is to be read.
 * @hsreq: Transfer request to which the next chunk of data read is written.
 *
 * Read the next chunk of data from the endpoint FIFO and a write it to the
 * transfer request buffer. If the transfer request completes, 1 is returned,
 * otherwise 0 is returned.
 */
static int s3c_hsudc_read_fifo(struct s3c_hsudc_ep *hsep,
				struct s3c_hsudc_req *hsreq)
{
	struct s3c_hsudc *hsudc = hsep->dev;
	u32 csr, offset;
	u16 *buf, word;
	u32 buflen, rcnt, rlen;
	void __iomem *fifo = hsep->fifo;
	u32 is_short = 0;

	offset = (ep_index(hsep)) ? S3C_ESR : S3C_EP0SR;
	csr = readl(hsudc->regs + offset);
	if (!(csr & S3C_ESR_RX_SUCCESS))
		return -EINVAL;

	buf = hsreq->req.buf + hsreq->req.actual;
	prefetchw(buf);
	buflen = hsreq->req.length - hsreq->req.actual;

	rcnt = readl(hsudc->regs + S3C_BRCR);
	rlen = (csr & S3C_ESR_LWO) ? (rcnt * 2 - 1) : (rcnt * 2);

	hsreq->req.actual += min(rlen, buflen);
	is_short = (rlen < hsep->ep.maxpacket);

	while (rcnt-- != 0) {
		word = (u16)readl(fifo);
		if (buflen) {
			*buf++ = word;
			buflen--;
		} else {
			hsreq->req.status = -EOVERFLOW;
		}
	}

	writel(S3C_ESR_RX_SUCCESS, hsudc->regs + offset);

	if (is_short || hsreq->req.actual == hsreq->req.length) {
		s3c_hsudc_complete_request(hsep, hsreq, 0);
		return 1;
	}

	return 0;
}

/**
 * s3c_hsudc_epin_intr - Handle in-endpoint interrupt.
 * @hsudc - Device controller for which the interrupt is to be handled.
 * @ep_idx - Endpoint number on which an interrupt is pending.
 *
 * Handles interrupt for a in-endpoint. The interrupts that are handled are
 * stall and data transmit complete interrupt.
 */
static void s3c_hsudc_epin_intr(struct s3c_hsudc *hsudc, u32 ep_idx)
{
	struct s3c_hsudc_ep *hsep = &hsudc->ep[ep_idx];
	struct s3c_hsudc_req *hsreq;
	u32 csr;

	csr = readl(hsudc->regs + S3C_ESR);
	if (csr & S3C_ESR_STALL) {
		writel(S3C_ESR_STALL, hsudc->regs + S3C_ESR);
		return;
	}

	if (csr & S3C_ESR_TX_SUCCESS) {
		writel(S3C_ESR_TX_SUCCESS, hsudc->regs + S3C_ESR);
		if (list_empty(&hsep->queue))
			return;

		hsreq = list_entry(hsep->queue.next,
				struct s3c_hsudc_req, queue);
		if ((s3c_hsudc_write_fifo(hsep, hsreq) == 0) &&
				(csr & S3C_ESR_PSIF_TWO))
			s3c_hsudc_write_fifo(hsep, hsreq);
	}
}

/**
 * s3c_hsudc_epout_intr - Handle out-endpoint interrupt.
 * @hsudc - Device controller for which the interrupt is to be handled.
 * @ep_idx - Endpoint number on which an interrupt is pending.
 *
 * Handles interrupt for a out-endpoint. The interrupts that are handled are
 * stall, flush and data ready interrupt.
 */
static void s3c_hsudc_epout_intr(struct s3c_hsudc *hsudc, u32 ep_idx)
{
	struct s3c_hsudc_ep *hsep = &hsudc->ep[ep_idx];
	struct s3c_hsudc_req *hsreq;
	u32 csr;

	csr = readl(hsudc->regs + S3C_ESR);
	if (csr & S3C_ESR_STALL) {
		writel(S3C_ESR_STALL, hsudc->regs + S3C_ESR);
		return;
	}

	if (csr & S3C_ESR_FLUSH) {
		__orr32(hsudc->regs + S3C_ECR, S3C_ECR_FLUSH);
		return;
	}

	if (csr & S3C_ESR_RX_SUCCESS) {
		if (list_empty(&hsep->queue))
			return;

		hsreq = list_entry(hsep->queue.next,
				struct s3c_hsudc_req, queue);
		if (((s3c_hsudc_read_fifo(hsep, hsreq)) == 0) &&
				(csr & S3C_ESR_PSIF_TWO))
			s3c_hsudc_read_fifo(hsep, hsreq);
	}
}

/** s3c_hsudc_set_halt - Set or clear a endpoint halt.
 * @_ep: Endpoint on which halt has to be set or cleared.
 * @value: 1 for setting halt on endpoint, 0 to clear halt.
 *
 * Set or clear endpoint halt. If halt is set, the endpoint is stopped.
 * If halt is cleared, for in-endpoints, if there are any pending
 * transfer requests, transfers are started.
 */
static int s3c_hsudc_set_halt(struct usb_ep *_ep, int value)
{
	struct s3c_hsudc_ep *hsep = our_ep(_ep);
	struct s3c_hsudc *hsudc = hsep->dev;
	struct s3c_hsudc_req *hsreq;
	unsigned long irqflags;
	u32 ecr;
	u32 offset;

	if (value && ep_is_in(hsep) && !list_empty(&hsep->queue))
		return -EAGAIN;

	spin_lock_irqsave(&hsudc->lock, irqflags);
	set_index(hsudc, ep_index(hsep));
	offset = (ep_index(hsep)) ? S3C_ECR : S3C_EP0CR;
	ecr = readl(hsudc->regs + offset);

	if (value) {
		ecr |= S3C_ECR_STALL;
		if (ep_index(hsep))
			ecr |= S3C_ECR_FLUSH;
		hsep->stopped = 1;
	} else {
		ecr &= ~S3C_ECR_STALL;
		hsep->stopped = hsep->wedge = 0;
	}
	writel(ecr, hsudc->regs + offset);

	if (ep_is_in(hsep) && !list_empty(&hsep->queue) && !value) {
		hsreq = list_entry(hsep->queue.next,
			struct s3c_hsudc_req, queue);
		if (hsreq)
			s3c_hsudc_write_fifo(hsep, hsreq);
	}

	spin_unlock_irqrestore(&hsudc->lock, irqflags);
	return 0;
}

/** s3c_hsudc_set_wedge - Sets the halt feature with the clear requests ignored
 * @_ep: Endpoint on which wedge has to be set.
 *
 * Sets the halt feature with the clear requests ignored.
 */
static int s3c_hsudc_set_wedge(struct usb_ep *_ep)
{
	struct s3c_hsudc_ep *hsep = our_ep(_ep);

	if (!hsep)
		return -EINVAL;

	hsep->wedge = 1;
	return usb_ep_set_halt(_ep);
}

/** s3c_hsudc_handle_reqfeat - Handle set feature or clear feature requests.
 * @_ep: Device controller on which the set/clear feature needs to be handled.
 * @ctrl: Control request as received on the endpoint 0.
 *
 * Handle set feature or clear feature control requests on the control endpoint.
 */
static int s3c_hsudc_handle_reqfeat(struct s3c_hsudc *hsudc,
					struct usb_ctrlrequest *ctrl)
{
	struct s3c_hsudc_ep *hsep;
	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
	u8 ep_num = ctrl->wIndex & USB_ENDPOINT_NUMBER_MASK;

	if (ctrl->bRequestType == USB_RECIP_ENDPOINT) {
		hsep = &hsudc->ep[ep_num];
		switch (le16_to_cpu(ctrl->wValue)) {
		case USB_ENDPOINT_HALT:
			if (set || (!set && !hsep->wedge))
				s3c_hsudc_set_halt(&hsep->ep, set);
			return 0;
		}
	}

	return -ENOENT;
}

/**
 * s3c_hsudc_process_req_status - Handle get status control request.
 * @hsudc: Device controller on which get status request has be handled.
 * @ctrl: Control request as received on the endpoint 0.
 *
 * Handle get status control request received on control endpoint.
 */
static void s3c_hsudc_process_req_status(struct s3c_hsudc *hsudc,
					struct usb_ctrlrequest *ctrl)
{
	struct s3c_hsudc_ep *hsep0 = &hsudc->ep[0];
	struct s3c_hsudc_req hsreq;
	struct s3c_hsudc_ep *hsep;
	__le16 reply;
	u8 epnum;

	switch (ctrl->bRequestType & USB_RECIP_MASK) {
	case USB_RECIP_DEVICE:
		reply = cpu_to_le16(0);
		break;

	case USB_RECIP_INTERFACE:
		reply = cpu_to_le16(0);
		break;

	case USB_RECIP_ENDPOINT:
		epnum = le16_to_cpu(ctrl->wIndex) & USB_ENDPOINT_NUMBER_MASK;
		hsep = &hsudc->ep[epnum];
		reply = cpu_to_le16(hsep->stopped ? 1 : 0);
		break;
	}

	INIT_LIST_HEAD(&hsreq.queue);
	hsreq.req.length = 2;
	hsreq.req.buf = &reply;
	hsreq.req.actual = 0;
	hsreq.req.complete = NULL;
	s3c_hsudc_write_fifo(hsep0, &hsreq);
}

/**
 * s3c_hsudc_process_setup - Process control request received on endpoint 0.
 * @hsudc: Device controller on which control request has been received.
 *
 * Read the control request received on endpoint 0, decode it and handle
 * the request.
 */
static void s3c_hsudc_process_setup(struct s3c_hsudc *hsudc)
{
	struct s3c_hsudc_ep *hsep = &hsudc->ep[0];
	struct usb_ctrlrequest ctrl = {0};
	int ret;

	s3c_hsudc_nuke_ep(hsep, -EPROTO);
	s3c_hsudc_read_setup_pkt(hsudc, (u16 *)&ctrl);

	if (ctrl.bRequestType & USB_DIR_IN) {
		hsep->bEndpointAddress |= USB_DIR_IN;
		hsudc->ep0state = DATA_STATE_XMIT;
	} else {
		hsep->bEndpointAddress &= ~USB_DIR_IN;
		hsudc->ep0state = DATA_STATE_RECV;
	}

	switch (ctrl.bRequest) {
	case USB_REQ_SET_ADDRESS:
		if (ctrl.bRequestType != (USB_TYPE_STANDARD | USB_RECIP_DEVICE))
			break;
		hsudc->ep0state = WAIT_FOR_SETUP;
		return;

	case USB_REQ_GET_STATUS:
		if ((ctrl.bRequestType & USB_TYPE_MASK) != USB_TYPE_STANDARD)
			break;
		s3c_hsudc_process_req_status(hsudc, &ctrl);
		return;

	case USB_REQ_SET_FEATURE:
	case USB_REQ_CLEAR_FEATURE:
		if ((ctrl.bRequestType & USB_TYPE_MASK) != USB_TYPE_STANDARD)
			break;
		s3c_hsudc_handle_reqfeat(hsudc, &ctrl);
		hsudc->ep0state = WAIT_FOR_SETUP;
		return;
	}

	if (hsudc->driver) {
		spin_unlock(&hsudc->lock);
		ret = hsudc->driver->setup(&hsudc->gadget, &ctrl);
		spin_lock(&hsudc->lock);

		if (ctrl.bRequest == USB_REQ_SET_CONFIGURATION) {
			hsep->bEndpointAddress &= ~USB_DIR_IN;
			hsudc->ep0state = WAIT_FOR_SETUP;
		}

		if (ret < 0) {
			dev_err(hsudc->dev, "setup failed, returned %d\n",
						ret);
			s3c_hsudc_set_halt(&hsep->ep, 1);
			hsudc->ep0state = WAIT_FOR_SETUP;
			hsep->bEndpointAddress &= ~USB_DIR_IN;
		}
	}
}

/** s3c_hsudc_handle_ep0_intr - Handle endpoint 0 interrupt.
 * @hsudc: Device controller on which endpoint 0 interrupt has occured.
 *
 * Handle endpoint 0 interrupt when it occurs. EP0 interrupt could occur
 * when a stall handshake is sent to host or data is sent/received on
 * endpoint 0.
 */
static void s3c_hsudc_handle_ep0_intr(struct s3c_hsudc *hsudc)
{
	struct s3c_hsudc_ep *hsep = &hsudc->ep[0];
	struct s3c_hsudc_req *hsreq;
	u32 csr = readl(hsudc->regs + S3C_EP0SR);
	u32 ecr;

	if (csr & S3C_EP0SR_STALL) {
		ecr = readl(hsudc->regs + S3C_EP0CR);
		ecr &= ~(S3C_ECR_STALL | S3C_ECR_FLUSH);
		writel(ecr, hsudc->regs + S3C_EP0CR);

		writel(S3C_EP0SR_STALL, hsudc->regs + S3C_EP0SR);
		hsep->stopped = 0;

		s3c_hsudc_nuke_ep(hsep, -ECONNABORTED);
		hsudc->ep0state = WAIT_FOR_SETUP;
		hsep->bEndpointAddress &= ~USB_DIR_IN;
		return;
	}

	if (csr & S3C_EP0SR_TX_SUCCESS) {
		writel(S3C_EP0SR_TX_SUCCESS, hsudc->regs + S3C_EP0SR);
		if (ep_is_in(hsep)) {
			if (list_empty(&hsep->queue))
				return;

			hsreq = list_entry(hsep->queue.next,
					struct s3c_hsudc_req, queue);
			s3c_hsudc_write_fifo(hsep, hsreq);
		}
	}

	if (csr & S3C_EP0SR_RX_SUCCESS) {
		if (hsudc->ep0state == WAIT_FOR_SETUP)
			s3c_hsudc_process_setup(hsudc);
		else {
			if (!ep_is_in(hsep)) {
				if (list_empty(&hsep->queue))
					return;
				hsreq = list_entry(hsep->queue.next,
					struct s3c_hsudc_req, queue);
				s3c_hsudc_read_fifo(hsep, hsreq);
			}
		}
	}
}

/**
 * s3c_hsudc_ep_enable - Enable a endpoint.
 * @_ep: The endpoint to be enabled.
 * @desc: Endpoint descriptor.
 *
 * Enables a endpoint when called from the gadget driver. Endpoint stall if
 * any is cleared, transfer type is configured and endpoint interrupt is
 * enabled.
 */
static int s3c_hsudc_ep_enable(struct usb_ep *_ep,
				const struct usb_endpoint_descriptor *desc)
{
	struct s3c_hsudc_ep *hsep;
	struct s3c_hsudc *hsudc;
	unsigned long flags;
	u32 ecr = 0;

	hsep = our_ep(_ep);
	if (!_ep || !desc || _ep->name == ep0name
		|| desc->bDescriptorType != USB_DT_ENDPOINT
		|| hsep->bEndpointAddress != desc->bEndpointAddress
		|| ep_maxpacket(hsep) < usb_endpoint_maxp(desc))
		return -EINVAL;

	if ((desc->bmAttributes == USB_ENDPOINT_XFER_BULK
		&& usb_endpoint_maxp(desc) != ep_maxpacket(hsep))
		|| !desc->wMaxPacketSize)
		return -ERANGE;

	hsudc = hsep->dev;
	if (!hsudc->driver || hsudc->gadget.speed == USB_SPEED_UNKNOWN)
		return -ESHUTDOWN;

	spin_lock_irqsave(&hsudc->lock, flags);

	set_index(hsudc, hsep->bEndpointAddress);
	ecr |= ((usb_endpoint_xfer_int(desc)) ? S3C_ECR_IEMS : S3C_ECR_DUEN);
	writel(ecr, hsudc->regs + S3C_ECR);

	hsep->stopped = hsep->wedge = 0;
	hsep->ep.desc = desc;
	hsep->ep.maxpacket = usb_endpoint_maxp(desc);

	s3c_hsudc_set_halt(_ep, 0);
	__set_bit(ep_index(hsep), hsudc->regs + S3C_EIER);

	spin_unlock_irqrestore(&hsudc->lock, flags);
	return 0;
}

/**
 * s3c_hsudc_ep_disable - Disable a endpoint.
 * @_ep: The endpoint to be disabled.
 * @desc: Endpoint descriptor.
 *
 * Disables a endpoint when called from the gadget driver.
 */
static int s3c_hsudc_ep_disable(struct usb_ep *_ep)
{
	struct s3c_hsudc_ep *hsep = our_ep(_ep);
	struct s3c_hsudc *hsudc = hsep->dev;
	unsigned long flags;

	if (!_ep || !hsep->ep.desc)
		return -EINVAL;

	spin_lock_irqsave(&hsudc->lock, flags);

	set_index(hsudc, hsep->bEndpointAddress);
	__clear_bit(ep_index(hsep), hsudc->regs + S3C_EIER);

	s3c_hsudc_nuke_ep(hsep, -ESHUTDOWN);

	hsep->ep.desc = NULL;
	hsep->stopped = 1;

	spin_unlock_irqrestore(&hsudc->lock, flags);
	return 0;
}

/**
 * s3c_hsudc_alloc_request - Allocate a new request.
 * @_ep: Endpoint for which request is allocated (not used).
 * @gfp_flags: Flags used for the allocation.
 *
 * Allocates a single transfer request structure when called from gadget driver.
 */
static struct usb_request *s3c_hsudc_alloc_request(struct usb_ep *_ep,
						gfp_t gfp_flags)
{
	struct s3c_hsudc_req *hsreq;

	hsreq = kzalloc(sizeof(*hsreq), gfp_flags);
	if (!hsreq)
		return NULL;

	INIT_LIST_HEAD(&hsreq->queue);
	return &hsreq->req;
}

/**
 * s3c_hsudc_free_request - Deallocate a request.
 * @ep: Endpoint for which request is deallocated (not used).
 * @_req: Request to be deallocated.
 *
 * Allocates a single transfer request structure when called from gadget driver.
 */
static void s3c_hsudc_free_request(struct usb_ep *ep, struct usb_request *_req)
{
	struct s3c_hsudc_req *hsreq;

	hsreq = our_req(_req);
	WARN_ON(!list_empty(&hsreq->queue));
	kfree(hsreq);
}

/**
 * s3c_hsudc_queue - Queue a transfer request for the endpoint.
 * @_ep: Endpoint for which the request is queued.
 * @_req: Request to be queued.
 * @gfp_flags: Not used.
 *
 * Start or enqueue a request for a endpoint when called from gadget driver.
 */
static int s3c_hsudc_queue(struct usb_ep *_ep, struct usb_request *_req,
			gfp_t gfp_flags)
{
	struct s3c_hsudc_req *hsreq;
	struct s3c_hsudc_ep *hsep;
	struct s3c_hsudc *hsudc;
	unsigned long flags;
	u32 offset;
	u32 csr;

	hsreq = our_req(_req);
	if ((!_req || !_req->complete || !_req->buf ||
		!list_empty(&hsreq->queue)))
		return -EINVAL;

	hsep = our_ep(_ep);
	hsudc = hsep->dev;
	if (!hsudc->driver || hsudc->gadget.speed == USB_SPEED_UNKNOWN)
		return -ESHUTDOWN;

	spin_lock_irqsave(&hsudc->lock, flags);
	set_index(hsudc, hsep->bEndpointAddress);

	_req->status = -EINPROGRESS;
	_req->actual = 0;

	if (!ep_index(hsep) && _req->length == 0) {
		hsudc->ep0state = WAIT_FOR_SETUP;
		s3c_hsudc_complete_request(hsep, hsreq, 0);
		spin_unlock_irqrestore(&hsudc->lock, flags);
		return 0;
	}

	if (list_empty(&hsep->queue) && !hsep->stopped) {
		offset = (ep_index(hsep)) ? S3C_ESR : S3C_EP0SR;
		if (ep_is_in(hsep)) {
			csr = readl(hsudc->regs + offset);
			if (!(csr & S3C_ESR_TX_SUCCESS) &&
				(s3c_hsudc_write_fifo(hsep, hsreq) == 1))
				hsreq = NULL;
		} else {
			csr = readl(hsudc->regs + offset);
			if ((csr & S3C_ESR_RX_SUCCESS)
				   && (s3c_hsudc_read_fifo(hsep, hsreq) == 1))
				hsreq = NULL;
		}
	}

	if (hsreq)
		list_add_tail(&hsreq->queue, &hsep->queue);

	spin_unlock_irqrestore(&hsudc->lock, flags);
	return 0;
}

/**
 * s3c_hsudc_dequeue - Dequeue a transfer request from an endpoint.
 * @_ep: Endpoint from which the request is dequeued.
 * @_req: Request to be dequeued.
 *
 * Dequeue a request from a endpoint when called from gadget driver.
 */
static int s3c_hsudc_dequeue(struct usb_ep *_ep, struct usb_request *_req)
{
	struct s3c_hsudc_ep *hsep = our_ep(_ep);
	struct s3c_hsudc *hsudc = hsep->dev;
	struct s3c_hsudc_req *hsreq;
	unsigned long flags;

	hsep = our_ep(_ep);
	if (!_ep || hsep->ep.name == ep0name)
		return -EINVAL;

	spin_lock_irqsave(&hsudc->lock, flags);

	list_for_each_entry(hsreq, &hsep->queue, queue) {
		if (&hsreq->req == _req)
			break;
	}
	if (&hsreq->req != _req) {
		spin_unlock_irqrestore(&hsudc->lock, flags);
		return -EINVAL;
	}

	set_index(hsudc, hsep->bEndpointAddress);
	s3c_hsudc_complete_request(hsep, hsreq, -ECONNRESET);

	spin_unlock_irqrestore(&hsudc->lock, flags);
	return 0;
}

static struct usb_ep_ops s3c_hsudc_ep_ops = {
	.enable = s3c_hsudc_ep_enable,
	.disable = s3c_hsudc_ep_disable,
	.alloc_request = s3c_hsudc_alloc_request,
	.free_request = s3c_hsudc_free_request,
	.queue = s3c_hsudc_queue,
	.dequeue = s3c_hsudc_dequeue,
	.set_halt = s3c_hsudc_set_halt,
	.set_wedge = s3c_hsudc_set_wedge,
};

/**
 * s3c_hsudc_initep - Initialize a endpoint to default state.
 * @hsudc - Reference to the device controller.
 * @hsep - Endpoint to be initialized.
 * @epnum - Address to be assigned to the endpoint.
 *
 * Initialize a endpoint with default configuration.
 */
static void s3c_hsudc_initep(struct s3c_hsudc *hsudc,
				struct s3c_hsudc_ep *hsep, int epnum)
{
	char *dir;

	if ((epnum % 2) == 0) {
		dir = "out";
	} else {
		dir = "in";
		hsep->bEndpointAddress = USB_DIR_IN;
	}

	hsep->bEndpointAddress |= epnum;
	if (epnum)
		snprintf(hsep->name, sizeof(hsep->name), "ep%d%s", epnum, dir);
	else
		snprintf(hsep->name, sizeof(hsep->name), "%s", ep0name);

	INIT_LIST_HEAD(&hsep->queue);
	INIT_LIST_HEAD(&hsep->ep.ep_list);
	if (epnum)
		list_add_tail(&hsep->ep.ep_list, &hsudc->gadget.ep_list);

	hsep->dev = hsudc;
	hsep->ep.name = hsep->name;
	usb_ep_set_maxpacket_limit(&hsep->ep, epnum ? 512 : 64);
	hsep->ep.ops = &s3c_hsudc_ep_ops;
	hsep->fifo = hsudc->regs + S3C_BR(epnum);
	hsep->ep.desc = NULL;
	hsep->stopped = 0;
	hsep->wedge = 0;

	set_index(hsudc, epnum);
	writel(hsep->ep.maxpacket, hsudc->regs + S3C_MPR);
}

/**
 * s3c_hsudc_setup_ep - Configure all endpoints to default state.
 * @hsudc: Reference to device controller.
 *
 * Configures all endpoints to default state.
 */
static void s3c_hsudc_setup_ep(struct s3c_hsudc *hsudc)
{
	int epnum;

	hsudc->ep0state = WAIT_FOR_SETUP;
	INIT_LIST_HEAD(&hsudc->gadget.ep_list);
	for (epnum = 0; epnum < hsudc->pd->epnum; epnum++)
		s3c_hsudc_initep(hsudc, &hsudc->ep[epnum], epnum);
}

/**
 * s3c_hsudc_reconfig - Reconfigure the device controller to default state.
 * @hsudc: Reference to device controller.
 *
 * Reconfigures the device controller registers to a default state.
 */
static void s3c_hsudc_reconfig(struct s3c_hsudc *hsudc)
{
	writel(0xAA, hsudc->regs + S3C_EDR);
	writel(1, hsudc->regs + S3C_EIER);
	writel(0, hsudc->regs + S3C_TR);
	writel(S3C_SCR_DTZIEN_EN | S3C_SCR_RRD_EN | S3C_SCR_SUS_EN |
			S3C_SCR_RST_EN, hsudc->regs + S3C_SCR);
	writel(0, hsudc->regs + S3C_EP0CR);

	s3c_hsudc_setup_ep(hsudc);
}

/**
 * s3c_hsudc_irq - Interrupt handler for device controller.
 * @irq: Not used.
 * @_dev: Reference to the device controller.
 *
 * Interrupt handler for the device controller. This handler handles controller
 * interrupts and endpoint interrupts.
 */
static irqreturn_t s3c_hsudc_irq(int irq, void *_dev)
{
	struct s3c_hsudc *hsudc = _dev;
	struct s3c_hsudc_ep *hsep;
	u32 ep_intr;
	u32 sys_status;
	u32 ep_idx;

	spin_lock(&hsudc->lock);

	sys_status = readl(hsudc->regs + S3C_SSR);
	ep_intr = readl(hsudc->regs + S3C_EIR) & 0x3FF;

	if (!ep_intr && !(sys_status & S3C_SSR_DTZIEN_EN)) {
		spin_unlock(&hsudc->lock);
		return IRQ_HANDLED;
	}

	if (sys_status) {
		if (sys_status & S3C_SSR_VBUSON)
			writel(S3C_SSR_VBUSON, hsudc->regs + S3C_SSR);

		if (sys_status & S3C_SSR_ERR)
			writel(S3C_SSR_ERR, hsudc->regs + S3C_SSR);

		if (sys_status & S3C_SSR_SDE) {
			writel(S3C_SSR_SDE, hsudc->regs + S3C_SSR);
			hsudc->gadget.speed = (sys_status & S3C_SSR_HSP) ?
				USB_SPEED_HIGH : USB_SPEED_FULL;
		}

		if (sys_status & S3C_SSR_SUSPEND) {
			writel(S3C_SSR_SUSPEND, hsudc->regs + S3C_SSR);
			if (hsudc->gadget.speed != USB_SPEED_UNKNOWN
				&& hsudc->driver && hsudc->driver->suspend)
				hsudc->driver->suspend(&hsudc->gadget);
		}

		if (sys_status & S3C_SSR_RESUME) {
			writel(S3C_SSR_RESUME, hsudc->regs + S3C_SSR);
			if (hsudc->gadget.speed != USB_SPEED_UNKNOWN
				&& hsudc->driver && hsudc->driver->resume)
				hsudc->driver->resume(&hsudc->gadget);
		}

		if (sys_status & S3C_SSR_RESET) {
			writel(S3C_SSR_RESET, hsudc->regs + S3C_SSR);
			for (ep_idx = 0; ep_idx < hsudc->pd->epnum; ep_idx++) {
				hsep = &hsudc->ep[ep_idx];
				hsep->stopped = 1;
				s3c_hsudc_nuke_ep(hsep, -ECONNRESET);
			}
			s3c_hsudc_reconfig(hsudc);
			hsudc->ep0state = WAIT_FOR_SETUP;
		}
	}

	if (ep_intr & S3C_EIR_EP0) {
		writel(S3C_EIR_EP0, hsudc->regs + S3C_EIR);
		set_index(hsudc, 0);
		s3c_hsudc_handle_ep0_intr(hsudc);
	}

	ep_intr >>= 1;
	ep_idx = 1;
	while (ep_intr) {
		if (ep_intr & 1)  {
			hsep = &hsudc->ep[ep_idx];
			set_index(hsudc, ep_idx);
			writel(1 << ep_idx, hsudc->regs + S3C_EIR);
			if (ep_is_in(hsep))
				s3c_hsudc_epin_intr(hsudc, ep_idx);
			else
				s3c_hsudc_epout_intr(hsudc, ep_idx);
		}
		ep_intr >>= 1;
		ep_idx++;
	}

	spin_unlock(&hsudc->lock);
	return IRQ_HANDLED;
}

static int s3c_hsudc_start(struct usb_gadget *gadget,
		struct usb_gadget_driver *driver)
{
	struct s3c_hsudc *hsudc = to_hsudc(gadget);
	int ret;

	if (!driver
		|| driver->max_speed < USB_SPEED_FULL
		|| !driver->setup)
		return -EINVAL;

	if (!hsudc)
		return -ENODEV;

	if (hsudc->driver)
		return -EBUSY;

	hsudc->driver = driver;

	ret = regulator_bulk_enable(ARRAY_SIZE(hsudc->supplies),
				    hsudc->supplies);
	if (ret != 0) {
		dev_err(hsudc->dev, "failed to enable supplies: %d\n", ret);
		goto err_supplies;
	}

	/* connect to bus through transceiver */
	if (!IS_ERR_OR_NULL(hsudc->transceiver)) {
		ret = otg_set_peripheral(hsudc->transceiver->otg,
					&hsudc->gadget);
		if (ret) {
			dev_err(hsudc->dev, "%s: can't bind to transceiver\n",
					hsudc->gadget.name);
			goto err_otg;
		}
	}

	enable_irq(hsudc->irq);
	dev_info(hsudc->dev, "bound driver %s\n", driver->driver.name);

	s3c_hsudc_reconfig(hsudc);

	pm_runtime_get_sync(hsudc->dev);

	s3c_hsudc_init_phy();
	if (hsudc->pd->gpio_init)
		hsudc->pd->gpio_init();

	return 0;
err_otg:
	regulator_bulk_disable(ARRAY_SIZE(hsudc->supplies), hsudc->supplies);
err_supplies:
	hsudc->driver = NULL;
	return ret;
}

static int s3c_hsudc_stop(struct usb_gadget *gadget,
		struct usb_gadget_driver *driver)
{
	struct s3c_hsudc *hsudc = to_hsudc(gadget);
	unsigned long flags;

	if (!hsudc)
		return -ENODEV;

	if (!driver || driver != hsudc->driver)
		return -EINVAL;

	spin_lock_irqsave(&hsudc->lock, flags);
	hsudc->driver = NULL;
	hsudc->gadget.speed = USB_SPEED_UNKNOWN;
	s3c_hsudc_uninit_phy();

	pm_runtime_put(hsudc->dev);

	if (hsudc->pd->gpio_uninit)
		hsudc->pd->gpio_uninit();
	s3c_hsudc_stop_activity(hsudc);
	spin_unlock_irqrestore(&hsudc->lock, flags);

	if (!IS_ERR_OR_NULL(hsudc->transceiver))
		(void) otg_set_peripheral(hsudc->transceiver->otg, NULL);

	disable_irq(hsudc->irq);

	regulator_bulk_disable(ARRAY_SIZE(hsudc->supplies), hsudc->supplies);

	dev_info(hsudc->dev, "unregistered gadget driver '%s'\n",
			driver->driver.name);
	return 0;
}

static inline u32 s3c_hsudc_read_frameno(struct s3c_hsudc *hsudc)
{
	return readl(hsudc->regs + S3C_FNR) & 0x3FF;
}

static int s3c_hsudc_gadget_getframe(struct usb_gadget *gadget)
{
	return s3c_hsudc_read_frameno(to_hsudc(gadget));
}

static int s3c_hsudc_vbus_draw(struct usb_gadget *gadget, unsigned mA)
{
	struct s3c_hsudc *hsudc = to_hsudc(gadget);

	if (!hsudc)
		return -ENODEV;

	if (!IS_ERR_OR_NULL(hsudc->transceiver))
		return usb_phy_set_power(hsudc->transceiver, mA);

	return -EOPNOTSUPP;
}

static const struct usb_gadget_ops s3c_hsudc_gadget_ops = {
	.get_frame	= s3c_hsudc_gadget_getframe,
	.udc_start	= s3c_hsudc_start,
	.udc_stop	= s3c_hsudc_stop,
	.vbus_draw	= s3c_hsudc_vbus_draw,
};

static int s3c_hsudc_probe(struct platform_device *pdev)
{
	struct device *dev = &pdev->dev;
	struct resource *res;
	struct s3c_hsudc *hsudc;
	struct s3c24xx_hsudc_platdata *pd = dev_get_platdata(&pdev->dev);
	int ret, i;

	hsudc = devm_kzalloc(&pdev->dev, sizeof(struct s3c_hsudc) +
			sizeof(struct s3c_hsudc_ep) * pd->epnum,
			GFP_KERNEL);
	if (!hsudc) {
		dev_err(dev, "cannot allocate memory\n");
		return -ENOMEM;
	}

	platform_set_drvdata(pdev, dev);
	hsudc->dev = dev;
	hsudc->pd = dev_get_platdata(&pdev->dev);

	hsudc->transceiver = usb_get_phy(USB_PHY_TYPE_USB2);

	for (i = 0; i < ARRAY_SIZE(hsudc->supplies); i++)
		hsudc->supplies[i].supply = s3c_hsudc_supply_names[i];

	ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(hsudc->supplies),
				 hsudc->supplies);
	if (ret != 0) {
		dev_err(dev, "failed to request supplies: %d\n", ret);
		goto err_supplies;
	}

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);

	hsudc->regs = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(hsudc->regs)) {
		ret = PTR_ERR(hsudc->regs);
		goto err_res;
	}

	spin_lock_init(&hsudc->lock);

	hsudc->gadget.max_speed = USB_SPEED_HIGH;
	hsudc->gadget.ops = &s3c_hsudc_gadget_ops;
	hsudc->gadget.name = dev_name(dev);
	hsudc->gadget.ep0 = &hsudc->ep[0].ep;
	hsudc->gadget.is_otg = 0;
	hsudc->gadget.is_a_peripheral = 0;
	hsudc->gadget.speed = USB_SPEED_UNKNOWN;

	s3c_hsudc_setup_ep(hsudc);

	ret = platform_get_irq(pdev, 0);
	if (ret < 0) {
		dev_err(dev, "unable to obtain IRQ number\n");
		goto err_res;
	}
	hsudc->irq = ret;

	ret = devm_request_irq(&pdev->dev, hsudc->irq, s3c_hsudc_irq, 0,
				driver_name, hsudc);
	if (ret < 0) {
		dev_err(dev, "irq request failed\n");
		goto err_res;
	}

	hsudc->uclk = devm_clk_get(&pdev->dev, "usb-device");
	if (IS_ERR(hsudc->uclk)) {
		dev_err(dev, "failed to find usb-device clock source\n");
		ret = PTR_ERR(hsudc->uclk);
		goto err_res;
	}
	clk_enable(hsudc->uclk);

	local_irq_disable();

	disable_irq(hsudc->irq);
	local_irq_enable();

	ret = usb_add_gadget_udc(&pdev->dev, &hsudc->gadget);
	if (ret)
		goto err_add_udc;

	pm_runtime_enable(dev);

	return 0;
err_add_udc:
	clk_disable(hsudc->uclk);
err_res:
	if (!IS_ERR_OR_NULL(hsudc->transceiver))
		usb_put_phy(hsudc->transceiver);

err_supplies:
	return ret;
}

static struct platform_driver s3c_hsudc_driver = {
	.driver		= {
		.owner	= THIS_MODULE,
		.name	= "s3c-hsudc",
	},
	.probe		= s3c_hsudc_probe,
};

module_platform_driver(s3c_hsudc_driver);

MODULE_DESCRIPTION("Samsung S3C24XX USB high-speed controller driver");
MODULE_AUTHOR("Thomas Abraham <thomas.ab@samsung.com>");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:s3c-hsudc");