/* * f_audio.c -- USB Audio class function driver * * Copyright (C) 2008 Bryan Wu <cooloney@kernel.org> * Copyright (C) 2008 Analog Devices, Inc * * Enter bugs at http://blackfin.uclinux.org/ * * Licensed under the GPL-2 or later. */ #include <linux/slab.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/device.h> #include <linux/atomic.h> #include "u_uac1.h" static int generic_set_cmd(struct usb_audio_control *con, u8 cmd, int value); static int generic_get_cmd(struct usb_audio_control *con, u8 cmd); /* * DESCRIPTORS ... most are static, but strings and full * configuration descriptors are built on demand. */ /* * We have two interfaces- AudioControl and AudioStreaming * TODO: only supcard playback currently */ #define F_AUDIO_AC_INTERFACE 0 #define F_AUDIO_AS_INTERFACE 1 #define F_AUDIO_NUM_INTERFACES 2 /* B.3.1 Standard AC Interface Descriptor */ static struct usb_interface_descriptor ac_interface_desc = { .bLength = USB_DT_INTERFACE_SIZE, .bDescriptorType = USB_DT_INTERFACE, .bNumEndpoints = 0, .bInterfaceClass = USB_CLASS_AUDIO, .bInterfaceSubClass = USB_SUBCLASS_AUDIOCONTROL, }; DECLARE_UAC_AC_HEADER_DESCRIPTOR(2); #define UAC_DT_AC_HEADER_LENGTH UAC_DT_AC_HEADER_SIZE(F_AUDIO_NUM_INTERFACES) /* 1 input terminal, 1 output terminal and 1 feature unit */ #define UAC_DT_TOTAL_LENGTH (UAC_DT_AC_HEADER_LENGTH + UAC_DT_INPUT_TERMINAL_SIZE \ + UAC_DT_OUTPUT_TERMINAL_SIZE + UAC_DT_FEATURE_UNIT_SIZE(0)) /* B.3.2 Class-Specific AC Interface Descriptor */ static struct uac1_ac_header_descriptor_2 ac_header_desc = { .bLength = UAC_DT_AC_HEADER_LENGTH, .bDescriptorType = USB_DT_CS_INTERFACE, .bDescriptorSubtype = UAC_HEADER, .bcdADC = __constant_cpu_to_le16(0x0100), .wTotalLength = __constant_cpu_to_le16(UAC_DT_TOTAL_LENGTH), .bInCollection = F_AUDIO_NUM_INTERFACES, .baInterfaceNr = { [0] = F_AUDIO_AC_INTERFACE, [1] = F_AUDIO_AS_INTERFACE, } }; #define INPUT_TERMINAL_ID 1 static struct uac_input_terminal_descriptor input_terminal_desc = { .bLength = UAC_DT_INPUT_TERMINAL_SIZE, .bDescriptorType = USB_DT_CS_INTERFACE, .bDescriptorSubtype = UAC_INPUT_TERMINAL, .bTerminalID = INPUT_TERMINAL_ID, .wTerminalType = UAC_TERMINAL_STREAMING, .bAssocTerminal = 0, .wChannelConfig = 0x3, }; DECLARE_UAC_FEATURE_UNIT_DESCRIPTOR(0); #define FEATURE_UNIT_ID 2 static struct uac_feature_unit_descriptor_0 feature_unit_desc = { .bLength = UAC_DT_FEATURE_UNIT_SIZE(0), .bDescriptorType = USB_DT_CS_INTERFACE, .bDescriptorSubtype = UAC_FEATURE_UNIT, .bUnitID = FEATURE_UNIT_ID, .bSourceID = INPUT_TERMINAL_ID, .bControlSize = 2, .bmaControls[0] = (UAC_FU_MUTE | UAC_FU_VOLUME), }; static struct usb_audio_control mute_control = { .list = LIST_HEAD_INIT(mute_control.list), .name = "Mute Control", .type = UAC_FU_MUTE, /* Todo: add real Mute control code */ .set = generic_set_cmd, .get = generic_get_cmd, }; static struct usb_audio_control volume_control = { .list = LIST_HEAD_INIT(volume_control.list), .name = "Volume Control", .type = UAC_FU_VOLUME, /* Todo: add real Volume control code */ .set = generic_set_cmd, .get = generic_get_cmd, }; static struct usb_audio_control_selector feature_unit = { .list = LIST_HEAD_INIT(feature_unit.list), .id = FEATURE_UNIT_ID, .name = "Mute & Volume Control", .type = UAC_FEATURE_UNIT, .desc = (struct usb_descriptor_header *)&feature_unit_desc, }; #define OUTPUT_TERMINAL_ID 3 static struct uac1_output_terminal_descriptor output_terminal_desc = { .bLength = UAC_DT_OUTPUT_TERMINAL_SIZE, .bDescriptorType = USB_DT_CS_INTERFACE, .bDescriptorSubtype = UAC_OUTPUT_TERMINAL, .bTerminalID = OUTPUT_TERMINAL_ID, .wTerminalType = UAC_OUTPUT_TERMINAL_SPEAKER, .bAssocTerminal = FEATURE_UNIT_ID, .bSourceID = FEATURE_UNIT_ID, }; /* B.4.1 Standard AS Interface Descriptor */ static struct usb_interface_descriptor as_interface_alt_0_desc = { .bLength = USB_DT_INTERFACE_SIZE, .bDescriptorType = USB_DT_INTERFACE, .bAlternateSetting = 0, .bNumEndpoints = 0, .bInterfaceClass = USB_CLASS_AUDIO, .bInterfaceSubClass = USB_SUBCLASS_AUDIOSTREAMING, }; static struct usb_interface_descriptor as_interface_alt_1_desc = { .bLength = USB_DT_INTERFACE_SIZE, .bDescriptorType = USB_DT_INTERFACE, .bAlternateSetting = 1, .bNumEndpoints = 1, .bInterfaceClass = USB_CLASS_AUDIO, .bInterfaceSubClass = USB_SUBCLASS_AUDIOSTREAMING, }; /* B.4.2 Class-Specific AS Interface Descriptor */ static struct uac1_as_header_descriptor as_header_desc = { .bLength = UAC_DT_AS_HEADER_SIZE, .bDescriptorType = USB_DT_CS_INTERFACE, .bDescriptorSubtype = UAC_AS_GENERAL, .bTerminalLink = INPUT_TERMINAL_ID, .bDelay = 1, .wFormatTag = UAC_FORMAT_TYPE_I_PCM, }; DECLARE_UAC_FORMAT_TYPE_I_DISCRETE_DESC(1); static struct uac_format_type_i_discrete_descriptor_1 as_type_i_desc = { .bLength = UAC_FORMAT_TYPE_I_DISCRETE_DESC_SIZE(1), .bDescriptorType = USB_DT_CS_INTERFACE, .bDescriptorSubtype = UAC_FORMAT_TYPE, .bFormatType = UAC_FORMAT_TYPE_I, .bSubframeSize = 2, .bBitResolution = 16, .bSamFreqType = 1, }; /* Standard ISO OUT Endpoint Descriptor */ static struct usb_endpoint_descriptor as_out_ep_desc = { .bLength = USB_DT_ENDPOINT_AUDIO_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = USB_DIR_OUT, .bmAttributes = USB_ENDPOINT_SYNC_ADAPTIVE | USB_ENDPOINT_XFER_ISOC, .wMaxPacketSize = cpu_to_le16(UAC1_OUT_EP_MAX_PACKET_SIZE), .bInterval = 4, }; /* Class-specific AS ISO OUT Endpoint Descriptor */ static struct uac_iso_endpoint_descriptor as_iso_out_desc = { .bLength = UAC_ISO_ENDPOINT_DESC_SIZE, .bDescriptorType = USB_DT_CS_ENDPOINT, .bDescriptorSubtype = UAC_EP_GENERAL, .bmAttributes = 1, .bLockDelayUnits = 1, .wLockDelay = __constant_cpu_to_le16(1), }; static struct usb_descriptor_header *f_audio_desc[] = { (struct usb_descriptor_header *)&ac_interface_desc, (struct usb_descriptor_header *)&ac_header_desc, (struct usb_descriptor_header *)&input_terminal_desc, (struct usb_descriptor_header *)&output_terminal_desc, (struct usb_descriptor_header *)&feature_unit_desc, (struct usb_descriptor_header *)&as_interface_alt_0_desc, (struct usb_descriptor_header *)&as_interface_alt_1_desc, (struct usb_descriptor_header *)&as_header_desc, (struct usb_descriptor_header *)&as_type_i_desc, (struct usb_descriptor_header *)&as_out_ep_desc, (struct usb_descriptor_header *)&as_iso_out_desc, NULL, }; enum { STR_AC_IF, STR_INPUT_TERMINAL, STR_INPUT_TERMINAL_CH_NAMES, STR_FEAT_DESC_0, STR_OUTPUT_TERMINAL, STR_AS_IF_ALT0, STR_AS_IF_ALT1, }; static struct usb_string strings_uac1[] = { [STR_AC_IF].s = "AC Interface", [STR_INPUT_TERMINAL].s = "Input terminal", [STR_INPUT_TERMINAL_CH_NAMES].s = "Channels", [STR_FEAT_DESC_0].s = "Volume control & mute", [STR_OUTPUT_TERMINAL].s = "Output terminal", [STR_AS_IF_ALT0].s = "AS Interface", [STR_AS_IF_ALT1].s = "AS Interface", { }, }; static struct usb_gadget_strings str_uac1 = { .language = 0x0409, /* en-us */ .strings = strings_uac1, }; static struct usb_gadget_strings *uac1_strings[] = { &str_uac1, NULL, }; /* * This function is an ALSA sound card following USB Audio Class Spec 1.0. */ /*-------------------------------------------------------------------------*/ struct f_audio_buf { u8 *buf; int actual; struct list_head list; }; static struct f_audio_buf *f_audio_buffer_alloc(int buf_size) { struct f_audio_buf *copy_buf; copy_buf = kzalloc(sizeof *copy_buf, GFP_ATOMIC); if (!copy_buf) return ERR_PTR(-ENOMEM); copy_buf->buf = kzalloc(buf_size, GFP_ATOMIC); if (!copy_buf->buf) { kfree(copy_buf); return ERR_PTR(-ENOMEM); } return copy_buf; } static void f_audio_buffer_free(struct f_audio_buf *audio_buf) { kfree(audio_buf->buf); kfree(audio_buf); } /*-------------------------------------------------------------------------*/ struct f_audio { struct gaudio card; /* endpoints handle full and/or high speeds */ struct usb_ep *out_ep; spinlock_t lock; struct f_audio_buf *copy_buf; struct work_struct playback_work; struct list_head play_queue; /* Control Set command */ struct list_head cs; u8 set_cmd; struct usb_audio_control *set_con; }; static inline struct f_audio *func_to_audio(struct usb_function *f) { return container_of(f, struct f_audio, card.func); } /*-------------------------------------------------------------------------*/ static void f_audio_playback_work(struct work_struct *data) { struct f_audio *audio = container_of(data, struct f_audio, playback_work); struct f_audio_buf *play_buf; spin_lock_irq(&audio->lock); if (list_empty(&audio->play_queue)) { spin_unlock_irq(&audio->lock); return; } play_buf = list_first_entry(&audio->play_queue, struct f_audio_buf, list); list_del(&play_buf->list); spin_unlock_irq(&audio->lock); u_audio_playback(&audio->card, play_buf->buf, play_buf->actual); f_audio_buffer_free(play_buf); } static int f_audio_out_ep_complete(struct usb_ep *ep, struct usb_request *req) { struct f_audio *audio = req->context; struct usb_composite_dev *cdev = audio->card.func.config->cdev; struct f_audio_buf *copy_buf = audio->copy_buf; struct f_uac1_opts *opts; int audio_buf_size; int err; opts = container_of(audio->card.func.fi, struct f_uac1_opts, func_inst); audio_buf_size = opts->audio_buf_size; if (!copy_buf) return -EINVAL; /* Copy buffer is full, add it to the play_queue */ if (audio_buf_size - copy_buf->actual < req->actual) { list_add_tail(©_buf->list, &audio->play_queue); schedule_work(&audio->playback_work); copy_buf = f_audio_buffer_alloc(audio_buf_size); if (IS_ERR(copy_buf)) return -ENOMEM; } memcpy(copy_buf->buf + copy_buf->actual, req->buf, req->actual); copy_buf->actual += req->actual; audio->copy_buf = copy_buf; err = usb_ep_queue(ep, req, GFP_ATOMIC); if (err) ERROR(cdev, "%s queue req: %d\n", ep->name, err); return 0; } static void f_audio_complete(struct usb_ep *ep, struct usb_request *req) { struct f_audio *audio = req->context; int status = req->status; u32 data = 0; struct usb_ep *out_ep = audio->out_ep; switch (status) { case 0: /* normal completion? */ if (ep == out_ep) f_audio_out_ep_complete(ep, req); else if (audio->set_con) { memcpy(&data, req->buf, req->length); audio->set_con->set(audio->set_con, audio->set_cmd, le16_to_cpu(data)); audio->set_con = NULL; } break; default: break; } } static int audio_set_intf_req(struct usb_function *f, const struct usb_ctrlrequest *ctrl) { struct f_audio *audio = func_to_audio(f); struct usb_composite_dev *cdev = f->config->cdev; struct usb_request *req = cdev->req; u8 id = ((le16_to_cpu(ctrl->wIndex) >> 8) & 0xFF); u16 len = le16_to_cpu(ctrl->wLength); u16 w_value = le16_to_cpu(ctrl->wValue); u8 con_sel = (w_value >> 8) & 0xFF; u8 cmd = (ctrl->bRequest & 0x0F); struct usb_audio_control_selector *cs; struct usb_audio_control *con; DBG(cdev, "bRequest 0x%x, w_value 0x%04x, len %d, entity %d\n", ctrl->bRequest, w_value, len, id); list_for_each_entry(cs, &audio->cs, list) { if (cs->id == id) { list_for_each_entry(con, &cs->control, list) { if (con->type == con_sel) { audio->set_con = con; break; } } break; } } audio->set_cmd = cmd; req->context = audio; req->complete = f_audio_complete; return len; } static int audio_get_intf_req(struct usb_function *f, const struct usb_ctrlrequest *ctrl) { struct f_audio *audio = func_to_audio(f); struct usb_composite_dev *cdev = f->config->cdev; struct usb_request *req = cdev->req; int value = -EOPNOTSUPP; u8 id = ((le16_to_cpu(ctrl->wIndex) >> 8) & 0xFF); u16 len = le16_to_cpu(ctrl->wLength); u16 w_value = le16_to_cpu(ctrl->wValue); u8 con_sel = (w_value >> 8) & 0xFF; u8 cmd = (ctrl->bRequest & 0x0F); struct usb_audio_control_selector *cs; struct usb_audio_control *con; DBG(cdev, "bRequest 0x%x, w_value 0x%04x, len %d, entity %d\n", ctrl->bRequest, w_value, len, id); list_for_each_entry(cs, &audio->cs, list) { if (cs->id == id) { list_for_each_entry(con, &cs->control, list) { if (con->type == con_sel && con->get) { value = con->get(con, cmd); break; } } break; } } req->context = audio; req->complete = f_audio_complete; len = min_t(size_t, sizeof(value), len); memcpy(req->buf, &value, len); return len; } static int audio_set_endpoint_req(struct usb_function *f, const struct usb_ctrlrequest *ctrl) { struct usb_composite_dev *cdev = f->config->cdev; int value = -EOPNOTSUPP; u16 ep = le16_to_cpu(ctrl->wIndex); u16 len = le16_to_cpu(ctrl->wLength); u16 w_value = le16_to_cpu(ctrl->wValue); DBG(cdev, "bRequest 0x%x, w_value 0x%04x, len %d, endpoint %d\n", ctrl->bRequest, w_value, len, ep); switch (ctrl->bRequest) { case UAC_SET_CUR: value = len; break; case UAC_SET_MIN: break; case UAC_SET_MAX: break; case UAC_SET_RES: break; case UAC_SET_MEM: break; default: break; } return value; } static int audio_get_endpoint_req(struct usb_function *f, const struct usb_ctrlrequest *ctrl) { struct usb_composite_dev *cdev = f->config->cdev; int value = -EOPNOTSUPP; u8 ep = ((le16_to_cpu(ctrl->wIndex) >> 8) & 0xFF); u16 len = le16_to_cpu(ctrl->wLength); u16 w_value = le16_to_cpu(ctrl->wValue); DBG(cdev, "bRequest 0x%x, w_value 0x%04x, len %d, endpoint %d\n", ctrl->bRequest, w_value, len, ep); switch (ctrl->bRequest) { case UAC_GET_CUR: case UAC_GET_MIN: case UAC_GET_MAX: case UAC_GET_RES: value = len; break; case UAC_GET_MEM: break; default: break; } return value; } static int f_audio_setup(struct usb_function *f, const struct usb_ctrlrequest *ctrl) { struct usb_composite_dev *cdev = f->config->cdev; struct usb_request *req = cdev->req; int value = -EOPNOTSUPP; u16 w_index = le16_to_cpu(ctrl->wIndex); u16 w_value = le16_to_cpu(ctrl->wValue); u16 w_length = le16_to_cpu(ctrl->wLength); /* composite driver infrastructure handles everything; interface * activation uses set_alt(). */ switch (ctrl->bRequestType) { case USB_DIR_OUT | USB_TYPE_CLASS | USB_RECIP_INTERFACE: value = audio_set_intf_req(f, ctrl); break; case USB_DIR_IN | USB_TYPE_CLASS | USB_RECIP_INTERFACE: value = audio_get_intf_req(f, ctrl); break; case USB_DIR_OUT | USB_TYPE_CLASS | USB_RECIP_ENDPOINT: value = audio_set_endpoint_req(f, ctrl); break; case USB_DIR_IN | USB_TYPE_CLASS | USB_RECIP_ENDPOINT: value = audio_get_endpoint_req(f, ctrl); break; default: ERROR(cdev, "invalid control req%02x.%02x v%04x i%04x l%d\n", ctrl->bRequestType, ctrl->bRequest, w_value, w_index, w_length); } /* respond with data transfer or status phase? */ if (value >= 0) { DBG(cdev, "audio req%02x.%02x v%04x i%04x l%d\n", ctrl->bRequestType, ctrl->bRequest, w_value, w_index, w_length); req->zero = 0; req->length = value; value = usb_ep_queue(cdev->gadget->ep0, req, GFP_ATOMIC); if (value < 0) ERROR(cdev, "audio response on err %d\n", value); } /* device either stalls (value < 0) or reports success */ return value; } static int f_audio_set_alt(struct usb_function *f, unsigned intf, unsigned alt) { struct f_audio *audio = func_to_audio(f); struct usb_composite_dev *cdev = f->config->cdev; struct usb_ep *out_ep = audio->out_ep; struct usb_request *req; struct f_uac1_opts *opts; int req_buf_size, req_count, audio_buf_size; int i = 0, err = 0; DBG(cdev, "intf %d, alt %d\n", intf, alt); opts = container_of(f->fi, struct f_uac1_opts, func_inst); req_buf_size = opts->req_buf_size; req_count = opts->req_count; audio_buf_size = opts->audio_buf_size; if (intf == 1) { if (alt == 1) { usb_ep_enable(out_ep); out_ep->driver_data = audio; audio->copy_buf = f_audio_buffer_alloc(audio_buf_size); if (IS_ERR(audio->copy_buf)) return -ENOMEM; /* * allocate a bunch of read buffers * and queue them all at once. */ for (i = 0; i < req_count && err == 0; i++) { req = usb_ep_alloc_request(out_ep, GFP_ATOMIC); if (req) { req->buf = kzalloc(req_buf_size, GFP_ATOMIC); if (req->buf) { req->length = req_buf_size; req->context = audio; req->complete = f_audio_complete; err = usb_ep_queue(out_ep, req, GFP_ATOMIC); if (err) ERROR(cdev, "%s queue req: %d\n", out_ep->name, err); } else err = -ENOMEM; } else err = -ENOMEM; } } else { struct f_audio_buf *copy_buf = audio->copy_buf; if (copy_buf) { list_add_tail(©_buf->list, &audio->play_queue); schedule_work(&audio->playback_work); } } } return err; } static void f_audio_disable(struct usb_function *f) { return; } /*-------------------------------------------------------------------------*/ static void f_audio_build_desc(struct f_audio *audio) { struct gaudio *card = &audio->card; u8 *sam_freq; int rate; /* Set channel numbers */ input_terminal_desc.bNrChannels = u_audio_get_playback_channels(card); as_type_i_desc.bNrChannels = u_audio_get_playback_channels(card); /* Set sample rates */ rate = u_audio_get_playback_rate(card); sam_freq = as_type_i_desc.tSamFreq[0]; memcpy(sam_freq, &rate, 3); /* Todo: Set Sample bits and other parameters */ return; } /* audio function driver setup/binding */ static int f_audio_bind(struct usb_configuration *c, struct usb_function *f) { struct usb_composite_dev *cdev = c->cdev; struct f_audio *audio = func_to_audio(f); struct usb_string *us; int status; struct usb_ep *ep = NULL; struct f_uac1_opts *audio_opts; audio_opts = container_of(f->fi, struct f_uac1_opts, func_inst); audio->card.gadget = c->cdev->gadget; audio_opts->card = &audio->card; /* set up ASLA audio devices */ if (!audio_opts->bound) { status = gaudio_setup(&audio->card); if (status < 0) return status; audio_opts->bound = true; } us = usb_gstrings_attach(cdev, uac1_strings, ARRAY_SIZE(strings_uac1)); if (IS_ERR(us)) return PTR_ERR(us); ac_interface_desc.iInterface = us[STR_AC_IF].id; input_terminal_desc.iTerminal = us[STR_INPUT_TERMINAL].id; input_terminal_desc.iChannelNames = us[STR_INPUT_TERMINAL_CH_NAMES].id; feature_unit_desc.iFeature = us[STR_FEAT_DESC_0].id; output_terminal_desc.iTerminal = us[STR_OUTPUT_TERMINAL].id; as_interface_alt_0_desc.iInterface = us[STR_AS_IF_ALT0].id; as_interface_alt_1_desc.iInterface = us[STR_AS_IF_ALT1].id; f_audio_build_desc(audio); /* allocate instance-specific interface IDs, and patch descriptors */ status = usb_interface_id(c, f); if (status < 0) goto fail; ac_interface_desc.bInterfaceNumber = status; status = usb_interface_id(c, f); if (status < 0) goto fail; as_interface_alt_0_desc.bInterfaceNumber = status; as_interface_alt_1_desc.bInterfaceNumber = status; status = -ENODEV; /* allocate instance-specific endpoints */ ep = usb_ep_autoconfig(cdev->gadget, &as_out_ep_desc); if (!ep) goto fail; audio->out_ep = ep; audio->out_ep->desc = &as_out_ep_desc; ep->driver_data = cdev; /* claim */ status = -ENOMEM; /* copy descriptors, and track endpoint copies */ status = usb_assign_descriptors(f, f_audio_desc, f_audio_desc, NULL); if (status) goto fail; return 0; fail: gaudio_cleanup(&audio->card); if (ep) ep->driver_data = NULL; return status; } /*-------------------------------------------------------------------------*/ static int generic_set_cmd(struct usb_audio_control *con, u8 cmd, int value) { con->data[cmd] = value; return 0; } static int generic_get_cmd(struct usb_audio_control *con, u8 cmd) { return con->data[cmd]; } /* Todo: add more control selecotor dynamically */ static int control_selector_init(struct f_audio *audio) { INIT_LIST_HEAD(&audio->cs); list_add(&feature_unit.list, &audio->cs); INIT_LIST_HEAD(&feature_unit.control); list_add(&mute_control.list, &feature_unit.control); list_add(&volume_control.list, &feature_unit.control); volume_control.data[UAC__CUR] = 0xffc0; volume_control.data[UAC__MIN] = 0xe3a0; volume_control.data[UAC__MAX] = 0xfff0; volume_control.data[UAC__RES] = 0x0030; return 0; } static inline struct f_uac1_opts *to_f_uac1_opts(struct config_item *item) { return container_of(to_config_group(item), struct f_uac1_opts, func_inst.group); } CONFIGFS_ATTR_STRUCT(f_uac1_opts); CONFIGFS_ATTR_OPS(f_uac1_opts); static void f_uac1_attr_release(struct config_item *item) { struct f_uac1_opts *opts = to_f_uac1_opts(item); usb_put_function_instance(&opts->func_inst); } static struct configfs_item_operations f_uac1_item_ops = { .release = f_uac1_attr_release, .show_attribute = f_uac1_opts_attr_show, .store_attribute = f_uac1_opts_attr_store, }; #define UAC1_INT_ATTRIBUTE(name) \ static ssize_t f_uac1_opts_##name##_show(struct f_uac1_opts *opts, \ char *page) \ { \ int result; \ \ mutex_lock(&opts->lock); \ result = sprintf(page, "%u\n", opts->name); \ mutex_unlock(&opts->lock); \ \ return result; \ } \ \ static ssize_t f_uac1_opts_##name##_store(struct f_uac1_opts *opts, \ const char *page, size_t len) \ { \ int ret; \ u32 num; \ \ mutex_lock(&opts->lock); \ if (opts->refcnt) { \ ret = -EBUSY; \ goto end; \ } \ \ ret = kstrtou32(page, 0, &num); \ if (ret) \ goto end; \ \ opts->name = num; \ ret = len; \ \ end: \ mutex_unlock(&opts->lock); \ return ret; \ } \ \ static struct f_uac1_opts_attribute f_uac1_opts_##name = \ __CONFIGFS_ATTR(name, S_IRUGO | S_IWUSR, \ f_uac1_opts_##name##_show, \ f_uac1_opts_##name##_store) UAC1_INT_ATTRIBUTE(req_buf_size); UAC1_INT_ATTRIBUTE(req_count); UAC1_INT_ATTRIBUTE(audio_buf_size); #define UAC1_STR_ATTRIBUTE(name) \ static ssize_t f_uac1_opts_##name##_show(struct f_uac1_opts *opts, \ char *page) \ { \ int result; \ \ mutex_lock(&opts->lock); \ result = sprintf(page, "%s\n", opts->name); \ mutex_unlock(&opts->lock); \ \ return result; \ } \ \ static ssize_t f_uac1_opts_##name##_store(struct f_uac1_opts *opts, \ const char *page, size_t len) \ { \ int ret = -EBUSY; \ char *tmp; \ \ mutex_lock(&opts->lock); \ if (opts->refcnt) \ goto end; \ \ tmp = kstrndup(page, len, GFP_KERNEL); \ if (tmp) { \ ret = -ENOMEM; \ goto end; \ } \ if (opts->name##_alloc) \ kfree(opts->name); \ opts->name##_alloc = true; \ opts->name = tmp; \ ret = len; \ \ end: \ mutex_unlock(&opts->lock); \ return ret; \ } \ \ static struct f_uac1_opts_attribute f_uac1_opts_##name = \ __CONFIGFS_ATTR(name, S_IRUGO | S_IWUSR, \ f_uac1_opts_##name##_show, \ f_uac1_opts_##name##_store) UAC1_STR_ATTRIBUTE(fn_play); UAC1_STR_ATTRIBUTE(fn_cap); UAC1_STR_ATTRIBUTE(fn_cntl); static struct configfs_attribute *f_uac1_attrs[] = { &f_uac1_opts_req_buf_size.attr, &f_uac1_opts_req_count.attr, &f_uac1_opts_audio_buf_size.attr, &f_uac1_opts_fn_play.attr, &f_uac1_opts_fn_cap.attr, &f_uac1_opts_fn_cntl.attr, NULL, }; static struct config_item_type f_uac1_func_type = { .ct_item_ops = &f_uac1_item_ops, .ct_attrs = f_uac1_attrs, .ct_owner = THIS_MODULE, }; static void f_audio_free_inst(struct usb_function_instance *f) { struct f_uac1_opts *opts; opts = container_of(f, struct f_uac1_opts, func_inst); gaudio_cleanup(opts->card); if (opts->fn_play_alloc) kfree(opts->fn_play); if (opts->fn_cap_alloc) kfree(opts->fn_cap); if (opts->fn_cntl_alloc) kfree(opts->fn_cntl); kfree(opts); } static struct usb_function_instance *f_audio_alloc_inst(void) { struct f_uac1_opts *opts; opts = kzalloc(sizeof(*opts), GFP_KERNEL); if (!opts) return ERR_PTR(-ENOMEM); mutex_init(&opts->lock); opts->func_inst.free_func_inst = f_audio_free_inst; config_group_init_type_name(&opts->func_inst.group, "", &f_uac1_func_type); opts->req_buf_size = UAC1_OUT_EP_MAX_PACKET_SIZE; opts->req_count = UAC1_REQ_COUNT; opts->audio_buf_size = UAC1_AUDIO_BUF_SIZE; opts->fn_play = FILE_PCM_PLAYBACK; opts->fn_cap = FILE_PCM_CAPTURE; opts->fn_cntl = FILE_CONTROL; return &opts->func_inst; } static void f_audio_free(struct usb_function *f) { struct f_audio *audio = func_to_audio(f); struct f_uac1_opts *opts; opts = container_of(f->fi, struct f_uac1_opts, func_inst); kfree(audio); mutex_lock(&opts->lock); --opts->refcnt; mutex_unlock(&opts->lock); } static void f_audio_unbind(struct usb_configuration *c, struct usb_function *f) { usb_free_all_descriptors(f); } static struct usb_function *f_audio_alloc(struct usb_function_instance *fi) { struct f_audio *audio; struct f_uac1_opts *opts; /* allocate and initialize one new instance */ audio = kzalloc(sizeof(*audio), GFP_KERNEL); if (!audio) return ERR_PTR(-ENOMEM); audio->card.func.name = "g_audio"; opts = container_of(fi, struct f_uac1_opts, func_inst); mutex_lock(&opts->lock); ++opts->refcnt; mutex_unlock(&opts->lock); INIT_LIST_HEAD(&audio->play_queue); spin_lock_init(&audio->lock); audio->card.func.bind = f_audio_bind; audio->card.func.unbind = f_audio_unbind; audio->card.func.set_alt = f_audio_set_alt; audio->card.func.setup = f_audio_setup; audio->card.func.disable = f_audio_disable; audio->card.func.free_func = f_audio_free; control_selector_init(audio); INIT_WORK(&audio->playback_work, f_audio_playback_work); return &audio->card.func; } DECLARE_USB_FUNCTION_INIT(uac1, f_audio_alloc_inst, f_audio_alloc); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Bryan Wu");