/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 2005 Silicon Graphics, Inc. All Rights Reserved. */ /* * This file contains a module version of the ioc3 serial driver. This * includes all the support functions needed (support functions, etc.) * and the serial driver itself. */ #include <linux/errno.h> #include <linux/tty.h> #include <linux/tty_flip.h> #include <linux/serial.h> #include <linux/circ_buf.h> #include <linux/serial_reg.h> #include <linux/module.h> #include <linux/pci.h> #include <linux/serial_core.h> #include <linux/ioc3.h> #include <linux/slab.h> /* * Interesting things about the ioc3 */ #define LOGICAL_PORTS 2 /* rs232(0) and rs422(1) */ #define PORTS_PER_CARD 2 #define LOGICAL_PORTS_PER_CARD (PORTS_PER_CARD * LOGICAL_PORTS) #define MAX_CARDS 8 #define MAX_LOGICAL_PORTS (LOGICAL_PORTS_PER_CARD * MAX_CARDS) /* determine given the sio_ir what port it applies to */ #define GET_PORT_FROM_SIO_IR(_x) (_x & SIO_IR_SA) ? 0 : 1 /* * we have 2 logical ports (rs232, rs422) for each physical port * evens are rs232, odds are rs422 */ #define GET_PHYSICAL_PORT(_x) ((_x) >> 1) #define GET_LOGICAL_PORT(_x) ((_x) & 1) #define IS_PHYSICAL_PORT(_x) !((_x) & 1) #define IS_RS232(_x) !((_x) & 1) static unsigned int Num_of_ioc3_cards; static unsigned int Submodule_slot; /* defining this will get you LOTS of great debug info */ //#define DEBUG_INTERRUPTS #define DPRINT_CONFIG(_x...) ; //#define DPRINT_CONFIG(_x...) printk _x #define NOT_PROGRESS() ; //#define NOT_PROGRESS() printk("%s : fails %d\n", __func__, __LINE__) /* number of characters we want to transmit to the lower level at a time */ #define MAX_CHARS 256 #define FIFO_SIZE (MAX_CHARS-1) /* it's a uchar */ /* Device name we're using */ #define DEVICE_NAME "ttySIOC" #define DEVICE_MAJOR 204 #define DEVICE_MINOR 116 /* flags for next_char_state */ #define NCS_BREAK 0x1 #define NCS_PARITY 0x2 #define NCS_FRAMING 0x4 #define NCS_OVERRUN 0x8 /* cause we need SOME parameters ... */ #define MIN_BAUD_SUPPORTED 1200 #define MAX_BAUD_SUPPORTED 115200 /* protocol types supported */ #define PROTO_RS232 0 #define PROTO_RS422 1 /* Notification types */ #define N_DATA_READY 0x01 #define N_OUTPUT_LOWAT 0x02 #define N_BREAK 0x04 #define N_PARITY_ERROR 0x08 #define N_FRAMING_ERROR 0x10 #define N_OVERRUN_ERROR 0x20 #define N_DDCD 0x40 #define N_DCTS 0x80 #define N_ALL_INPUT (N_DATA_READY | N_BREAK \ | N_PARITY_ERROR | N_FRAMING_ERROR \ | N_OVERRUN_ERROR | N_DDCD | N_DCTS) #define N_ALL_OUTPUT N_OUTPUT_LOWAT #define N_ALL_ERRORS (N_PARITY_ERROR | N_FRAMING_ERROR \ | N_OVERRUN_ERROR) #define N_ALL (N_DATA_READY | N_OUTPUT_LOWAT | N_BREAK \ | N_PARITY_ERROR | N_FRAMING_ERROR \ | N_OVERRUN_ERROR | N_DDCD | N_DCTS) #define SER_CLK_SPEED(prediv) ((22000000 << 1) / prediv) #define SER_DIVISOR(x, clk) (((clk) + (x) * 8) / ((x) * 16)) #define DIVISOR_TO_BAUD(div, clk) ((clk) / 16 / (div)) /* Some masks */ #define LCR_MASK_BITS_CHAR (UART_LCR_WLEN5 | UART_LCR_WLEN6 \ | UART_LCR_WLEN7 | UART_LCR_WLEN8) #define LCR_MASK_STOP_BITS (UART_LCR_STOP) #define PENDING(_a, _p) (readl(&(_p)->vma->sio_ir) & (_a)->ic_enable) #define RING_BUF_SIZE 4096 #define BUF_SIZE_BIT SBBR_L_SIZE #define PROD_CONS_MASK PROD_CONS_PTR_4K #define TOTAL_RING_BUF_SIZE (RING_BUF_SIZE * 4) /* driver specific - one per card */ struct ioc3_card { struct { /* uart ports are allocated here */ struct uart_port icp_uart_port[LOGICAL_PORTS]; /* the ioc3_port used for this port */ struct ioc3_port *icp_port; } ic_port[PORTS_PER_CARD]; /* currently enabled interrupts */ uint32_t ic_enable; }; /* Local port info for each IOC3 serial port */ struct ioc3_port { /* handy reference material */ struct uart_port *ip_port; struct ioc3_card *ip_card; struct ioc3_driver_data *ip_idd; struct ioc3_submodule *ip_is; /* pci mem addresses for this port */ struct ioc3_serialregs __iomem *ip_serial_regs; struct ioc3_uartregs __iomem *ip_uart_regs; /* Ring buffer page for this port */ dma_addr_t ip_dma_ringbuf; /* vaddr of ring buffer */ struct ring_buffer *ip_cpu_ringbuf; /* Rings for this port */ struct ring *ip_inring; struct ring *ip_outring; /* Hook to port specific values */ struct port_hooks *ip_hooks; spinlock_t ip_lock; /* Various rx/tx parameters */ int ip_baud; int ip_tx_lowat; int ip_rx_timeout; /* Copy of notification bits */ int ip_notify; /* Shadow copies of various registers so we don't need to PIO * read them constantly */ uint32_t ip_sscr; uint32_t ip_tx_prod; uint32_t ip_rx_cons; unsigned char ip_flags; }; /* tx low water mark. We need to notify the driver whenever tx is getting * close to empty so it can refill the tx buffer and keep things going. * Let's assume that if we interrupt 1 ms before the tx goes idle, we'll * have no trouble getting in more chars in time (I certainly hope so). */ #define TX_LOWAT_LATENCY 1000 #define TX_LOWAT_HZ (1000000 / TX_LOWAT_LATENCY) #define TX_LOWAT_CHARS(baud) (baud / 10 / TX_LOWAT_HZ) /* Flags per port */ #define INPUT_HIGH 0x01 /* used to signify that we have turned off the rx_high * temporarily - we need to drain the fifo and don't * want to get blasted with interrupts. */ #define DCD_ON 0x02 /* DCD state is on */ #define LOWAT_WRITTEN 0x04 #define READ_ABORTED 0x08 /* the read was aborted - used to avaoid infinate looping * in the interrupt handler */ #define INPUT_ENABLE 0x10 /* Since each port has different register offsets and bitmasks * for everything, we'll store those that we need in tables so we * don't have to be constantly checking the port we are dealing with. */ struct port_hooks { uint32_t intr_delta_dcd; uint32_t intr_delta_cts; uint32_t intr_tx_mt; uint32_t intr_rx_timer; uint32_t intr_rx_high; uint32_t intr_tx_explicit; uint32_t intr_clear; uint32_t intr_all; char rs422_select_pin; }; static struct port_hooks hooks_array[PORTS_PER_CARD] = { /* values for port A */ { .intr_delta_dcd = SIO_IR_SA_DELTA_DCD, .intr_delta_cts = SIO_IR_SA_DELTA_CTS, .intr_tx_mt = SIO_IR_SA_TX_MT, .intr_rx_timer = SIO_IR_SA_RX_TIMER, .intr_rx_high = SIO_IR_SA_RX_HIGH, .intr_tx_explicit = SIO_IR_SA_TX_EXPLICIT, .intr_clear = (SIO_IR_SA_TX_MT | SIO_IR_SA_RX_FULL | SIO_IR_SA_RX_HIGH | SIO_IR_SA_RX_TIMER | SIO_IR_SA_DELTA_DCD | SIO_IR_SA_DELTA_CTS | SIO_IR_SA_INT | SIO_IR_SA_TX_EXPLICIT | SIO_IR_SA_MEMERR), .intr_all = SIO_IR_SA, .rs422_select_pin = GPPR_UARTA_MODESEL_PIN, }, /* values for port B */ { .intr_delta_dcd = SIO_IR_SB_DELTA_DCD, .intr_delta_cts = SIO_IR_SB_DELTA_CTS, .intr_tx_mt = SIO_IR_SB_TX_MT, .intr_rx_timer = SIO_IR_SB_RX_TIMER, .intr_rx_high = SIO_IR_SB_RX_HIGH, .intr_tx_explicit = SIO_IR_SB_TX_EXPLICIT, .intr_clear = (SIO_IR_SB_TX_MT | SIO_IR_SB_RX_FULL | SIO_IR_SB_RX_HIGH | SIO_IR_SB_RX_TIMER | SIO_IR_SB_DELTA_DCD | SIO_IR_SB_DELTA_CTS | SIO_IR_SB_INT | SIO_IR_SB_TX_EXPLICIT | SIO_IR_SB_MEMERR), .intr_all = SIO_IR_SB, .rs422_select_pin = GPPR_UARTB_MODESEL_PIN, } }; struct ring_entry { union { struct { uint32_t alldata; uint32_t allsc; } all; struct { char data[4]; /* data bytes */ char sc[4]; /* status/control */ } s; } u; }; /* Test the valid bits in any of the 4 sc chars using "allsc" member */ #define RING_ANY_VALID \ ((uint32_t)(RXSB_MODEM_VALID | RXSB_DATA_VALID) * 0x01010101) #define ring_sc u.s.sc #define ring_data u.s.data #define ring_allsc u.all.allsc /* Number of entries per ring buffer. */ #define ENTRIES_PER_RING (RING_BUF_SIZE / (int) sizeof(struct ring_entry)) /* An individual ring */ struct ring { struct ring_entry entries[ENTRIES_PER_RING]; }; /* The whole enchilada */ struct ring_buffer { struct ring TX_A; struct ring RX_A; struct ring TX_B; struct ring RX_B; }; /* Get a ring from a port struct */ #define RING(_p, _wh) &(((struct ring_buffer *)((_p)->ip_cpu_ringbuf))->_wh) /* for Infinite loop detection */ #define MAXITER 10000000 /** * set_baud - Baud rate setting code * @port: port to set * @baud: baud rate to use */ static int set_baud(struct ioc3_port *port, int baud) { int divisor; int actual_baud; int diff; int lcr, prediv; struct ioc3_uartregs __iomem *uart; for (prediv = 6; prediv < 64; prediv++) { divisor = SER_DIVISOR(baud, SER_CLK_SPEED(prediv)); if (!divisor) continue; /* invalid divisor */ actual_baud = DIVISOR_TO_BAUD(divisor, SER_CLK_SPEED(prediv)); diff = actual_baud - baud; if (diff < 0) diff = -diff; /* if we're within 1% we've found a match */ if (diff * 100 <= actual_baud) break; } /* if the above loop completed, we didn't match * the baud rate. give up. */ if (prediv == 64) { NOT_PROGRESS(); return 1; } uart = port->ip_uart_regs; lcr = readb(&uart->iu_lcr); writeb(lcr | UART_LCR_DLAB, &uart->iu_lcr); writeb((unsigned char)divisor, &uart->iu_dll); writeb((unsigned char)(divisor >> 8), &uart->iu_dlm); writeb((unsigned char)prediv, &uart->iu_scr); writeb((unsigned char)lcr, &uart->iu_lcr); return 0; } /** * get_ioc3_port - given a uart port, return the control structure * @the_port: uart port to find */ static struct ioc3_port *get_ioc3_port(struct uart_port *the_port) { struct ioc3_driver_data *idd = dev_get_drvdata(the_port->dev); struct ioc3_card *card_ptr = idd->data[Submodule_slot]; int ii, jj; if (!card_ptr) { NOT_PROGRESS(); return NULL; } for (ii = 0; ii < PORTS_PER_CARD; ii++) { for (jj = 0; jj < LOGICAL_PORTS; jj++) { if (the_port == &card_ptr->ic_port[ii].icp_uart_port[jj]) return card_ptr->ic_port[ii].icp_port; } } NOT_PROGRESS(); return NULL; } /** * port_init - Initialize the sio and ioc3 hardware for a given port * called per port from attach... * @port: port to initialize */ static int inline port_init(struct ioc3_port *port) { uint32_t sio_cr; struct port_hooks *hooks = port->ip_hooks; struct ioc3_uartregs __iomem *uart; int reset_loop_counter = 0xfffff; struct ioc3_driver_data *idd = port->ip_idd; /* Idle the IOC3 serial interface */ writel(SSCR_RESET, &port->ip_serial_regs->sscr); /* Wait until any pending bus activity for this port has ceased */ do { sio_cr = readl(&idd->vma->sio_cr); if (reset_loop_counter-- <= 0) { printk(KERN_WARNING "IOC3 unable to come out of reset" " scr 0x%x\n", sio_cr); return -1; } } while (!(sio_cr & SIO_CR_ARB_DIAG_IDLE) && (((sio_cr &= SIO_CR_ARB_DIAG) == SIO_CR_ARB_DIAG_TXA) || sio_cr == SIO_CR_ARB_DIAG_TXB || sio_cr == SIO_CR_ARB_DIAG_RXA || sio_cr == SIO_CR_ARB_DIAG_RXB)); /* Finish reset sequence */ writel(0, &port->ip_serial_regs->sscr); /* Once RESET is done, reload cached tx_prod and rx_cons values * and set rings to empty by making prod == cons */ port->ip_tx_prod = readl(&port->ip_serial_regs->stcir) & PROD_CONS_MASK; writel(port->ip_tx_prod, &port->ip_serial_regs->stpir); port->ip_rx_cons = readl(&port->ip_serial_regs->srpir) & PROD_CONS_MASK; writel(port->ip_rx_cons | SRCIR_ARM, &port->ip_serial_regs->srcir); /* Disable interrupts for this 16550 */ uart = port->ip_uart_regs; writeb(0, &uart->iu_lcr); writeb(0, &uart->iu_ier); /* Set the default baud */ set_baud(port, port->ip_baud); /* Set line control to 8 bits no parity */ writeb(UART_LCR_WLEN8 | 0, &uart->iu_lcr); /* UART_LCR_STOP == 1 stop */ /* Enable the FIFOs */ writeb(UART_FCR_ENABLE_FIFO, &uart->iu_fcr); /* then reset 16550 FIFOs */ writeb(UART_FCR_ENABLE_FIFO | UART_FCR_CLEAR_RCVR | UART_FCR_CLEAR_XMIT, &uart->iu_fcr); /* Clear modem control register */ writeb(0, &uart->iu_mcr); /* Clear deltas in modem status register */ writel(0, &port->ip_serial_regs->shadow); /* Only do this once per port pair */ if (port->ip_hooks == &hooks_array[0]) { unsigned long ring_pci_addr; uint32_t __iomem *sbbr_l, *sbbr_h; sbbr_l = &idd->vma->sbbr_l; sbbr_h = &idd->vma->sbbr_h; ring_pci_addr = (unsigned long __iomem)port->ip_dma_ringbuf; DPRINT_CONFIG(("%s: ring_pci_addr 0x%p\n", __func__, (void *)ring_pci_addr)); writel((unsigned int)((uint64_t) ring_pci_addr >> 32), sbbr_h); writel((unsigned int)ring_pci_addr | BUF_SIZE_BIT, sbbr_l); } /* Set the receive timeout value to 10 msec */ writel(SRTR_HZ / 100, &port->ip_serial_regs->srtr); /* Set rx threshold, enable DMA */ /* Set high water mark at 3/4 of full ring */ port->ip_sscr = (ENTRIES_PER_RING * 3 / 4); /* uart experiences pauses at high baud rate reducing actual * throughput by 10% or so unless we enable high speed polling * XXX when this hardware bug is resolved we should revert to * normal polling speed */ port->ip_sscr |= SSCR_HIGH_SPD; writel(port->ip_sscr, &port->ip_serial_regs->sscr); /* Disable and clear all serial related interrupt bits */ port->ip_card->ic_enable &= ~hooks->intr_clear; ioc3_disable(port->ip_is, idd, hooks->intr_clear); ioc3_ack(port->ip_is, idd, hooks->intr_clear); return 0; } /** * enable_intrs - enable interrupts * @port: port to enable * @mask: mask to use */ static void enable_intrs(struct ioc3_port *port, uint32_t mask) { if ((port->ip_card->ic_enable & mask) != mask) { port->ip_card->ic_enable |= mask; ioc3_enable(port->ip_is, port->ip_idd, mask); } } /** * local_open - local open a port * @port: port to open */ static inline int local_open(struct ioc3_port *port) { int spiniter = 0; port->ip_flags = INPUT_ENABLE; /* Pause the DMA interface if necessary */ if (port->ip_sscr & SSCR_DMA_EN) { writel(port->ip_sscr | SSCR_DMA_PAUSE, &port->ip_serial_regs->sscr); while ((readl(&port->ip_serial_regs->sscr) & SSCR_PAUSE_STATE) == 0) { spiniter++; if (spiniter > MAXITER) { NOT_PROGRESS(); return -1; } } } /* Reset the input fifo. If the uart received chars while the port * was closed and DMA is not enabled, the uart may have a bunch of * chars hanging around in its rx fifo which will not be discarded * by rclr in the upper layer. We must get rid of them here. */ writeb(UART_FCR_ENABLE_FIFO | UART_FCR_CLEAR_RCVR, &port->ip_uart_regs->iu_fcr); writeb(UART_LCR_WLEN8, &port->ip_uart_regs->iu_lcr); /* UART_LCR_STOP == 1 stop */ /* Re-enable DMA, set default threshold to intr whenever there is * data available. */ port->ip_sscr &= ~SSCR_RX_THRESHOLD; port->ip_sscr |= 1; /* default threshold */ /* Plug in the new sscr. This implicitly clears the DMA_PAUSE * flag if it was set above */ writel(port->ip_sscr, &port->ip_serial_regs->sscr); port->ip_tx_lowat = 1; return 0; } /** * set_rx_timeout - Set rx timeout and threshold values. * @port: port to use * @timeout: timeout value in ticks */ static inline int set_rx_timeout(struct ioc3_port *port, int timeout) { int threshold; port->ip_rx_timeout = timeout; /* Timeout is in ticks. Let's figure out how many chars we * can receive at the current baud rate in that interval * and set the rx threshold to that amount. There are 4 chars * per ring entry, so we'll divide the number of chars that will * arrive in timeout by 4. * So .... timeout * baud / 10 / HZ / 4, with HZ = 100. */ threshold = timeout * port->ip_baud / 4000; if (threshold == 0) threshold = 1; /* otherwise we'll intr all the time! */ if ((unsigned)threshold > (unsigned)SSCR_RX_THRESHOLD) return 1; port->ip_sscr &= ~SSCR_RX_THRESHOLD; port->ip_sscr |= threshold; writel(port->ip_sscr, &port->ip_serial_regs->sscr); /* Now set the rx timeout to the given value * again timeout * SRTR_HZ / HZ */ timeout = timeout * SRTR_HZ / 100; if (timeout > SRTR_CNT) timeout = SRTR_CNT; writel(timeout, &port->ip_serial_regs->srtr); return 0; } /** * config_port - config the hardware * @port: port to config * @baud: baud rate for the port * @byte_size: data size * @stop_bits: number of stop bits * @parenb: parity enable ? * @parodd: odd parity ? */ static inline int config_port(struct ioc3_port *port, int baud, int byte_size, int stop_bits, int parenb, int parodd) { char lcr, sizebits; int spiniter = 0; DPRINT_CONFIG(("%s: line %d baud %d byte_size %d stop %d parenb %d " "parodd %d\n", __func__, ((struct uart_port *)port->ip_port)->line, baud, byte_size, stop_bits, parenb, parodd)); if (set_baud(port, baud)) return 1; switch (byte_size) { case 5: sizebits = UART_LCR_WLEN5; break; case 6: sizebits = UART_LCR_WLEN6; break; case 7: sizebits = UART_LCR_WLEN7; break; case 8: sizebits = UART_LCR_WLEN8; break; default: return 1; } /* Pause the DMA interface if necessary */ if (port->ip_sscr & SSCR_DMA_EN) { writel(port->ip_sscr | SSCR_DMA_PAUSE, &port->ip_serial_regs->sscr); while ((readl(&port->ip_serial_regs->sscr) & SSCR_PAUSE_STATE) == 0) { spiniter++; if (spiniter > MAXITER) return -1; } } /* Clear relevant fields in lcr */ lcr = readb(&port->ip_uart_regs->iu_lcr); lcr &= ~(LCR_MASK_BITS_CHAR | UART_LCR_EPAR | UART_LCR_PARITY | LCR_MASK_STOP_BITS); /* Set byte size in lcr */ lcr |= sizebits; /* Set parity */ if (parenb) { lcr |= UART_LCR_PARITY; if (!parodd) lcr |= UART_LCR_EPAR; } /* Set stop bits */ if (stop_bits) lcr |= UART_LCR_STOP /* 2 stop bits */ ; writeb(lcr, &port->ip_uart_regs->iu_lcr); /* Re-enable the DMA interface if necessary */ if (port->ip_sscr & SSCR_DMA_EN) { writel(port->ip_sscr, &port->ip_serial_regs->sscr); } port->ip_baud = baud; /* When we get within this number of ring entries of filling the * entire ring on tx, place an EXPLICIT intr to generate a lowat * notification when output has drained. */ port->ip_tx_lowat = (TX_LOWAT_CHARS(baud) + 3) / 4; if (port->ip_tx_lowat == 0) port->ip_tx_lowat = 1; set_rx_timeout(port, 2); return 0; } /** * do_write - Write bytes to the port. Returns the number of bytes * actually written. Called from transmit_chars * @port: port to use * @buf: the stuff to write * @len: how many bytes in 'buf' */ static inline int do_write(struct ioc3_port *port, char *buf, int len) { int prod_ptr, cons_ptr, total = 0; struct ring *outring; struct ring_entry *entry; struct port_hooks *hooks = port->ip_hooks; BUG_ON(!(len >= 0)); prod_ptr = port->ip_tx_prod; cons_ptr = readl(&port->ip_serial_regs->stcir) & PROD_CONS_MASK; outring = port->ip_outring; /* Maintain a 1-entry red-zone. The ring buffer is full when * (cons - prod) % ring_size is 1. Rather than do this subtraction * in the body of the loop, I'll do it now. */ cons_ptr = (cons_ptr - (int)sizeof(struct ring_entry)) & PROD_CONS_MASK; /* Stuff the bytes into the output */ while ((prod_ptr != cons_ptr) && (len > 0)) { int xx; /* Get 4 bytes (one ring entry) at a time */ entry = (struct ring_entry *)((caddr_t) outring + prod_ptr); /* Invalidate all entries */ entry->ring_allsc = 0; /* Copy in some bytes */ for (xx = 0; (xx < 4) && (len > 0); xx++) { entry->ring_data[xx] = *buf++; entry->ring_sc[xx] = TXCB_VALID; len--; total++; } /* If we are within some small threshold of filling up the * entire ring buffer, we must place an EXPLICIT intr here * to generate a lowat interrupt in case we subsequently * really do fill up the ring and the caller goes to sleep. * No need to place more than one though. */ if (!(port->ip_flags & LOWAT_WRITTEN) && ((cons_ptr - prod_ptr) & PROD_CONS_MASK) <= port->ip_tx_lowat * (int)sizeof(struct ring_entry)) { port->ip_flags |= LOWAT_WRITTEN; entry->ring_sc[0] |= TXCB_INT_WHEN_DONE; } /* Go on to next entry */ prod_ptr += sizeof(struct ring_entry); prod_ptr &= PROD_CONS_MASK; } /* If we sent something, start DMA if necessary */ if (total > 0 && !(port->ip_sscr & SSCR_DMA_EN)) { port->ip_sscr |= SSCR_DMA_EN; writel(port->ip_sscr, &port->ip_serial_regs->sscr); } /* Store the new producer pointer. If tx is disabled, we stuff the * data into the ring buffer, but we don't actually start tx. */ if (!uart_tx_stopped(port->ip_port)) { writel(prod_ptr, &port->ip_serial_regs->stpir); /* If we are now transmitting, enable tx_mt interrupt so we * can disable DMA if necessary when the tx finishes. */ if (total > 0) enable_intrs(port, hooks->intr_tx_mt); } port->ip_tx_prod = prod_ptr; return total; } /** * disable_intrs - disable interrupts * @port: port to enable * @mask: mask to use */ static inline void disable_intrs(struct ioc3_port *port, uint32_t mask) { if (port->ip_card->ic_enable & mask) { ioc3_disable(port->ip_is, port->ip_idd, mask); port->ip_card->ic_enable &= ~mask; } } /** * set_notification - Modify event notification * @port: port to use * @mask: events mask * @set_on: set ? */ static int set_notification(struct ioc3_port *port, int mask, int set_on) { struct port_hooks *hooks = port->ip_hooks; uint32_t intrbits, sscrbits; BUG_ON(!mask); intrbits = sscrbits = 0; if (mask & N_DATA_READY) intrbits |= (hooks->intr_rx_timer | hooks->intr_rx_high); if (mask & N_OUTPUT_LOWAT) intrbits |= hooks->intr_tx_explicit; if (mask & N_DDCD) { intrbits |= hooks->intr_delta_dcd; sscrbits |= SSCR_RX_RING_DCD; } if (mask & N_DCTS) intrbits |= hooks->intr_delta_cts; if (set_on) { enable_intrs(port, intrbits); port->ip_notify |= mask; port->ip_sscr |= sscrbits; } else { disable_intrs(port, intrbits); port->ip_notify &= ~mask; port->ip_sscr &= ~sscrbits; } /* We require DMA if either DATA_READY or DDCD notification is * currently requested. If neither of these is requested and * there is currently no tx in progress, DMA may be disabled. */ if (port->ip_notify & (N_DATA_READY | N_DDCD)) port->ip_sscr |= SSCR_DMA_EN; else if (!(port->ip_card->ic_enable & hooks->intr_tx_mt)) port->ip_sscr &= ~SSCR_DMA_EN; writel(port->ip_sscr, &port->ip_serial_regs->sscr); return 0; } /** * set_mcr - set the master control reg * @the_port: port to use * @mask1: mcr mask * @mask2: shadow mask */ static inline int set_mcr(struct uart_port *the_port, int mask1, int mask2) { struct ioc3_port *port = get_ioc3_port(the_port); uint32_t shadow; int spiniter = 0; char mcr; if (!port) return -1; /* Pause the DMA interface if necessary */ if (port->ip_sscr & SSCR_DMA_EN) { writel(port->ip_sscr | SSCR_DMA_PAUSE, &port->ip_serial_regs->sscr); while ((readl(&port->ip_serial_regs->sscr) & SSCR_PAUSE_STATE) == 0) { spiniter++; if (spiniter > MAXITER) return -1; } } shadow = readl(&port->ip_serial_regs->shadow); mcr = (shadow & 0xff000000) >> 24; /* Set new value */ mcr |= mask1; shadow |= mask2; writeb(mcr, &port->ip_uart_regs->iu_mcr); writel(shadow, &port->ip_serial_regs->shadow); /* Re-enable the DMA interface if necessary */ if (port->ip_sscr & SSCR_DMA_EN) { writel(port->ip_sscr, &port->ip_serial_regs->sscr); } return 0; } /** * ioc3_set_proto - set the protocol for the port * @port: port to use * @proto: protocol to use */ static int ioc3_set_proto(struct ioc3_port *port, int proto) { struct port_hooks *hooks = port->ip_hooks; switch (proto) { default: case PROTO_RS232: /* Clear the appropriate GIO pin */ DPRINT_CONFIG(("%s: rs232\n", __func__)); writel(0, (&port->ip_idd->vma->gppr[0] + hooks->rs422_select_pin)); break; case PROTO_RS422: /* Set the appropriate GIO pin */ DPRINT_CONFIG(("%s: rs422\n", __func__)); writel(1, (&port->ip_idd->vma->gppr[0] + hooks->rs422_select_pin)); break; } return 0; } /** * transmit_chars - upper level write, called with the_port->lock * @the_port: port to write */ static void transmit_chars(struct uart_port *the_port) { int xmit_count, tail, head; int result; char *start; struct tty_struct *tty; struct ioc3_port *port = get_ioc3_port(the_port); struct uart_state *state; if (!the_port) return; if (!port) return; state = the_port->state; tty = state->port.tty; if (uart_circ_empty(&state->xmit) || uart_tx_stopped(the_port)) { /* Nothing to do or hw stopped */ set_notification(port, N_ALL_OUTPUT, 0); return; } head = state->xmit.head; tail = state->xmit.tail; start = (char *)&state->xmit.buf[tail]; /* write out all the data or until the end of the buffer */ xmit_count = (head < tail) ? (UART_XMIT_SIZE - tail) : (head - tail); if (xmit_count > 0) { result = do_write(port, start, xmit_count); if (result > 0) { /* booking */ xmit_count -= result; the_port->icount.tx += result; /* advance the pointers */ tail += result; tail &= UART_XMIT_SIZE - 1; state->xmit.tail = tail; start = (char *)&state->xmit.buf[tail]; } } if (uart_circ_chars_pending(&state->xmit) < WAKEUP_CHARS) uart_write_wakeup(the_port); if (uart_circ_empty(&state->xmit)) { set_notification(port, N_OUTPUT_LOWAT, 0); } else { set_notification(port, N_OUTPUT_LOWAT, 1); } } /** * ioc3_change_speed - change the speed of the port * @the_port: port to change * @new_termios: new termios settings * @old_termios: old termios settings */ static void ioc3_change_speed(struct uart_port *the_port, struct ktermios *new_termios, struct ktermios *old_termios) { struct ioc3_port *port = get_ioc3_port(the_port); unsigned int cflag, iflag; int baud; int new_parity = 0, new_parity_enable = 0, new_stop = 0, new_data = 8; struct uart_state *state = the_port->state; cflag = new_termios->c_cflag; iflag = new_termios->c_iflag; switch (cflag & CSIZE) { case CS5: new_data = 5; break; case CS6: new_data = 6; break; case CS7: new_data = 7; break; case CS8: new_data = 8; break; default: /* cuz we always need a default ... */ new_data = 5; break; } if (cflag & CSTOPB) { new_stop = 1; } if (cflag & PARENB) { new_parity_enable = 1; if (cflag & PARODD) new_parity = 1; } baud = uart_get_baud_rate(the_port, new_termios, old_termios, MIN_BAUD_SUPPORTED, MAX_BAUD_SUPPORTED); DPRINT_CONFIG(("%s: returned baud %d for line %d\n", __func__, baud, the_port->line)); if (!the_port->fifosize) the_port->fifosize = FIFO_SIZE; uart_update_timeout(the_port, cflag, baud); the_port->ignore_status_mask = N_ALL_INPUT; state->port.low_latency = 1; if (iflag & IGNPAR) the_port->ignore_status_mask &= ~(N_PARITY_ERROR | N_FRAMING_ERROR); if (iflag & IGNBRK) { the_port->ignore_status_mask &= ~N_BREAK; if (iflag & IGNPAR) the_port->ignore_status_mask &= ~N_OVERRUN_ERROR; } if (!(cflag & CREAD)) { /* ignore everything */ the_port->ignore_status_mask &= ~N_DATA_READY; } if (cflag & CRTSCTS) { /* enable hardware flow control */ port->ip_sscr |= SSCR_HFC_EN; } else { /* disable hardware flow control */ port->ip_sscr &= ~SSCR_HFC_EN; } writel(port->ip_sscr, &port->ip_serial_regs->sscr); /* Set the configuration and proper notification call */ DPRINT_CONFIG(("%s : port 0x%p line %d cflag 0%o " "config_port(baud %d data %d stop %d penable %d " " parity %d), notification 0x%x\n", __func__, (void *)port, the_port->line, cflag, baud, new_data, new_stop, new_parity_enable, new_parity, the_port->ignore_status_mask)); if ((config_port(port, baud, /* baud */ new_data, /* byte size */ new_stop, /* stop bits */ new_parity_enable, /* set parity */ new_parity)) >= 0) { /* parity 1==odd */ set_notification(port, the_port->ignore_status_mask, 1); } } /** * ic3_startup_local - Start up the serial port - returns >= 0 if no errors * @the_port: Port to operate on */ static inline int ic3_startup_local(struct uart_port *the_port) { struct ioc3_port *port; if (!the_port) { NOT_PROGRESS(); return -1; } port = get_ioc3_port(the_port); if (!port) { NOT_PROGRESS(); return -1; } local_open(port); /* set the protocol */ ioc3_set_proto(port, IS_RS232(the_port->line) ? PROTO_RS232 : PROTO_RS422); return 0; } /* * ioc3_cb_output_lowat - called when the output low water mark is hit * @port: port to output */ static void ioc3_cb_output_lowat(struct ioc3_port *port) { unsigned long pflags; /* the_port->lock is set on the call here */ if (port->ip_port) { spin_lock_irqsave(&port->ip_port->lock, pflags); transmit_chars(port->ip_port); spin_unlock_irqrestore(&port->ip_port->lock, pflags); } } /* * ioc3_cb_post_ncs - called for some basic errors * @port: port to use * @ncs: event */ static void ioc3_cb_post_ncs(struct uart_port *the_port, int ncs) { struct uart_icount *icount; icount = &the_port->icount; if (ncs & NCS_BREAK) icount->brk++; if (ncs & NCS_FRAMING) icount->frame++; if (ncs & NCS_OVERRUN) icount->overrun++; if (ncs & NCS_PARITY) icount->parity++; } /** * do_read - Read in bytes from the port. Return the number of bytes * actually read. * @the_port: port to use * @buf: place to put the stuff we read * @len: how big 'buf' is */ static inline int do_read(struct uart_port *the_port, char *buf, int len) { int prod_ptr, cons_ptr, total; struct ioc3_port *port = get_ioc3_port(the_port); struct ring *inring; struct ring_entry *entry; struct port_hooks *hooks; int byte_num; char *sc; int loop_counter; BUG_ON(!(len >= 0)); BUG_ON(!port); hooks = port->ip_hooks; /* There is a nasty timing issue in the IOC3. When the rx_timer * expires or the rx_high condition arises, we take an interrupt. * At some point while servicing the interrupt, we read bytes from * the ring buffer and re-arm the rx_timer. However the rx_timer is * not started until the first byte is received *after* it is armed, * and any bytes pending in the rx construction buffers are not drained * to memory until either there are 4 bytes available or the rx_timer * expires. This leads to a potential situation where data is left * in the construction buffers forever - 1 to 3 bytes were received * after the interrupt was generated but before the rx_timer was * re-armed. At that point as long as no subsequent bytes are received * the timer will never be started and the bytes will remain in the * construction buffer forever. The solution is to execute a DRAIN * command after rearming the timer. This way any bytes received before * the DRAIN will be drained to memory, and any bytes received after * the DRAIN will start the TIMER and be drained when it expires. * Luckily, this only needs to be done when the DMA buffer is empty * since there is no requirement that this function return all * available data as long as it returns some. */ /* Re-arm the timer */ writel(port->ip_rx_cons | SRCIR_ARM, &port->ip_serial_regs->srcir); prod_ptr = readl(&port->ip_serial_regs->srpir) & PROD_CONS_MASK; cons_ptr = port->ip_rx_cons; if (prod_ptr == cons_ptr) { int reset_dma = 0; /* Input buffer appears empty, do a flush. */ /* DMA must be enabled for this to work. */ if (!(port->ip_sscr & SSCR_DMA_EN)) { port->ip_sscr |= SSCR_DMA_EN; reset_dma = 1; } /* Potential race condition: we must reload the srpir after * issuing the drain command, otherwise we could think the rx * buffer is empty, then take a very long interrupt, and when * we come back it's full and we wait forever for the drain to * complete. */ writel(port->ip_sscr | SSCR_RX_DRAIN, &port->ip_serial_regs->sscr); prod_ptr = readl(&port->ip_serial_regs->srpir) & PROD_CONS_MASK; /* We must not wait for the DRAIN to complete unless there are * at least 8 bytes (2 ring entries) available to receive the * data otherwise the DRAIN will never complete and we'll * deadlock here. * In fact, to make things easier, I'll just ignore the flush if * there is any data at all now available. */ if (prod_ptr == cons_ptr) { loop_counter = 0; while (readl(&port->ip_serial_regs->sscr) & SSCR_RX_DRAIN) { loop_counter++; if (loop_counter > MAXITER) return -1; } /* SIGH. We have to reload the prod_ptr *again* since * the drain may have caused it to change */ prod_ptr = readl(&port->ip_serial_regs->srpir) & PROD_CONS_MASK; } if (reset_dma) { port->ip_sscr &= ~SSCR_DMA_EN; writel(port->ip_sscr, &port->ip_serial_regs->sscr); } } inring = port->ip_inring; port->ip_flags &= ~READ_ABORTED; total = 0; loop_counter = 0xfffff; /* to avoid hangs */ /* Grab bytes from the hardware */ while ((prod_ptr != cons_ptr) && (len > 0)) { entry = (struct ring_entry *)((caddr_t) inring + cons_ptr); if (loop_counter-- <= 0) { printk(KERN_WARNING "IOC3 serial: " "possible hang condition/" "port stuck on read (line %d).\n", the_port->line); break; } /* According to the producer pointer, this ring entry * must contain some data. But if the PIO happened faster * than the DMA, the data may not be available yet, so let's * wait until it arrives. */ if ((entry->ring_allsc & RING_ANY_VALID) == 0) { /* Indicate the read is aborted so we don't disable * the interrupt thinking that the consumer is * congested. */ port->ip_flags |= READ_ABORTED; len = 0; break; } /* Load the bytes/status out of the ring entry */ for (byte_num = 0; byte_num < 4 && len > 0; byte_num++) { sc = &(entry->ring_sc[byte_num]); /* Check for change in modem state or overrun */ if ((*sc & RXSB_MODEM_VALID) && (port->ip_notify & N_DDCD)) { /* Notify upper layer if DCD dropped */ if ((port->ip_flags & DCD_ON) && !(*sc & RXSB_DCD)) { /* If we have already copied some data, * return it. We'll pick up the carrier * drop on the next pass. That way we * don't throw away the data that has * already been copied back to * the caller's buffer. */ if (total > 0) { len = 0; break; } port->ip_flags &= ~DCD_ON; /* Turn off this notification so the * carrier drop protocol won't see it * again when it does a read. */ *sc &= ~RXSB_MODEM_VALID; /* To keep things consistent, we need * to update the consumer pointer so * the next reader won't come in and * try to read the same ring entries * again. This must be done here before * the dcd change. */ if ((entry->ring_allsc & RING_ANY_VALID) == 0) { cons_ptr += (int)sizeof (struct ring_entry); cons_ptr &= PROD_CONS_MASK; } writel(cons_ptr, &port->ip_serial_regs->srcir); port->ip_rx_cons = cons_ptr; /* Notify upper layer of carrier drop */ if ((port->ip_notify & N_DDCD) && port->ip_port) { uart_handle_dcd_change (port->ip_port, 0); wake_up_interruptible (&the_port->state-> port.delta_msr_wait); } /* If we had any data to return, we * would have returned it above. */ return 0; } } if (*sc & RXSB_MODEM_VALID) { /* Notify that an input overrun occurred */ if ((*sc & RXSB_OVERRUN) && (port->ip_notify & N_OVERRUN_ERROR)) { ioc3_cb_post_ncs(the_port, NCS_OVERRUN); } /* Don't look at this byte again */ *sc &= ~RXSB_MODEM_VALID; } /* Check for valid data or RX errors */ if ((*sc & RXSB_DATA_VALID) && ((*sc & (RXSB_PAR_ERR | RXSB_FRAME_ERR | RXSB_BREAK)) && (port->ip_notify & (N_PARITY_ERROR | N_FRAMING_ERROR | N_BREAK)))) { /* There is an error condition on the next byte. * If we have already transferred some bytes, * we'll stop here. Otherwise if this is the * first byte to be read, we'll just transfer * it alone after notifying the * upper layer of its status. */ if (total > 0) { len = 0; break; } else { if ((*sc & RXSB_PAR_ERR) && (port-> ip_notify & N_PARITY_ERROR)) { ioc3_cb_post_ncs(the_port, NCS_PARITY); } if ((*sc & RXSB_FRAME_ERR) && (port-> ip_notify & N_FRAMING_ERROR)) { ioc3_cb_post_ncs(the_port, NCS_FRAMING); } if ((*sc & RXSB_BREAK) && (port->ip_notify & N_BREAK)) { ioc3_cb_post_ncs (the_port, NCS_BREAK); } len = 1; } } if (*sc & RXSB_DATA_VALID) { *sc &= ~RXSB_DATA_VALID; *buf = entry->ring_data[byte_num]; buf++; len--; total++; } } /* If we used up this entry entirely, go on to the next one, * otherwise we must have run out of buffer space, so * leave the consumer pointer here for the next read in case * there are still unread bytes in this entry. */ if ((entry->ring_allsc & RING_ANY_VALID) == 0) { cons_ptr += (int)sizeof(struct ring_entry); cons_ptr &= PROD_CONS_MASK; } } /* Update consumer pointer and re-arm rx timer interrupt */ writel(cons_ptr, &port->ip_serial_regs->srcir); port->ip_rx_cons = cons_ptr; /* If we have now dipped below the rx high water mark and we have * rx_high interrupt turned off, we can now turn it back on again. */ if ((port->ip_flags & INPUT_HIGH) && (((prod_ptr - cons_ptr) & PROD_CONS_MASK) < ((port-> ip_sscr & SSCR_RX_THRESHOLD) << PROD_CONS_PTR_OFF))) { port->ip_flags &= ~INPUT_HIGH; enable_intrs(port, hooks->intr_rx_high); } return total; } /** * receive_chars - upper level read. * @the_port: port to read from */ static int receive_chars(struct uart_port *the_port) { unsigned char ch[MAX_CHARS]; int read_count = 0, read_room, flip = 0; struct uart_state *state = the_port->state; struct ioc3_port *port = get_ioc3_port(the_port); unsigned long pflags; /* Make sure all the pointers are "good" ones */ if (!state) return 0; if (!(port->ip_flags & INPUT_ENABLE)) return 0; spin_lock_irqsave(&the_port->lock, pflags); read_count = do_read(the_port, ch, MAX_CHARS); if (read_count > 0) { flip = 1; read_room = tty_insert_flip_string(&state->port, ch, read_count); the_port->icount.rx += read_count; } spin_unlock_irqrestore(&the_port->lock, pflags); if (flip) tty_flip_buffer_push(&state->port); return read_count; } /** * ioc3uart_intr_one - lowest level (per port) interrupt handler. * @is : submodule * @idd: driver data * @pending: interrupts to handle */ static int inline ioc3uart_intr_one(struct ioc3_submodule *is, struct ioc3_driver_data *idd, unsigned int pending) { int port_num = GET_PORT_FROM_SIO_IR(pending); struct port_hooks *hooks; unsigned int rx_high_rd_aborted = 0; unsigned long flags; struct uart_port *the_port; struct ioc3_port *port; int loop_counter; struct ioc3_card *card_ptr; unsigned int sio_ir; card_ptr = idd->data[is->id]; port = card_ptr->ic_port[port_num].icp_port; hooks = port->ip_hooks; /* Possible race condition here: The tx_mt interrupt bit may be * cleared without the intervention of the interrupt handler, * e.g. by a write. If the top level interrupt handler reads a * tx_mt, then some other processor does a write, starting up * output, then we come in here, see the tx_mt and stop DMA, the * output started by the other processor will hang. Thus we can * only rely on tx_mt being legitimate if it is read while the * port lock is held. Therefore this bit must be ignored in the * passed in interrupt mask which was read by the top level * interrupt handler since the port lock was not held at the time * it was read. We can only rely on this bit being accurate if it * is read while the port lock is held. So we'll clear it for now, * and reload it later once we have the port lock. */ sio_ir = pending & ~(hooks->intr_tx_mt); spin_lock_irqsave(&port->ip_lock, flags); loop_counter = MAXITER; /* to avoid hangs */ do { uint32_t shadow; if (loop_counter-- <= 0) { printk(KERN_WARNING "IOC3 serial: " "possible hang condition/" "port stuck on interrupt (line %d).\n", ((struct uart_port *)port->ip_port)->line); break; } /* Handle a DCD change */ if (sio_ir & hooks->intr_delta_dcd) { ioc3_ack(is, idd, hooks->intr_delta_dcd); shadow = readl(&port->ip_serial_regs->shadow); if ((port->ip_notify & N_DDCD) && (shadow & SHADOW_DCD) && (port->ip_port)) { the_port = port->ip_port; uart_handle_dcd_change(the_port, shadow & SHADOW_DCD); wake_up_interruptible (&the_port->state->port.delta_msr_wait); } else if ((port->ip_notify & N_DDCD) && !(shadow & SHADOW_DCD)) { /* Flag delta DCD/no DCD */ uart_handle_dcd_change(port->ip_port, shadow & SHADOW_DCD); port->ip_flags |= DCD_ON; } } /* Handle a CTS change */ if (sio_ir & hooks->intr_delta_cts) { ioc3_ack(is, idd, hooks->intr_delta_cts); shadow = readl(&port->ip_serial_regs->shadow); if ((port->ip_notify & N_DCTS) && (port->ip_port)) { the_port = port->ip_port; uart_handle_cts_change(the_port, shadow & SHADOW_CTS); wake_up_interruptible (&the_port->state->port.delta_msr_wait); } } /* rx timeout interrupt. Must be some data available. Put this * before the check for rx_high since servicing this condition * may cause that condition to clear. */ if (sio_ir & hooks->intr_rx_timer) { ioc3_ack(is, idd, hooks->intr_rx_timer); if ((port->ip_notify & N_DATA_READY) && (port->ip_port)) { receive_chars(port->ip_port); } } /* rx high interrupt. Must be after rx_timer. */ else if (sio_ir & hooks->intr_rx_high) { /* Data available, notify upper layer */ if ((port->ip_notify & N_DATA_READY) && port->ip_port) { receive_chars(port->ip_port); } /* We can't ACK this interrupt. If receive_chars didn't * cause the condition to clear, we'll have to disable * the interrupt until the data is drained. * If the read was aborted, don't disable the interrupt * as this may cause us to hang indefinitely. An * aborted read generally means that this interrupt * hasn't been delivered to the cpu yet anyway, even * though we see it as asserted when we read the sio_ir. */ if ((sio_ir = PENDING(card_ptr, idd)) & hooks->intr_rx_high) { if (port->ip_flags & READ_ABORTED) { rx_high_rd_aborted++; } else { card_ptr->ic_enable &= ~hooks->intr_rx_high; port->ip_flags |= INPUT_HIGH; } } } /* We got a low water interrupt: notify upper layer to * send more data. Must come before tx_mt since servicing * this condition may cause that condition to clear. */ if (sio_ir & hooks->intr_tx_explicit) { port->ip_flags &= ~LOWAT_WRITTEN; ioc3_ack(is, idd, hooks->intr_tx_explicit); if (port->ip_notify & N_OUTPUT_LOWAT) ioc3_cb_output_lowat(port); } /* Handle tx_mt. Must come after tx_explicit. */ else if (sio_ir & hooks->intr_tx_mt) { /* If we are expecting a lowat notification * and we get to this point it probably means that for * some reason the tx_explicit didn't work as expected * (that can legitimately happen if the output buffer is * filled up in just the right way). * So send the notification now. */ if (port->ip_notify & N_OUTPUT_LOWAT) { ioc3_cb_output_lowat(port); /* We need to reload the sio_ir since the lowat * call may have caused another write to occur, * clearing the tx_mt condition. */ sio_ir = PENDING(card_ptr, idd); } /* If the tx_mt condition still persists even after the * lowat call, we've got some work to do. */ if (sio_ir & hooks->intr_tx_mt) { /* If we are not currently expecting DMA input, * and the transmitter has just gone idle, * there is no longer any reason for DMA, so * disable it. */ if (!(port->ip_notify & (N_DATA_READY | N_DDCD))) { BUG_ON(!(port->ip_sscr & SSCR_DMA_EN)); port->ip_sscr &= ~SSCR_DMA_EN; writel(port->ip_sscr, &port->ip_serial_regs->sscr); } /* Prevent infinite tx_mt interrupt */ card_ptr->ic_enable &= ~hooks->intr_tx_mt; } } sio_ir = PENDING(card_ptr, idd); /* if the read was aborted and only hooks->intr_rx_high, * clear hooks->intr_rx_high, so we do not loop forever. */ if (rx_high_rd_aborted && (sio_ir == hooks->intr_rx_high)) { sio_ir &= ~hooks->intr_rx_high; } } while (sio_ir & hooks->intr_all); spin_unlock_irqrestore(&port->ip_lock, flags); ioc3_enable(is, idd, card_ptr->ic_enable); return 0; } /** * ioc3uart_intr - field all serial interrupts * @is : submodule * @idd: driver data * @pending: interrupts to handle * */ static int ioc3uart_intr(struct ioc3_submodule *is, struct ioc3_driver_data *idd, unsigned int pending) { int ret = 0; /* * The upper level interrupt handler sends interrupts for both ports * here. So we need to call for each port with its interrupts. */ if (pending & SIO_IR_SA) ret |= ioc3uart_intr_one(is, idd, pending & SIO_IR_SA); if (pending & SIO_IR_SB) ret |= ioc3uart_intr_one(is, idd, pending & SIO_IR_SB); return ret; } /** * ic3_type * @port: Port to operate with (we ignore since we only have one port) * */ static const char *ic3_type(struct uart_port *the_port) { if (IS_RS232(the_port->line)) return "SGI IOC3 Serial [rs232]"; else return "SGI IOC3 Serial [rs422]"; } /** * ic3_tx_empty - Is the transmitter empty? * @port: Port to operate on * */ static unsigned int ic3_tx_empty(struct uart_port *the_port) { unsigned int ret = 0; struct ioc3_port *port = get_ioc3_port(the_port); if (readl(&port->ip_serial_regs->shadow) & SHADOW_TEMT) ret = TIOCSER_TEMT; return ret; } /** * ic3_stop_tx - stop the transmitter * @port: Port to operate on * */ static void ic3_stop_tx(struct uart_port *the_port) { struct ioc3_port *port = get_ioc3_port(the_port); if (port) set_notification(port, N_OUTPUT_LOWAT, 0); } /** * ic3_stop_rx - stop the receiver * @port: Port to operate on * */ static void ic3_stop_rx(struct uart_port *the_port) { struct ioc3_port *port = get_ioc3_port(the_port); if (port) port->ip_flags &= ~INPUT_ENABLE; } /** * null_void_function * @port: Port to operate on * */ static void null_void_function(struct uart_port *the_port) { } /** * ic3_shutdown - shut down the port - free irq and disable * @port: port to shut down * */ static void ic3_shutdown(struct uart_port *the_port) { unsigned long port_flags; struct ioc3_port *port; struct uart_state *state; port = get_ioc3_port(the_port); if (!port) return; state = the_port->state; wake_up_interruptible(&state->port.delta_msr_wait); spin_lock_irqsave(&the_port->lock, port_flags); set_notification(port, N_ALL, 0); spin_unlock_irqrestore(&the_port->lock, port_flags); } /** * ic3_set_mctrl - set control lines (dtr, rts, etc) * @port: Port to operate on * @mctrl: Lines to set/unset * */ static void ic3_set_mctrl(struct uart_port *the_port, unsigned int mctrl) { unsigned char mcr = 0; if (mctrl & TIOCM_RTS) mcr |= UART_MCR_RTS; if (mctrl & TIOCM_DTR) mcr |= UART_MCR_DTR; if (mctrl & TIOCM_OUT1) mcr |= UART_MCR_OUT1; if (mctrl & TIOCM_OUT2) mcr |= UART_MCR_OUT2; if (mctrl & TIOCM_LOOP) mcr |= UART_MCR_LOOP; set_mcr(the_port, mcr, SHADOW_DTR); } /** * ic3_get_mctrl - get control line info * @port: port to operate on * */ static unsigned int ic3_get_mctrl(struct uart_port *the_port) { struct ioc3_port *port = get_ioc3_port(the_port); uint32_t shadow; unsigned int ret = 0; if (!port) return 0; shadow = readl(&port->ip_serial_regs->shadow); if (shadow & SHADOW_DCD) ret |= TIOCM_CD; if (shadow & SHADOW_DR) ret |= TIOCM_DSR; if (shadow & SHADOW_CTS) ret |= TIOCM_CTS; return ret; } /** * ic3_start_tx - Start transmitter. Called with the_port->lock * @port: Port to operate on * */ static void ic3_start_tx(struct uart_port *the_port) { struct ioc3_port *port = get_ioc3_port(the_port); if (port) { set_notification(port, N_OUTPUT_LOWAT, 1); enable_intrs(port, port->ip_hooks->intr_tx_mt); } } /** * ic3_break_ctl - handle breaks * @port: Port to operate on * @break_state: Break state * */ static void ic3_break_ctl(struct uart_port *the_port, int break_state) { } /** * ic3_startup - Start up the serial port - always return 0 (We're always on) * @port: Port to operate on * */ static int ic3_startup(struct uart_port *the_port) { int retval; struct ioc3_port *port; struct ioc3_card *card_ptr; unsigned long port_flags; if (!the_port) { NOT_PROGRESS(); return -ENODEV; } port = get_ioc3_port(the_port); if (!port) { NOT_PROGRESS(); return -ENODEV; } card_ptr = port->ip_card; port->ip_port = the_port; if (!card_ptr) { NOT_PROGRESS(); return -ENODEV; } /* Start up the serial port */ spin_lock_irqsave(&the_port->lock, port_flags); retval = ic3_startup_local(the_port); spin_unlock_irqrestore(&the_port->lock, port_flags); return retval; } /** * ic3_set_termios - set termios stuff * @port: port to operate on * @termios: New settings * @termios: Old * */ static void ic3_set_termios(struct uart_port *the_port, struct ktermios *termios, struct ktermios *old_termios) { unsigned long port_flags; spin_lock_irqsave(&the_port->lock, port_flags); ioc3_change_speed(the_port, termios, old_termios); spin_unlock_irqrestore(&the_port->lock, port_flags); } /** * ic3_request_port - allocate resources for port - no op.... * @port: port to operate on * */ static int ic3_request_port(struct uart_port *port) { return 0; } /* Associate the uart functions above - given to serial core */ static struct uart_ops ioc3_ops = { .tx_empty = ic3_tx_empty, .set_mctrl = ic3_set_mctrl, .get_mctrl = ic3_get_mctrl, .stop_tx = ic3_stop_tx, .start_tx = ic3_start_tx, .stop_rx = ic3_stop_rx, .break_ctl = ic3_break_ctl, .startup = ic3_startup, .shutdown = ic3_shutdown, .set_termios = ic3_set_termios, .type = ic3_type, .release_port = null_void_function, .request_port = ic3_request_port, }; /* * Boot-time initialization code */ static struct uart_driver ioc3_uart = { .owner = THIS_MODULE, .driver_name = "ioc3_serial", .dev_name = DEVICE_NAME, .major = DEVICE_MAJOR, .minor = DEVICE_MINOR, .nr = MAX_LOGICAL_PORTS }; /** * ioc3_serial_core_attach - register with serial core * This is done during pci probing * @is: submodule struct for this * @idd: handle for this card */ static inline int ioc3_serial_core_attach( struct ioc3_submodule *is, struct ioc3_driver_data *idd) { struct ioc3_port *port; struct uart_port *the_port; struct ioc3_card *card_ptr = idd->data[is->id]; int ii, phys_port; struct pci_dev *pdev = idd->pdev; DPRINT_CONFIG(("%s: attach pdev 0x%p - card_ptr 0x%p\n", __func__, pdev, (void *)card_ptr)); if (!card_ptr) return -ENODEV; /* once around for each logical port on this card */ for (ii = 0; ii < LOGICAL_PORTS_PER_CARD; ii++) { phys_port = GET_PHYSICAL_PORT(ii); the_port = &card_ptr->ic_port[phys_port]. icp_uart_port[GET_LOGICAL_PORT(ii)]; port = card_ptr->ic_port[phys_port].icp_port; port->ip_port = the_port; DPRINT_CONFIG(("%s: attach the_port 0x%p / port 0x%p [%d/%d]\n", __func__, (void *)the_port, (void *)port, phys_port, ii)); /* membase, iobase and mapbase just need to be non-0 */ the_port->membase = (unsigned char __iomem *)1; the_port->iobase = (pdev->bus->number << 16) | ii; the_port->line = (Num_of_ioc3_cards << 2) | ii; the_port->mapbase = 1; the_port->type = PORT_16550A; the_port->fifosize = FIFO_SIZE; the_port->ops = &ioc3_ops; the_port->irq = idd->irq_io; the_port->dev = &pdev->dev; if (uart_add_one_port(&ioc3_uart, the_port) < 0) { printk(KERN_WARNING "%s: unable to add port %d bus %d\n", __func__, the_port->line, pdev->bus->number); } else { DPRINT_CONFIG(("IOC3 serial port %d irq %d bus %d\n", the_port->line, the_port->irq, pdev->bus->number)); } /* all ports are rs232 for now */ if (IS_PHYSICAL_PORT(ii)) ioc3_set_proto(port, PROTO_RS232); } return 0; } /** * ioc3uart_remove - register detach function * @is: submodule struct for this submodule * @idd: ioc3 driver data for this submodule */ static int ioc3uart_remove(struct ioc3_submodule *is, struct ioc3_driver_data *idd) { struct ioc3_card *card_ptr = idd->data[is->id]; struct uart_port *the_port; struct ioc3_port *port; int ii; if (card_ptr) { for (ii = 0; ii < LOGICAL_PORTS_PER_CARD; ii++) { the_port = &card_ptr->ic_port[GET_PHYSICAL_PORT(ii)]. icp_uart_port[GET_LOGICAL_PORT(ii)]; if (the_port) uart_remove_one_port(&ioc3_uart, the_port); port = card_ptr->ic_port[GET_PHYSICAL_PORT(ii)].icp_port; if (port && IS_PHYSICAL_PORT(ii) && (GET_PHYSICAL_PORT(ii) == 0)) { pci_free_consistent(port->ip_idd->pdev, TOTAL_RING_BUF_SIZE, (void *)port->ip_cpu_ringbuf, port->ip_dma_ringbuf); kfree(port); card_ptr->ic_port[GET_PHYSICAL_PORT(ii)]. icp_port = NULL; } } kfree(card_ptr); idd->data[is->id] = NULL; } return 0; } /** * ioc3uart_probe - card probe function called from shim driver * @is: submodule struct for this submodule * @idd: ioc3 driver data for this card */ static int ioc3uart_probe(struct ioc3_submodule *is, struct ioc3_driver_data *idd) { struct pci_dev *pdev = idd->pdev; struct ioc3_card *card_ptr; int ret = 0; struct ioc3_port *port; struct ioc3_port *ports[PORTS_PER_CARD]; int phys_port; int cnt; DPRINT_CONFIG(("%s (0x%p, 0x%p)\n", __func__, is, idd)); card_ptr = kzalloc(sizeof(struct ioc3_card), GFP_KERNEL); if (!card_ptr) { printk(KERN_WARNING "ioc3_attach_one" ": unable to get memory for the IOC3\n"); return -ENOMEM; } idd->data[is->id] = card_ptr; Submodule_slot = is->id; writel(((UARTA_BASE >> 3) << SIO_CR_SER_A_BASE_SHIFT) | ((UARTB_BASE >> 3) << SIO_CR_SER_B_BASE_SHIFT) | (0xf << SIO_CR_CMD_PULSE_SHIFT), &idd->vma->sio_cr); pci_write_config_dword(pdev, PCI_LAT, 0xff00); /* Enable serial port mode select generic PIO pins as outputs */ ioc3_gpcr_set(idd, GPCR_UARTA_MODESEL | GPCR_UARTB_MODESEL); /* Create port structures for each port */ for (phys_port = 0; phys_port < PORTS_PER_CARD; phys_port++) { port = kzalloc(sizeof(struct ioc3_port), GFP_KERNEL); if (!port) { printk(KERN_WARNING "IOC3 serial memory not available for port\n"); ret = -ENOMEM; goto out4; } spin_lock_init(&port->ip_lock); /* we need to remember the previous ones, to point back to * them farther down - setting up the ring buffers. */ ports[phys_port] = port; /* init to something useful */ card_ptr->ic_port[phys_port].icp_port = port; port->ip_is = is; port->ip_idd = idd; port->ip_baud = 9600; port->ip_card = card_ptr; port->ip_hooks = &hooks_array[phys_port]; /* Setup each port */ if (phys_port == 0) { port->ip_serial_regs = &idd->vma->port_a; port->ip_uart_regs = &idd->vma->sregs.uarta; DPRINT_CONFIG(("%s : Port A ip_serial_regs 0x%p " "ip_uart_regs 0x%p\n", __func__, (void *)port->ip_serial_regs, (void *)port->ip_uart_regs)); /* setup ring buffers */ port->ip_cpu_ringbuf = pci_alloc_consistent(pdev, TOTAL_RING_BUF_SIZE, &port->ip_dma_ringbuf); BUG_ON(!((((int64_t) port->ip_dma_ringbuf) & (TOTAL_RING_BUF_SIZE - 1)) == 0)); port->ip_inring = RING(port, RX_A); port->ip_outring = RING(port, TX_A); DPRINT_CONFIG(("%s : Port A ip_cpu_ringbuf 0x%p " "ip_dma_ringbuf 0x%p, ip_inring 0x%p " "ip_outring 0x%p\n", __func__, (void *)port->ip_cpu_ringbuf, (void *)port->ip_dma_ringbuf, (void *)port->ip_inring, (void *)port->ip_outring)); } else { port->ip_serial_regs = &idd->vma->port_b; port->ip_uart_regs = &idd->vma->sregs.uartb; DPRINT_CONFIG(("%s : Port B ip_serial_regs 0x%p " "ip_uart_regs 0x%p\n", __func__, (void *)port->ip_serial_regs, (void *)port->ip_uart_regs)); /* share the ring buffers */ port->ip_dma_ringbuf = ports[phys_port - 1]->ip_dma_ringbuf; port->ip_cpu_ringbuf = ports[phys_port - 1]->ip_cpu_ringbuf; port->ip_inring = RING(port, RX_B); port->ip_outring = RING(port, TX_B); DPRINT_CONFIG(("%s : Port B ip_cpu_ringbuf 0x%p " "ip_dma_ringbuf 0x%p, ip_inring 0x%p " "ip_outring 0x%p\n", __func__, (void *)port->ip_cpu_ringbuf, (void *)port->ip_dma_ringbuf, (void *)port->ip_inring, (void *)port->ip_outring)); } DPRINT_CONFIG(("%s : port %d [addr 0x%p] card_ptr 0x%p", __func__, phys_port, (void *)port, (void *)card_ptr)); DPRINT_CONFIG((" ip_serial_regs 0x%p ip_uart_regs 0x%p\n", (void *)port->ip_serial_regs, (void *)port->ip_uart_regs)); /* Initialize the hardware for IOC3 */ port_init(port); DPRINT_CONFIG(("%s: phys_port %d port 0x%p inring 0x%p " "outring 0x%p\n", __func__, phys_port, (void *)port, (void *)port->ip_inring, (void *)port->ip_outring)); } /* register port with the serial core */ if ((ret = ioc3_serial_core_attach(is, idd))) goto out4; Num_of_ioc3_cards++; return ret; /* error exits that give back resources */ out4: for (cnt = 0; cnt < phys_port; cnt++) kfree(ports[cnt]); kfree(card_ptr); return ret; } static struct ioc3_submodule ioc3uart_ops = { .name = "IOC3uart", .probe = ioc3uart_probe, .remove = ioc3uart_remove, /* call .intr for both ports initially */ .irq_mask = SIO_IR_SA | SIO_IR_SB, .intr = ioc3uart_intr, .owner = THIS_MODULE, }; /** * ioc3_detect - module init called, */ static int __init ioc3uart_init(void) { int ret; /* register with serial core */ if ((ret = uart_register_driver(&ioc3_uart)) < 0) { printk(KERN_WARNING "%s: Couldn't register IOC3 uart serial driver\n", __func__); return ret; } ret = ioc3_register_submodule(&ioc3uart_ops); if (ret) uart_unregister_driver(&ioc3_uart); return ret; } static void __exit ioc3uart_exit(void) { ioc3_unregister_submodule(&ioc3uart_ops); uart_unregister_driver(&ioc3_uart); } module_init(ioc3uart_init); module_exit(ioc3uart_exit); MODULE_AUTHOR("Pat Gefre - Silicon Graphics Inc. (SGI) <pfg@sgi.com>"); MODULE_DESCRIPTION("Serial PCI driver module for SGI IOC3 card"); MODULE_LICENSE("GPL");