/* * Copyright (c) 1996, 2003 VIA Networking Technologies, Inc. * All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * * File: card.c * Purpose: Provide functions to setup NIC operation mode * Functions: * s_vSafeResetTx - Rest Tx * CARDvSetRSPINF - Set RSPINF * vUpdateIFS - Update slotTime,SIFS,DIFS, and EIFS * CARDvUpdateBasicTopRate - Update BasicTopRate * CARDbAddBasicRate - Add to BasicRateSet * CARDbIsOFDMinBasicRate - Check if any OFDM rate is in BasicRateSet * CARDvSetLoopbackMode - Set Loopback mode * CARDbSoftwareReset - Sortware reset NIC * CARDqGetTSFOffset - Calculate TSFOffset * CARDbGetCurrentTSF - Read Current NIC TSF counter * CARDqGetNextTBTT - Calculate Next Beacon TSF counter * CARDvSetFirstNextTBTT - Set NIC Beacon time * CARDvUpdateNextTBTT - Sync. NIC Beacon time * CARDbRadioPowerOff - Turn Off NIC Radio Power * CARDbRadioPowerOn - Turn On NIC Radio Power * CARDbSetWEPMode - Set NIC Wep mode * CARDbSetTxPower - Set NIC tx power * * Revision History: * 06-10-2003 Bryan YC Fan: Re-write codes to support VT3253 spec. * 08-26-2003 Kyle Hsu: Modify the defination type of dwIoBase. * 09-01-2003 Bryan YC Fan: Add vUpdateIFS(). * */ #include "tmacro.h" #include "card.h" #include "baseband.h" #include "mac.h" #include "desc.h" #include "rf.h" #include "vntwifi.h" #include "power.h" #include "key.h" #include "rc4.h" #include "country.h" #include "channel.h" /*--------------------- Static Definitions -------------------------*/ #define C_SIFS_A 16 // micro sec. #define C_SIFS_BG 10 #define C_EIFS 80 // micro sec. #define C_SLOT_SHORT 9 // micro sec. #define C_SLOT_LONG 20 #define C_CWMIN_A 15 // slot time #define C_CWMIN_B 31 #define C_CWMAX 1023 // slot time #define WAIT_BEACON_TX_DOWN_TMO 3 // Times //1M, 2M, 5M, 11M, 18M, 24M, 36M, 54M static unsigned char abyDefaultSuppRatesG[] = {WLAN_EID_SUPP_RATES, 8, 0x02, 0x04, 0x0B, 0x16, 0x24, 0x30, 0x48, 0x6C}; //6M, 9M, 12M, 48M static unsigned char abyDefaultExtSuppRatesG[] = {WLAN_EID_EXTSUPP_RATES, 4, 0x0C, 0x12, 0x18, 0x60}; //6M, 9M, 12M, 18M, 24M, 36M, 48M, 54M static unsigned char abyDefaultSuppRatesA[] = {WLAN_EID_SUPP_RATES, 8, 0x0C, 0x12, 0x18, 0x24, 0x30, 0x48, 0x60, 0x6C}; //1M, 2M, 5M, 11M, static unsigned char abyDefaultSuppRatesB[] = {WLAN_EID_SUPP_RATES, 4, 0x02, 0x04, 0x0B, 0x16}; /*--------------------- Static Variables --------------------------*/ static const unsigned short cwRXBCNTSFOff[MAX_RATE] = {17, 17, 17, 17, 34, 23, 17, 11, 8, 5, 4, 3}; /*--------------------- Static Functions --------------------------*/ static void s_vCalculateOFDMRParameter( unsigned char byRate, CARD_PHY_TYPE ePHYType, unsigned char *pbyTxRate, unsigned char *pbyRsvTime ); /*--------------------- Export Functions --------------------------*/ /* * Description: Calculate TxRate and RsvTime fields for RSPINF in OFDM mode. * * Parameters: * In: * wRate - Tx Rate * byPktType - Tx Packet type * Out: * pbyTxRate - pointer to RSPINF TxRate field * pbyRsvTime - pointer to RSPINF RsvTime field * * Return Value: none * */ static void s_vCalculateOFDMRParameter( unsigned char byRate, CARD_PHY_TYPE ePHYType, unsigned char *pbyTxRate, unsigned char *pbyRsvTime ) { switch (byRate) { case RATE_6M: if (ePHYType == PHY_TYPE_11A) {//5GHZ *pbyTxRate = 0x9B; *pbyRsvTime = 44; } else { *pbyTxRate = 0x8B; *pbyRsvTime = 50; } break; case RATE_9M: if (ePHYType == PHY_TYPE_11A) {//5GHZ *pbyTxRate = 0x9F; *pbyRsvTime = 36; } else { *pbyTxRate = 0x8F; *pbyRsvTime = 42; } break; case RATE_12M: if (ePHYType == PHY_TYPE_11A) {//5GHZ *pbyTxRate = 0x9A; *pbyRsvTime = 32; } else { *pbyTxRate = 0x8A; *pbyRsvTime = 38; } break; case RATE_18M: if (ePHYType == PHY_TYPE_11A) {//5GHZ *pbyTxRate = 0x9E; *pbyRsvTime = 28; } else { *pbyTxRate = 0x8E; *pbyRsvTime = 34; } break; case RATE_36M: if (ePHYType == PHY_TYPE_11A) {//5GHZ *pbyTxRate = 0x9D; *pbyRsvTime = 24; } else { *pbyTxRate = 0x8D; *pbyRsvTime = 30; } break; case RATE_48M: if (ePHYType == PHY_TYPE_11A) {//5GHZ *pbyTxRate = 0x98; *pbyRsvTime = 24; } else { *pbyTxRate = 0x88; *pbyRsvTime = 30; } break; case RATE_54M: if (ePHYType == PHY_TYPE_11A) {//5GHZ *pbyTxRate = 0x9C; *pbyRsvTime = 24; } else { *pbyTxRate = 0x8C; *pbyRsvTime = 30; } break; case RATE_24M: default: if (ePHYType == PHY_TYPE_11A) {//5GHZ *pbyTxRate = 0x99; *pbyRsvTime = 28; } else { *pbyTxRate = 0x89; *pbyRsvTime = 34; } break; } } /* * Description: Set RSPINF * * Parameters: * In: * pDevice - The adapter to be set * Out: * none * * Return Value: None. * */ static void s_vSetRSPINF(struct vnt_private *pDevice, CARD_PHY_TYPE ePHYType, void *pvSupportRateIEs, void *pvExtSupportRateIEs) { union vnt_phy_field_swap phy; unsigned char byTxRate = 0, byRsvTime = 0; // For OFDM //Set to Page1 MACvSelectPage1(pDevice->PortOffset); /* RSPINF_b_1 */ vnt_get_phy_field(pDevice, 14, VNTWIFIbyGetACKTxRate(RATE_1M, pvSupportRateIEs, pvExtSupportRateIEs), PK_TYPE_11B, &phy.field_read); /* swap over to get correct write order */ swap(phy.swap[0], phy.swap[1]); VNSvOutPortD(pDevice->PortOffset + MAC_REG_RSPINF_B_1, phy.field_write); /* RSPINF_b_2 */ vnt_get_phy_field(pDevice, 14, VNTWIFIbyGetACKTxRate(RATE_2M, pvSupportRateIEs, pvExtSupportRateIEs), PK_TYPE_11B, &phy.field_read); swap(phy.swap[0], phy.swap[1]); VNSvOutPortD(pDevice->PortOffset + MAC_REG_RSPINF_B_2, phy.field_write); /* RSPINF_b_5 */ vnt_get_phy_field(pDevice, 14, VNTWIFIbyGetACKTxRate(RATE_5M, pvSupportRateIEs, pvExtSupportRateIEs), PK_TYPE_11B, &phy.field_read); swap(phy.swap[0], phy.swap[1]); VNSvOutPortD(pDevice->PortOffset + MAC_REG_RSPINF_B_5, phy.field_write); /* RSPINF_b_11 */ vnt_get_phy_field(pDevice, 14, VNTWIFIbyGetACKTxRate(RATE_11M, pvSupportRateIEs, pvExtSupportRateIEs), PK_TYPE_11B, &phy.field_read); swap(phy.swap[0], phy.swap[1]); VNSvOutPortD(pDevice->PortOffset + MAC_REG_RSPINF_B_11, phy.field_write); //RSPINF_a_6 s_vCalculateOFDMRParameter(RATE_6M, ePHYType, &byTxRate, &byRsvTime); VNSvOutPortW(pDevice->PortOffset + MAC_REG_RSPINF_A_6, MAKEWORD(byTxRate, byRsvTime)); //RSPINF_a_9 s_vCalculateOFDMRParameter(RATE_9M, ePHYType, &byTxRate, &byRsvTime); VNSvOutPortW(pDevice->PortOffset + MAC_REG_RSPINF_A_9, MAKEWORD(byTxRate, byRsvTime)); //RSPINF_a_12 s_vCalculateOFDMRParameter(RATE_12M, ePHYType, &byTxRate, &byRsvTime); VNSvOutPortW(pDevice->PortOffset + MAC_REG_RSPINF_A_12, MAKEWORD(byTxRate, byRsvTime)); //RSPINF_a_18 s_vCalculateOFDMRParameter(RATE_18M, ePHYType, &byTxRate, &byRsvTime); VNSvOutPortW(pDevice->PortOffset + MAC_REG_RSPINF_A_18, MAKEWORD(byTxRate, byRsvTime)); //RSPINF_a_24 s_vCalculateOFDMRParameter(RATE_24M, ePHYType, &byTxRate, &byRsvTime); VNSvOutPortW(pDevice->PortOffset + MAC_REG_RSPINF_A_24, MAKEWORD(byTxRate, byRsvTime)); //RSPINF_a_36 s_vCalculateOFDMRParameter( VNTWIFIbyGetACKTxRate(RATE_36M, pvSupportRateIEs, pvExtSupportRateIEs), ePHYType, &byTxRate, &byRsvTime); VNSvOutPortW(pDevice->PortOffset + MAC_REG_RSPINF_A_36, MAKEWORD(byTxRate, byRsvTime)); //RSPINF_a_48 s_vCalculateOFDMRParameter( VNTWIFIbyGetACKTxRate(RATE_48M, pvSupportRateIEs, pvExtSupportRateIEs), ePHYType, &byTxRate, &byRsvTime); VNSvOutPortW(pDevice->PortOffset + MAC_REG_RSPINF_A_48, MAKEWORD(byTxRate, byRsvTime)); //RSPINF_a_54 s_vCalculateOFDMRParameter( VNTWIFIbyGetACKTxRate(RATE_54M, pvSupportRateIEs, pvExtSupportRateIEs), ePHYType, &byTxRate, &byRsvTime); VNSvOutPortW(pDevice->PortOffset + MAC_REG_RSPINF_A_54, MAKEWORD(byTxRate, byRsvTime)); //RSPINF_a_72 VNSvOutPortW(pDevice->PortOffset + MAC_REG_RSPINF_A_72, MAKEWORD(byTxRate, byRsvTime)); //Set to Page0 MACvSelectPage0(pDevice->PortOffset); } /*--------------------- Export Functions --------------------------*/ /* * Description: Get Card short preamble option value * * Parameters: * In: * pDevice - The adapter to be set * Out: * none * * Return Value: true if short preamble; otherwise false * */ bool CARDbIsShortPreamble(struct vnt_private *pDevice) { if (pDevice->byPreambleType == 0) return false; return true; } /* * Description: Get Card short slot time option value * * Parameters: * In: * pDevice - The adapter to be set * Out: * none * * Return Value: true if short slot time; otherwise false * */ bool CARDbIsShorSlotTime(struct vnt_private *pDevice) { return pDevice->bShortSlotTime; } /* * Description: Update IFS * * Parameters: * In: * pDevice - The adapter to be set * Out: * none * * Return Value: None. * */ bool CARDbSetPhyParameter(struct vnt_private *pDevice, CARD_PHY_TYPE ePHYType, unsigned short wCapInfo, unsigned char byERPField, void *pvSupportRateIEs, void *pvExtSupportRateIEs) { unsigned char byCWMaxMin = 0; unsigned char bySlot = 0; unsigned char bySIFS = 0; unsigned char byDIFS = 0; unsigned char byData; PWLAN_IE_SUPP_RATES pSupportRates = (PWLAN_IE_SUPP_RATES) pvSupportRateIEs; PWLAN_IE_SUPP_RATES pExtSupportRates = (PWLAN_IE_SUPP_RATES) pvExtSupportRateIEs; //Set SIFS, DIFS, EIFS, SlotTime, CwMin if (ePHYType == PHY_TYPE_11A) { if (pSupportRates == NULL) pSupportRates = (PWLAN_IE_SUPP_RATES) abyDefaultSuppRatesA; if (pDevice->byRFType == RF_AIROHA7230) { // AL7230 use single PAPE and connect to PAPE_2.4G MACvSetBBType(pDevice->PortOffset, BB_TYPE_11G); pDevice->abyBBVGA[0] = 0x20; pDevice->abyBBVGA[2] = 0x10; pDevice->abyBBVGA[3] = 0x10; BBbReadEmbedded(pDevice->PortOffset, 0xE7, &byData); if (byData == 0x1C) BBbWriteEmbedded(pDevice->PortOffset, 0xE7, pDevice->abyBBVGA[0]); } else if (pDevice->byRFType == RF_UW2452) { MACvSetBBType(pDevice->PortOffset, BB_TYPE_11A); pDevice->abyBBVGA[0] = 0x18; BBbReadEmbedded(pDevice->PortOffset, 0xE7, &byData); if (byData == 0x14) { BBbWriteEmbedded(pDevice->PortOffset, 0xE7, pDevice->abyBBVGA[0]); BBbWriteEmbedded(pDevice->PortOffset, 0xE1, 0x57); } } else { MACvSetBBType(pDevice->PortOffset, BB_TYPE_11A); } BBbWriteEmbedded(pDevice->PortOffset, 0x88, 0x03); bySlot = C_SLOT_SHORT; bySIFS = C_SIFS_A; byDIFS = C_SIFS_A + 2*C_SLOT_SHORT; byCWMaxMin = 0xA4; } else if (ePHYType == PHY_TYPE_11B) { if (pSupportRates == NULL) pSupportRates = (PWLAN_IE_SUPP_RATES) abyDefaultSuppRatesB; MACvSetBBType(pDevice->PortOffset, BB_TYPE_11B); if (pDevice->byRFType == RF_AIROHA7230) { pDevice->abyBBVGA[0] = 0x1C; pDevice->abyBBVGA[2] = 0x00; pDevice->abyBBVGA[3] = 0x00; BBbReadEmbedded(pDevice->PortOffset, 0xE7, &byData); if (byData == 0x20) BBbWriteEmbedded(pDevice->PortOffset, 0xE7, pDevice->abyBBVGA[0]); } else if (pDevice->byRFType == RF_UW2452) { pDevice->abyBBVGA[0] = 0x14; BBbReadEmbedded(pDevice->PortOffset, 0xE7, &byData); if (byData == 0x18) { BBbWriteEmbedded(pDevice->PortOffset, 0xE7, pDevice->abyBBVGA[0]); BBbWriteEmbedded(pDevice->PortOffset, 0xE1, 0xD3); } } BBbWriteEmbedded(pDevice->PortOffset, 0x88, 0x02); bySlot = C_SLOT_LONG; bySIFS = C_SIFS_BG; byDIFS = C_SIFS_BG + 2*C_SLOT_LONG; byCWMaxMin = 0xA5; } else {// PK_TYPE_11GA & PK_TYPE_11GB if (pSupportRates == NULL) { pSupportRates = (PWLAN_IE_SUPP_RATES) abyDefaultSuppRatesG; pExtSupportRates = (PWLAN_IE_SUPP_RATES) abyDefaultExtSuppRatesG; } MACvSetBBType(pDevice->PortOffset, BB_TYPE_11G); if (pDevice->byRFType == RF_AIROHA7230) { pDevice->abyBBVGA[0] = 0x1C; pDevice->abyBBVGA[2] = 0x00; pDevice->abyBBVGA[3] = 0x00; BBbReadEmbedded(pDevice->PortOffset, 0xE7, &byData); if (byData == 0x20) BBbWriteEmbedded(pDevice->PortOffset, 0xE7, pDevice->abyBBVGA[0]); } else if (pDevice->byRFType == RF_UW2452) { pDevice->abyBBVGA[0] = 0x14; BBbReadEmbedded(pDevice->PortOffset, 0xE7, &byData); if (byData == 0x18) { BBbWriteEmbedded(pDevice->PortOffset, 0xE7, pDevice->abyBBVGA[0]); BBbWriteEmbedded(pDevice->PortOffset, 0xE1, 0xD3); } } BBbWriteEmbedded(pDevice->PortOffset, 0x88, 0x08); bySIFS = C_SIFS_BG; if (VNTWIFIbIsShortSlotTime(wCapInfo)) { bySlot = C_SLOT_SHORT; byDIFS = C_SIFS_BG + 2*C_SLOT_SHORT; } else { bySlot = C_SLOT_LONG; byDIFS = C_SIFS_BG + 2*C_SLOT_LONG; } if (VNTWIFIbyGetMaxSupportRate(pSupportRates, pExtSupportRates) > RATE_11M) byCWMaxMin = 0xA4; else byCWMaxMin = 0xA5; if (pDevice->bProtectMode != VNTWIFIbIsProtectMode(byERPField)) { pDevice->bProtectMode = VNTWIFIbIsProtectMode(byERPField); if (pDevice->bProtectMode) MACvEnableProtectMD(pDevice->PortOffset); else MACvDisableProtectMD(pDevice->PortOffset); } if (pDevice->bBarkerPreambleMd != VNTWIFIbIsBarkerMode(byERPField)) { pDevice->bBarkerPreambleMd = VNTWIFIbIsBarkerMode(byERPField); if (pDevice->bBarkerPreambleMd) MACvEnableBarkerPreambleMd(pDevice->PortOffset); else MACvDisableBarkerPreambleMd(pDevice->PortOffset); } } if (pDevice->byRFType == RF_RFMD2959) { // bcs TX_PE will reserve 3 us // hardware's processing time here is 2 us. bySIFS -= 3; byDIFS -= 3; //{{ RobertYu: 20041202 //// TX_PE will reserve 3 us for MAX2829 A mode only, it is for better TX throughput //// MAC will need 2 us to process, so the SIFS, DIFS can be shorter by 2 us. } if (pDevice->bySIFS != bySIFS) { pDevice->bySIFS = bySIFS; VNSvOutPortB(pDevice->PortOffset + MAC_REG_SIFS, pDevice->bySIFS); } if (pDevice->byDIFS != byDIFS) { pDevice->byDIFS = byDIFS; VNSvOutPortB(pDevice->PortOffset + MAC_REG_DIFS, pDevice->byDIFS); } if (pDevice->byEIFS != C_EIFS) { pDevice->byEIFS = C_EIFS; VNSvOutPortB(pDevice->PortOffset + MAC_REG_EIFS, pDevice->byEIFS); } if (pDevice->bySlot != bySlot) { pDevice->bySlot = bySlot; VNSvOutPortB(pDevice->PortOffset + MAC_REG_SLOT, pDevice->bySlot); if (pDevice->bySlot == C_SLOT_SHORT) pDevice->bShortSlotTime = true; else pDevice->bShortSlotTime = false; BBvSetShortSlotTime(pDevice); } if (pDevice->byCWMaxMin != byCWMaxMin) { pDevice->byCWMaxMin = byCWMaxMin; VNSvOutPortB(pDevice->PortOffset + MAC_REG_CWMAXMIN0, pDevice->byCWMaxMin); } if (VNTWIFIbIsShortPreamble(wCapInfo)) pDevice->byPreambleType = pDevice->byShortPreamble; else pDevice->byPreambleType = 0; s_vSetRSPINF(pDevice, ePHYType, pSupportRates, pExtSupportRates); pDevice->eCurrentPHYType = ePHYType; // set for NDIS OID_802_11SUPPORTED_RATES return true; } /* * Description: Sync. TSF counter to BSS * Get TSF offset and write to HW * * Parameters: * In: * pDevice - The adapter to be sync. * byRxRate - data rate of receive beacon * qwBSSTimestamp - Rx BCN's TSF * qwLocalTSF - Local TSF * Out: * none * * Return Value: none * */ bool CARDbUpdateTSF(struct vnt_private *pDevice, unsigned char byRxRate, u64 qwBSSTimestamp, u64 qwLocalTSF) { u64 qwTSFOffset = 0; if (qwBSSTimestamp != qwLocalTSF) { qwTSFOffset = CARDqGetTSFOffset(byRxRate, qwBSSTimestamp, qwLocalTSF); // adjust TSF // HW's TSF add TSF Offset reg VNSvOutPortD(pDevice->PortOffset + MAC_REG_TSFOFST, (u32)qwTSFOffset); VNSvOutPortD(pDevice->PortOffset + MAC_REG_TSFOFST + 4, (u32)(qwTSFOffset >> 32)); MACvRegBitsOn(pDevice->PortOffset, MAC_REG_TFTCTL, TFTCTL_TSFSYNCEN); } return true; } /* * Description: Set NIC TSF counter for first Beacon time * Get NEXTTBTT from adjusted TSF and Beacon Interval * * Parameters: * In: * pDevice - The adapter to be set. * wBeaconInterval - Beacon Interval * Out: * none * * Return Value: true if succeed; otherwise false * */ bool CARDbSetBeaconPeriod(struct vnt_private *pDevice, unsigned short wBeaconInterval) { u64 qwNextTBTT = 0; CARDbGetCurrentTSF(pDevice->PortOffset, &qwNextTBTT); //Get Local TSF counter qwNextTBTT = CARDqGetNextTBTT(qwNextTBTT, wBeaconInterval); // set HW beacon interval VNSvOutPortW(pDevice->PortOffset + MAC_REG_BI, wBeaconInterval); pDevice->wBeaconInterval = wBeaconInterval; // Set NextTBTT VNSvOutPortD(pDevice->PortOffset + MAC_REG_NEXTTBTT, (u32)qwNextTBTT); VNSvOutPortD(pDevice->PortOffset + MAC_REG_NEXTTBTT + 4, (u32)(qwNextTBTT >> 32)); MACvRegBitsOn(pDevice->PortOffset, MAC_REG_TFTCTL, TFTCTL_TBTTSYNCEN); return true; } /* * Description: Card Stop Hardware Tx * * Parameters: * In: * pDeviceHandler - The adapter to be set * ePktType - Packet type to stop * Out: * none * * Return Value: true if all data packet complete; otherwise false. * */ bool CARDbStopTxPacket(struct vnt_private *pDevice, CARD_PKT_TYPE ePktType) { if (ePktType == PKT_TYPE_802_11_ALL) { pDevice->bStopBeacon = true; pDevice->bStopTx0Pkt = true; pDevice->bStopDataPkt = true; } else if (ePktType == PKT_TYPE_802_11_BCN) { pDevice->bStopBeacon = true; } else if (ePktType == PKT_TYPE_802_11_MNG) { pDevice->bStopTx0Pkt = true; } else if (ePktType == PKT_TYPE_802_11_DATA) { pDevice->bStopDataPkt = true; } if (pDevice->bStopBeacon == true) { if (pDevice->bIsBeaconBufReadySet == true) { if (pDevice->cbBeaconBufReadySetCnt < WAIT_BEACON_TX_DOWN_TMO) { pDevice->cbBeaconBufReadySetCnt++; return false; } } pDevice->bIsBeaconBufReadySet = false; pDevice->cbBeaconBufReadySetCnt = 0; MACvRegBitsOff(pDevice->PortOffset, MAC_REG_TCR, TCR_AUTOBCNTX); } // wait all TD0 complete if (pDevice->bStopTx0Pkt == true) { if (pDevice->iTDUsed[TYPE_TXDMA0] != 0) return false; } // wait all Data TD complete if (pDevice->bStopDataPkt == true) { if (pDevice->iTDUsed[TYPE_AC0DMA] != 0) return false; } return true; } /* * Description: Card Start Hardware Tx * * Parameters: * In: * pDeviceHandler - The adapter to be set * ePktType - Packet type to start * Out: * none * * Return Value: true if success; false if failed. * */ bool CARDbStartTxPacket(struct vnt_private *pDevice, CARD_PKT_TYPE ePktType) { if (ePktType == PKT_TYPE_802_11_ALL) { pDevice->bStopBeacon = false; pDevice->bStopTx0Pkt = false; pDevice->bStopDataPkt = false; } else if (ePktType == PKT_TYPE_802_11_BCN) { pDevice->bStopBeacon = false; } else if (ePktType == PKT_TYPE_802_11_MNG) { pDevice->bStopTx0Pkt = false; } else if (ePktType == PKT_TYPE_802_11_DATA) { pDevice->bStopDataPkt = false; } if ((pDevice->bStopBeacon == false) && (pDevice->bBeaconBufReady == true) && (pDevice->op_mode == NL80211_IFTYPE_ADHOC)) { MACvRegBitsOn(pDevice->PortOffset, MAC_REG_TCR, TCR_AUTOBCNTX); } return true; } /* * Description: Card Set BSSID value * * Parameters: * In: * pDeviceHandler - The adapter to be set * pbyBSSID - pointer to BSSID field * bAdhoc - flag to indicate IBSS * Out: * none * * Return Value: true if success; false if failed. * */ bool CARDbSetBSSID(struct vnt_private *pDevice, unsigned char *pbyBSSID, enum nl80211_iftype op_mode) { MACvWriteBSSIDAddress(pDevice->PortOffset, pbyBSSID); memcpy(pDevice->abyBSSID, pbyBSSID, WLAN_BSSID_LEN); if (op_mode == NL80211_IFTYPE_ADHOC) MACvRegBitsOn(pDevice->PortOffset, MAC_REG_HOSTCR, HOSTCR_ADHOC); else MACvRegBitsOff(pDevice->PortOffset, MAC_REG_HOSTCR, HOSTCR_ADHOC); if (op_mode == NL80211_IFTYPE_AP) MACvRegBitsOn(pDevice->PortOffset, MAC_REG_HOSTCR, HOSTCR_AP); else MACvRegBitsOff(pDevice->PortOffset, MAC_REG_HOSTCR, HOSTCR_AP); if (op_mode == NL80211_IFTYPE_UNSPECIFIED) { MACvRegBitsOff(pDevice->PortOffset, MAC_REG_RCR, RCR_BSSID); pDevice->bBSSIDFilter = false; pDevice->byRxMode &= ~RCR_BSSID; pr_debug("wcmd: rx_mode = %x\n", pDevice->byRxMode); } else { if (is_zero_ether_addr(pDevice->abyBSSID) == false) { MACvRegBitsOn(pDevice->PortOffset, MAC_REG_RCR, RCR_BSSID); pDevice->bBSSIDFilter = true; pDevice->byRxMode |= RCR_BSSID; } pr_debug("wmgr: rx_mode = %x\n", pDevice->byRxMode); } // Adopt BSS state in Adapter Device Object pDevice->op_mode = op_mode; return true; } /* * Description: Card indicate status * * Parameters: * In: * pDeviceHandler - The adapter to be set * eStatus - Status * Out: * none * * Return Value: true if success; false if failed. * */ /* * Description: Save Assoc info. contain in assoc. response frame * * Parameters: * In: * pDevice - The adapter to be set * wCapabilityInfo - Capability information * wStatus - Status code * wAID - Assoc. ID * uLen - Length of IEs * pbyIEs - pointer to IEs * Out: * none * * Return Value: true if succeed; otherwise false * */ bool CARDbSetTxDataRate( struct vnt_private *pDevice, unsigned short wDataRate ) { pDevice->wCurrentRate = wDataRate; return true; } /*+ * * Routine Description: * Consider to power down when no more packets to tx or rx. * * Parameters: * In: * pDevice - The adapter to be set * Out: * none * * Return Value: true if power down success; otherwise false * -*/ bool CARDbPowerDown( struct vnt_private *pDevice ) { unsigned int uIdx; // check if already in Doze mode if (MACbIsRegBitsOn(pDevice->PortOffset, MAC_REG_PSCTL, PSCTL_PS)) return true; // Froce PSEN on MACvRegBitsOn(pDevice->PortOffset, MAC_REG_PSCTL, PSCTL_PSEN); // check if all TD are empty, for (uIdx = 0; uIdx < TYPE_MAXTD; uIdx++) { if (pDevice->iTDUsed[uIdx] != 0) return false; } MACvRegBitsOn(pDevice->PortOffset, MAC_REG_PSCTL, PSCTL_GO2DOZE); pr_debug("Go to Doze ZZZZZZZZZZZZZZZ\n"); return true; } /* * Description: Turn off Radio power * * Parameters: * In: * pDevice - The adapter to be turned off * Out: * none * * Return Value: true if success; otherwise false * */ bool CARDbRadioPowerOff(struct vnt_private *pDevice) { bool bResult = true; if (pDevice->bRadioOff == true) return true; switch (pDevice->byRFType) { case RF_RFMD2959: MACvWordRegBitsOff(pDevice->PortOffset, MAC_REG_SOFTPWRCTL, SOFTPWRCTL_TXPEINV); MACvWordRegBitsOn(pDevice->PortOffset, MAC_REG_SOFTPWRCTL, SOFTPWRCTL_SWPE1); break; case RF_AIROHA: case RF_AL2230S: case RF_AIROHA7230: //RobertYu:20050104 MACvWordRegBitsOff(pDevice->PortOffset, MAC_REG_SOFTPWRCTL, SOFTPWRCTL_SWPE2); MACvWordRegBitsOff(pDevice->PortOffset, MAC_REG_SOFTPWRCTL, SOFTPWRCTL_SWPE3); break; } MACvRegBitsOff(pDevice->PortOffset, MAC_REG_HOSTCR, HOSTCR_RXON); BBvSetDeepSleep(pDevice->PortOffset, pDevice->byLocalID); pDevice->bRadioOff = true; //2007-0409-03,<Add> by chester pr_debug("chester power off\n"); MACvRegBitsOn(pDevice->PortOffset, MAC_REG_GPIOCTL0, LED_ACTSET); //LED issue return bResult; } /* * Description: Turn on Radio power * * Parameters: * In: * pDevice - The adapter to be turned on * Out: * none * * Return Value: true if success; otherwise false * */ bool CARDbRadioPowerOn(struct vnt_private *pDevice) { bool bResult = true; pr_debug("chester power on\n"); if (pDevice->bRadioControlOff == true) { if (pDevice->bHWRadioOff == true) pr_debug("chester bHWRadioOff\n"); if (pDevice->bRadioControlOff == true) pr_debug("chester bRadioControlOff\n"); return false; } if (pDevice->bRadioOff == false) { pr_debug("chester pbRadioOff\n"); return true; } BBvExitDeepSleep(pDevice->PortOffset, pDevice->byLocalID); MACvRegBitsOn(pDevice->PortOffset, MAC_REG_HOSTCR, HOSTCR_RXON); switch (pDevice->byRFType) { case RF_RFMD2959: MACvWordRegBitsOn(pDevice->PortOffset, MAC_REG_SOFTPWRCTL, SOFTPWRCTL_TXPEINV); MACvWordRegBitsOff(pDevice->PortOffset, MAC_REG_SOFTPWRCTL, SOFTPWRCTL_SWPE1); break; case RF_AIROHA: case RF_AL2230S: case RF_AIROHA7230: //RobertYu:20050104 MACvWordRegBitsOn(pDevice->PortOffset, MAC_REG_SOFTPWRCTL, (SOFTPWRCTL_SWPE2 | SOFTPWRCTL_SWPE3)); break; } pDevice->bRadioOff = false; // 2007-0409-03,<Add> by chester pr_debug("chester power on\n"); MACvRegBitsOff(pDevice->PortOffset, MAC_REG_GPIOCTL0, LED_ACTSET); //LED issue return bResult; } bool CARDbRemoveKey(struct vnt_private *pDevice, unsigned char *pbyBSSID) { KeybRemoveAllKey(&(pDevice->sKey), pbyBSSID, pDevice->PortOffset); return true; } /* * * Description: * Add BSSID in PMKID Candidate list. * * Parameters: * In: * hDeviceContext - device structure point * pbyBSSID - BSSID address for adding * wRSNCap - BSS's RSN capability * Out: * none * * Return Value: none. * -*/ bool CARDbAdd_PMKID_Candidate( struct vnt_private *pDevice, unsigned char *pbyBSSID, bool bRSNCapExist, unsigned short wRSNCap ) { struct pmkid_candidate *pCandidateList; unsigned int ii = 0; pr_debug("bAdd_PMKID_Candidate START: (%d)\n", (int)pDevice->gsPMKIDCandidate.NumCandidates); if (pDevice->gsPMKIDCandidate.NumCandidates >= MAX_PMKIDLIST) { pr_debug("vFlush_PMKID_Candidate: 3\n"); memset(&pDevice->gsPMKIDCandidate, 0, sizeof(SPMKIDCandidateEvent)); } for (ii = 0; ii < 6; ii++) pr_debug("%02X ", *(pbyBSSID + ii)); pr_debug("\n"); // Update Old Candidate for (ii = 0; ii < pDevice->gsPMKIDCandidate.NumCandidates; ii++) { pCandidateList = &pDevice->gsPMKIDCandidate.CandidateList[ii]; if (!memcmp(pCandidateList->BSSID, pbyBSSID, ETH_ALEN)) { if (bRSNCapExist && (wRSNCap & BIT0)) pCandidateList->Flags |= NDIS_802_11_PMKID_CANDIDATE_PREAUTH_ENABLED; else pCandidateList->Flags &= ~(NDIS_802_11_PMKID_CANDIDATE_PREAUTH_ENABLED); return true; } } // New Candidate pCandidateList = &pDevice->gsPMKIDCandidate.CandidateList[pDevice->gsPMKIDCandidate.NumCandidates]; if (bRSNCapExist && (wRSNCap & BIT0)) pCandidateList->Flags |= NDIS_802_11_PMKID_CANDIDATE_PREAUTH_ENABLED; else pCandidateList->Flags &= ~(NDIS_802_11_PMKID_CANDIDATE_PREAUTH_ENABLED); memcpy(pCandidateList->BSSID, pbyBSSID, ETH_ALEN); pDevice->gsPMKIDCandidate.NumCandidates++; pr_debug("NumCandidates:%d\n", (int)pDevice->gsPMKIDCandidate.NumCandidates); return true; } void * CARDpGetCurrentAddress( struct vnt_private *pDevice ) { return pDevice->abyCurrentNetAddr; } /* * * Description: * Start Spectrum Measure defined in 802.11h * * Parameters: * In: * hDeviceContext - device structure point * Out: * none * * Return Value: none. * -*/ bool CARDbStartMeasure( struct vnt_private *pDevice, void *pvMeasureEIDs, unsigned int uNumOfMeasureEIDs ) { PWLAN_IE_MEASURE_REQ pEID = (PWLAN_IE_MEASURE_REQ) pvMeasureEIDs; u64 qwCurrTSF; u64 qwStartTSF; bool bExpired = true; unsigned short wDuration = 0; if ((pEID == NULL) || (uNumOfMeasureEIDs == 0)) { return true; } CARDbGetCurrentTSF(pDevice->PortOffset, &qwCurrTSF); if (pDevice->bMeasureInProgress == true) { pDevice->bMeasureInProgress = false; VNSvOutPortB(pDevice->PortOffset + MAC_REG_RCR, pDevice->byOrgRCR); MACvSelectPage1(pDevice->PortOffset); VNSvOutPortD(pDevice->PortOffset + MAC_REG_MAR0, pDevice->dwOrgMAR0); VNSvOutPortD(pDevice->PortOffset + MAC_REG_MAR4, pDevice->dwOrgMAR4); // clear measure control MACvRegBitsOff(pDevice->PortOffset, MAC_REG_MSRCTL, MSRCTL_EN); MACvSelectPage0(pDevice->PortOffset); set_channel(pDevice, pDevice->byOrgChannel); MACvSelectPage1(pDevice->PortOffset); MACvRegBitsOn(pDevice->PortOffset, MAC_REG_MSRCTL+1, MSRCTL1_TXPAUSE); MACvSelectPage0(pDevice->PortOffset); } pDevice->uNumOfMeasureEIDs = uNumOfMeasureEIDs; do { pDevice->pCurrMeasureEID = pEID; pEID++; pDevice->uNumOfMeasureEIDs--; if (pDevice->byLocalID > REV_ID_VT3253_B1) { qwStartTSF = *((u64 *)(pDevice->pCurrMeasureEID->sReq.abyStartTime)); wDuration = *((unsigned short *)(pDevice->pCurrMeasureEID->sReq.abyDuration)); wDuration += 1; // 1 TU for channel switching if (qwStartTSF == 0) { // start immediately by setting start TSF == current TSF + 2 TU qwStartTSF = qwCurrTSF + 2048; bExpired = false; break; } else { // start at setting start TSF - 1TU(for channel switching) qwStartTSF -= 1024; } if (qwCurrTSF < qwStartTSF) { bExpired = false; break; } VNTWIFIbMeasureReport(pDevice->pMgmt, false, pDevice->pCurrMeasureEID, MEASURE_MODE_LATE, pDevice->byBasicMap, pDevice->byCCAFraction, pDevice->abyRPIs ); } else { // hardware do not support measure VNTWIFIbMeasureReport(pDevice->pMgmt, false, pDevice->pCurrMeasureEID, MEASURE_MODE_INCAPABLE, pDevice->byBasicMap, pDevice->byCCAFraction, pDevice->abyRPIs ); } } while (pDevice->uNumOfMeasureEIDs != 0); if (!bExpired) { MACvSelectPage1(pDevice->PortOffset); VNSvOutPortD(pDevice->PortOffset + MAC_REG_MSRSTART, (u32)qwStartTSF); VNSvOutPortD(pDevice->PortOffset + MAC_REG_MSRSTART + 4, (u32)(qwStartTSF >> 32)); VNSvOutPortW(pDevice->PortOffset + MAC_REG_MSRDURATION, wDuration); MACvRegBitsOn(pDevice->PortOffset, MAC_REG_MSRCTL, MSRCTL_EN); MACvSelectPage0(pDevice->PortOffset); } else { // all measure start time expired we should complete action VNTWIFIbMeasureReport(pDevice->pMgmt, true, NULL, 0, pDevice->byBasicMap, pDevice->byCCAFraction, pDevice->abyRPIs ); } return true; } /* * * Description: * Do Channel Switch defined in 802.11h * * Parameters: * In: * hDeviceContext - device structure point * Out: * none * * Return Value: none. * -*/ bool CARDbChannelSwitch( struct vnt_private *pDevice, unsigned char byMode, unsigned char byNewChannel, unsigned char byCount ) { bool bResult = true; if (byCount == 0) { bResult = set_channel(pDevice, byNewChannel); VNTWIFIbChannelSwitch(pDevice->pMgmt, byNewChannel); MACvSelectPage1(pDevice->PortOffset); MACvRegBitsOn(pDevice->PortOffset, MAC_REG_MSRCTL+1, MSRCTL1_TXPAUSE); MACvSelectPage0(pDevice->PortOffset); return bResult; } pDevice->byChannelSwitchCount = byCount; pDevice->byNewChannel = byNewChannel; pDevice->bChannelSwitch = true; if (byMode == 1) bResult = CARDbStopTxPacket(pDevice, PKT_TYPE_802_11_ALL); return bResult; } /* * * Description: * Handle Quiet EID defined in 802.11h * * Parameters: * In: * hDeviceContext - device structure point * Out: * none * * Return Value: none. * -*/ bool CARDbSetQuiet( struct vnt_private *pDevice, bool bResetQuiet, unsigned char byQuietCount, unsigned char byQuietPeriod, unsigned short wQuietDuration, unsigned short wQuietOffset ) { unsigned int ii = 0; if (bResetQuiet) { MACvRegBitsOff(pDevice->PortOffset, MAC_REG_MSRCTL, (MSRCTL_QUIETTXCHK | MSRCTL_QUIETEN)); for (ii = 0; ii < MAX_QUIET_COUNT; ii++) pDevice->sQuiet[ii].bEnable = false; pDevice->uQuietEnqueue = 0; pDevice->bEnableFirstQuiet = false; pDevice->bQuietEnable = false; pDevice->byQuietStartCount = byQuietCount; } if (pDevice->sQuiet[pDevice->uQuietEnqueue].bEnable == false) { pDevice->sQuiet[pDevice->uQuietEnqueue].bEnable = true; pDevice->sQuiet[pDevice->uQuietEnqueue].byPeriod = byQuietPeriod; pDevice->sQuiet[pDevice->uQuietEnqueue].wDuration = wQuietDuration; pDevice->sQuiet[pDevice->uQuietEnqueue].dwStartTime = (unsigned long) byQuietCount; pDevice->sQuiet[pDevice->uQuietEnqueue].dwStartTime *= pDevice->wBeaconInterval; pDevice->sQuiet[pDevice->uQuietEnqueue].dwStartTime += wQuietOffset; pDevice->uQuietEnqueue++; pDevice->uQuietEnqueue %= MAX_QUIET_COUNT; if (pDevice->byQuietStartCount < byQuietCount) pDevice->byQuietStartCount = byQuietCount; } return true; } /* * * Description: * Do Quiet, It will be called by either ISR(after start) * or VNTWIFI(before start) so we do not need a SPINLOCK * * Parameters: * In: * hDeviceContext - device structure point * Out: * none * * Return Value: none. * -*/ bool CARDbStartQuiet( struct vnt_private *pDevice ) { unsigned int ii = 0; unsigned long dwStartTime = 0xFFFFFFFF; unsigned int uCurrentQuietIndex = 0; unsigned long dwNextTime = 0; unsigned long dwGap = 0; unsigned long dwDuration = 0; for (ii = 0; ii < MAX_QUIET_COUNT; ii++) { if ((pDevice->sQuiet[ii].bEnable == true) && (dwStartTime > pDevice->sQuiet[ii].dwStartTime)) { dwStartTime = pDevice->sQuiet[ii].dwStartTime; uCurrentQuietIndex = ii; } } if (dwStartTime == 0xFFFFFFFF) { // no more quiet pDevice->bQuietEnable = false; MACvRegBitsOff(pDevice->PortOffset, MAC_REG_MSRCTL, (MSRCTL_QUIETTXCHK | MSRCTL_QUIETEN)); } else { if (pDevice->bQuietEnable == false) { // first quiet pDevice->byQuietStartCount--; dwNextTime = pDevice->sQuiet[uCurrentQuietIndex].dwStartTime; dwNextTime %= pDevice->wBeaconInterval; MACvSelectPage1(pDevice->PortOffset); VNSvOutPortW(pDevice->PortOffset + MAC_REG_QUIETINIT, (unsigned short) dwNextTime); VNSvOutPortW(pDevice->PortOffset + MAC_REG_QUIETDUR, (unsigned short) pDevice->sQuiet[uCurrentQuietIndex].wDuration); if (pDevice->byQuietStartCount == 0) { pDevice->bEnableFirstQuiet = false; MACvRegBitsOn(pDevice->PortOffset, MAC_REG_MSRCTL, (MSRCTL_QUIETTXCHK | MSRCTL_QUIETEN)); } else { pDevice->bEnableFirstQuiet = true; } MACvSelectPage0(pDevice->PortOffset); } else { if (pDevice->dwCurrentQuietEndTime > pDevice->sQuiet[uCurrentQuietIndex].dwStartTime) { // overlap with previous Quiet dwGap = pDevice->dwCurrentQuietEndTime - pDevice->sQuiet[uCurrentQuietIndex].dwStartTime; if (dwGap >= pDevice->sQuiet[uCurrentQuietIndex].wDuration) { // return false to indicate next quiet expired, should call this function again return false; } dwDuration = pDevice->sQuiet[uCurrentQuietIndex].wDuration - dwGap; dwGap = 0; } else { dwGap = pDevice->sQuiet[uCurrentQuietIndex].dwStartTime - pDevice->dwCurrentQuietEndTime; dwDuration = pDevice->sQuiet[uCurrentQuietIndex].wDuration; } // set GAP and Next duration MACvSelectPage1(pDevice->PortOffset); VNSvOutPortW(pDevice->PortOffset + MAC_REG_QUIETGAP, (unsigned short) dwGap); VNSvOutPortW(pDevice->PortOffset + MAC_REG_QUIETDUR, (unsigned short) dwDuration); MACvRegBitsOn(pDevice->PortOffset, MAC_REG_MSRCTL, MSRCTL_QUIETRPT); MACvSelectPage0(pDevice->PortOffset); } pDevice->bQuietEnable = true; pDevice->dwCurrentQuietEndTime = pDevice->sQuiet[uCurrentQuietIndex].dwStartTime; pDevice->dwCurrentQuietEndTime += pDevice->sQuiet[uCurrentQuietIndex].wDuration; if (pDevice->sQuiet[uCurrentQuietIndex].byPeriod == 0) { // not period disable current quiet element pDevice->sQuiet[uCurrentQuietIndex].bEnable = false; } else { // set next period start time dwNextTime = (unsigned long) pDevice->sQuiet[uCurrentQuietIndex].byPeriod; dwNextTime *= pDevice->wBeaconInterval; pDevice->sQuiet[uCurrentQuietIndex].dwStartTime = dwNextTime; } if (pDevice->dwCurrentQuietEndTime > 0x80010000) { // decreament all time to avoid wrap around for (ii = 0; ii < MAX_QUIET_COUNT; ii++) { if (pDevice->sQuiet[ii].bEnable == true) pDevice->sQuiet[ii].dwStartTime -= 0x80000000; } pDevice->dwCurrentQuietEndTime -= 0x80000000; } } return true; } /* * * Description: * Set Local Power Constraint * * Parameters: * In: * hDeviceContext - device structure point * Out: * none * * Return Value: none. * -*/ void CARDvSetPowerConstraint( struct vnt_private *pDevice, unsigned char byChannel, char byPower ) { if (byChannel > CB_MAX_CHANNEL_24G) { if (pDevice->bCountryInfo5G == true) pDevice->abyLocalPwr[byChannel] = pDevice->abyRegPwr[byChannel] - byPower; } else { if (pDevice->bCountryInfo24G == true) pDevice->abyLocalPwr[byChannel] = pDevice->abyRegPwr[byChannel] - byPower; } } /* * * Description: * Set Local Power Constraint * * Parameters: * In: * hDeviceContext - device structure point * Out: * none * * Return Value: none. * -*/ void CARDvGetPowerCapability( struct vnt_private *pDevice, unsigned char *pbyMinPower, unsigned char *pbyMaxPower ) { unsigned char byDec = 0; *pbyMaxPower = pDevice->abyOFDMDefaultPwr[pDevice->byCurrentCh]; byDec = pDevice->abyOFDMPwrTbl[pDevice->byCurrentCh]; if (pDevice->byRFType == RF_UW2452) { byDec *= 3; byDec >>= 1; } else { byDec <<= 1; } *pbyMinPower = pDevice->abyOFDMDefaultPwr[pDevice->byCurrentCh] - byDec; } /* * * Description: * Get Current Tx Power * * Parameters: * In: * hDeviceContext - device structure point * Out: * none * * Return Value: none. * */ char CARDbyGetTransmitPower( struct vnt_private *pDevice ) { return pDevice->byCurPwrdBm; } //xxx void CARDvSafeResetTx( struct vnt_private *pDevice ) { unsigned int uu; PSTxDesc pCurrTD; // initialize TD index pDevice->apTailTD[0] = pDevice->apCurrTD[0] = &(pDevice->apTD0Rings[0]); pDevice->apTailTD[1] = pDevice->apCurrTD[1] = &(pDevice->apTD1Rings[0]); for (uu = 0; uu < TYPE_MAXTD; uu++) pDevice->iTDUsed[uu] = 0; for (uu = 0; uu < pDevice->sOpts.nTxDescs[0]; uu++) { pCurrTD = &(pDevice->apTD0Rings[uu]); pCurrTD->m_td0TD0.f1Owner = OWNED_BY_HOST; // init all Tx Packet pointer to NULL } for (uu = 0; uu < pDevice->sOpts.nTxDescs[1]; uu++) { pCurrTD = &(pDevice->apTD1Rings[uu]); pCurrTD->m_td0TD0.f1Owner = OWNED_BY_HOST; // init all Tx Packet pointer to NULL } // set MAC TD pointer MACvSetCurrTXDescAddr(TYPE_TXDMA0, pDevice->PortOffset, (pDevice->td0_pool_dma)); MACvSetCurrTXDescAddr(TYPE_AC0DMA, pDevice->PortOffset, (pDevice->td1_pool_dma)); // set MAC Beacon TX pointer MACvSetCurrBCNTxDescAddr(pDevice->PortOffset, (pDevice->tx_beacon_dma)); } /*+ * * Description: * Reset Rx * * Parameters: * In: * pDevice - Pointer to the adapter * Out: * none * * Return Value: none * -*/ void CARDvSafeResetRx( struct vnt_private *pDevice ) { unsigned int uu; PSRxDesc pDesc; // initialize RD index pDevice->pCurrRD[0] = &(pDevice->aRD0Ring[0]); pDevice->pCurrRD[1] = &(pDevice->aRD1Ring[0]); // init state, all RD is chip's for (uu = 0; uu < pDevice->sOpts.nRxDescs0; uu++) { pDesc = &(pDevice->aRD0Ring[uu]); pDesc->m_rd0RD0.wResCount = (unsigned short)(pDevice->rx_buf_sz); pDesc->m_rd0RD0.f1Owner = OWNED_BY_NIC; pDesc->m_rd1RD1.wReqCount = (unsigned short)(pDevice->rx_buf_sz); } // init state, all RD is chip's for (uu = 0; uu < pDevice->sOpts.nRxDescs1; uu++) { pDesc = &(pDevice->aRD1Ring[uu]); pDesc->m_rd0RD0.wResCount = (unsigned short)(pDevice->rx_buf_sz); pDesc->m_rd0RD0.f1Owner = OWNED_BY_NIC; pDesc->m_rd1RD1.wReqCount = (unsigned short)(pDevice->rx_buf_sz); } pDevice->cbDFCB = CB_MAX_RX_FRAG; pDevice->cbFreeDFCB = pDevice->cbDFCB; // set perPkt mode MACvRx0PerPktMode(pDevice->PortOffset); MACvRx1PerPktMode(pDevice->PortOffset); // set MAC RD pointer MACvSetCurrRx0DescAddr(pDevice->PortOffset, pDevice->rd0_pool_dma); MACvSetCurrRx1DescAddr(pDevice->PortOffset, pDevice->rd1_pool_dma); } /* * Description: Get response Control frame rate in CCK mode * * Parameters: * In: * pDevice - The adapter to be set * wRateIdx - Receiving data rate * Out: * none * * Return Value: response Control frame rate * */ static unsigned short CARDwGetCCKControlRate(struct vnt_private *pDevice, unsigned short wRateIdx) { unsigned int ui = (unsigned int) wRateIdx; while (ui > RATE_1M) { if (pDevice->wBasicRate & ((unsigned short)1 << ui)) return (unsigned short)ui; ui--; } return (unsigned short)RATE_1M; } /* * Description: Get response Control frame rate in OFDM mode * * Parameters: * In: * pDevice - The adapter to be set * wRateIdx - Receiving data rate * Out: * none * * Return Value: response Control frame rate * */ static unsigned short CARDwGetOFDMControlRate(struct vnt_private *pDevice, unsigned short wRateIdx) { unsigned int ui = (unsigned int) wRateIdx; pr_debug("BASIC RATE: %X\n", pDevice->wBasicRate); if (!CARDbIsOFDMinBasicRate((void *)pDevice)) { pr_debug("CARDwGetOFDMControlRate:(NO OFDM) %d\n", wRateIdx); if (wRateIdx > RATE_24M) wRateIdx = RATE_24M; return wRateIdx; } while (ui > RATE_11M) { if (pDevice->wBasicRate & ((unsigned short)1 << ui)) { pr_debug("CARDwGetOFDMControlRate : %d\n", ui); return (unsigned short)ui; } ui--; } pr_debug("CARDwGetOFDMControlRate: 6M\n"); return (unsigned short)RATE_24M; } /* * Description: Set RSPINF * * Parameters: * In: * pDevice - The adapter to be set * Out: * none * * Return Value: None. * */ void CARDvSetRSPINF(struct vnt_private *pDevice, CARD_PHY_TYPE ePHYType) { union vnt_phy_field_swap phy; unsigned char byTxRate, byRsvTime; //For OFDM //Set to Page1 MACvSelectPage1(pDevice->PortOffset); /* RSPINF_b_1 */ vnt_get_phy_field(pDevice, 14, CARDwGetCCKControlRate(pDevice, RATE_1M), PK_TYPE_11B, &phy.field_read); /* swap over to get correct write order */ swap(phy.swap[0], phy.swap[1]); VNSvOutPortD(pDevice->PortOffset + MAC_REG_RSPINF_B_1, phy.field_write); /* RSPINF_b_2 */ vnt_get_phy_field(pDevice, 14, CARDwGetCCKControlRate(pDevice, RATE_2M), PK_TYPE_11B, &phy.field_read); swap(phy.swap[0], phy.swap[1]); VNSvOutPortD(pDevice->PortOffset + MAC_REG_RSPINF_B_2, phy.field_write); /* RSPINF_b_5 */ vnt_get_phy_field(pDevice, 14, CARDwGetCCKControlRate(pDevice, RATE_5M), PK_TYPE_11B, &phy.field_read); swap(phy.swap[0], phy.swap[1]); VNSvOutPortD(pDevice->PortOffset + MAC_REG_RSPINF_B_5, phy.field_write); /* RSPINF_b_11 */ vnt_get_phy_field(pDevice, 14, CARDwGetCCKControlRate(pDevice, RATE_11M), PK_TYPE_11B, &phy.field_read); swap(phy.swap[0], phy.swap[1]); VNSvOutPortD(pDevice->PortOffset + MAC_REG_RSPINF_B_11, phy.field_write); //RSPINF_a_6 s_vCalculateOFDMRParameter(RATE_6M, ePHYType, &byTxRate, &byRsvTime); VNSvOutPortW(pDevice->PortOffset + MAC_REG_RSPINF_A_6, MAKEWORD(byTxRate, byRsvTime)); //RSPINF_a_9 s_vCalculateOFDMRParameter(RATE_9M, ePHYType, &byTxRate, &byRsvTime); VNSvOutPortW(pDevice->PortOffset + MAC_REG_RSPINF_A_9, MAKEWORD(byTxRate, byRsvTime)); //RSPINF_a_12 s_vCalculateOFDMRParameter(RATE_12M, ePHYType, &byTxRate, &byRsvTime); VNSvOutPortW(pDevice->PortOffset + MAC_REG_RSPINF_A_12, MAKEWORD(byTxRate, byRsvTime)); //RSPINF_a_18 s_vCalculateOFDMRParameter(RATE_18M, ePHYType, &byTxRate, &byRsvTime); VNSvOutPortW(pDevice->PortOffset + MAC_REG_RSPINF_A_18, MAKEWORD(byTxRate, byRsvTime)); //RSPINF_a_24 s_vCalculateOFDMRParameter(RATE_24M, ePHYType, &byTxRate, &byRsvTime); VNSvOutPortW(pDevice->PortOffset + MAC_REG_RSPINF_A_24, MAKEWORD(byTxRate, byRsvTime)); //RSPINF_a_36 s_vCalculateOFDMRParameter(CARDwGetOFDMControlRate((void *)pDevice, RATE_36M), ePHYType, &byTxRate, &byRsvTime); VNSvOutPortW(pDevice->PortOffset + MAC_REG_RSPINF_A_36, MAKEWORD(byTxRate, byRsvTime)); //RSPINF_a_48 s_vCalculateOFDMRParameter(CARDwGetOFDMControlRate((void *)pDevice, RATE_48M), ePHYType, &byTxRate, &byRsvTime); VNSvOutPortW(pDevice->PortOffset + MAC_REG_RSPINF_A_48, MAKEWORD(byTxRate, byRsvTime)); //RSPINF_a_54 s_vCalculateOFDMRParameter(CARDwGetOFDMControlRate((void *)pDevice, RATE_54M), ePHYType, &byTxRate, &byRsvTime); VNSvOutPortW(pDevice->PortOffset + MAC_REG_RSPINF_A_54, MAKEWORD(byTxRate, byRsvTime)); //RSPINF_a_72 s_vCalculateOFDMRParameter(CARDwGetOFDMControlRate((void *)pDevice, RATE_54M), ePHYType, &byTxRate, &byRsvTime); VNSvOutPortW(pDevice->PortOffset + MAC_REG_RSPINF_A_72, MAKEWORD(byTxRate, byRsvTime)); //Set to Page0 MACvSelectPage0(pDevice->PortOffset); } /* * Description: Update IFS * * Parameters: * In: * pDevice - The adapter to be set * Out: * none * * Return Value: None. * */ void vUpdateIFS(struct vnt_private *pDevice) { /* Set SIFS, DIFS, EIFS, SlotTime, CwMin */ unsigned char byMaxMin = 0; if (pDevice->byPacketType == PK_TYPE_11A) {//0000 0000 0000 0000,11a pDevice->uSlot = C_SLOT_SHORT; pDevice->uSIFS = C_SIFS_A; pDevice->uDIFS = C_SIFS_A + 2*C_SLOT_SHORT; pDevice->uCwMin = C_CWMIN_A; byMaxMin = 4; } else if (pDevice->byPacketType == PK_TYPE_11B) {//0000 0001 0000 0000,11b pDevice->uSlot = C_SLOT_LONG; pDevice->uSIFS = C_SIFS_BG; pDevice->uDIFS = C_SIFS_BG + 2*C_SLOT_LONG; pDevice->uCwMin = C_CWMIN_B; byMaxMin = 5; } else { // PK_TYPE_11GA & PK_TYPE_11GB pDevice->uSIFS = C_SIFS_BG; if (pDevice->bShortSlotTime) pDevice->uSlot = C_SLOT_SHORT; else pDevice->uSlot = C_SLOT_LONG; pDevice->uDIFS = C_SIFS_BG + 2*pDevice->uSlot; if (pDevice->wBasicRate & 0x0150) { //0000 0001 0101 0000,24M,12M,6M pDevice->uCwMin = C_CWMIN_A; byMaxMin = 4; } else { pDevice->uCwMin = C_CWMIN_B; byMaxMin = 5; } } pDevice->uCwMax = C_CWMAX; pDevice->uEIFS = C_EIFS; if (pDevice->byRFType == RF_RFMD2959) { // bcs TX_PE will reserve 3 us VNSvOutPortB(pDevice->PortOffset + MAC_REG_SIFS, (unsigned char)(pDevice->uSIFS - 3)); VNSvOutPortB(pDevice->PortOffset + MAC_REG_DIFS, (unsigned char)(pDevice->uDIFS - 3)); } else { VNSvOutPortB(pDevice->PortOffset + MAC_REG_SIFS, (unsigned char)pDevice->uSIFS); VNSvOutPortB(pDevice->PortOffset + MAC_REG_DIFS, (unsigned char)pDevice->uDIFS); } VNSvOutPortB(pDevice->PortOffset + MAC_REG_EIFS, (unsigned char)pDevice->uEIFS); VNSvOutPortB(pDevice->PortOffset + MAC_REG_SLOT, (unsigned char)pDevice->uSlot); byMaxMin |= 0xA0;//1010 1111,C_CWMAX = 1023 VNSvOutPortB(pDevice->PortOffset + MAC_REG_CWMAXMIN0, (unsigned char)byMaxMin); } void CARDvUpdateBasicTopRate(struct vnt_private *pDevice) { unsigned char byTopOFDM = RATE_24M, byTopCCK = RATE_1M; unsigned char ii; //Determines the highest basic rate. for (ii = RATE_54M; ii >= RATE_6M; ii--) { if ((pDevice->wBasicRate) & ((unsigned short)(1<<ii))) { byTopOFDM = ii; break; } } pDevice->byTopOFDMBasicRate = byTopOFDM; for (ii = RATE_11M;; ii--) { if ((pDevice->wBasicRate) & ((unsigned short)(1<<ii))) { byTopCCK = ii; break; } if (ii == RATE_1M) break; } pDevice->byTopCCKBasicRate = byTopCCK; } bool CARDbAddBasicRate(struct vnt_private *pDevice, unsigned short wRateIdx) { unsigned short wRate = (unsigned short)(1<<wRateIdx); pDevice->wBasicRate |= wRate; //Determines the highest basic rate. CARDvUpdateBasicTopRate((void *)pDevice); return true; } bool CARDbIsOFDMinBasicRate(struct vnt_private *pDevice) { int ii; for (ii = RATE_54M; ii >= RATE_6M; ii--) { if ((pDevice->wBasicRate) & ((unsigned short)(1 << ii))) return true; } return false; } unsigned char CARDbyGetPktType(struct vnt_private *pDevice) { if (pDevice->byBBType == BB_TYPE_11A || pDevice->byBBType == BB_TYPE_11B) return (unsigned char)pDevice->byBBType; else if (CARDbIsOFDMinBasicRate((void *)pDevice)) return PK_TYPE_11GA; else return PK_TYPE_11GB; } /* * Description: Set NIC Loopback mode * * Parameters: * In: * pDevice - The adapter to be set * wLoopbackMode - Loopback mode to be set * Out: * none * * Return Value: none * */ void CARDvSetLoopbackMode(void __iomem *dwIoBase, unsigned short wLoopbackMode) { switch (wLoopbackMode) { case CARD_LB_NONE: case CARD_LB_MAC: case CARD_LB_PHY: break; default: ASSERT(false); break; } // set MAC loopback MACvSetLoopbackMode(dwIoBase, LOBYTE(wLoopbackMode)); // set Baseband loopback } /* * Description: Software Reset NIC * * Parameters: * In: * pDevice - The adapter to be reset * Out: * none * * Return Value: none * */ bool CARDbSoftwareReset(struct vnt_private *pDevice) { // reset MAC if (!MACbSafeSoftwareReset(pDevice->PortOffset)) return false; return true; } /* * Description: Calculate TSF offset of two TSF input * Get TSF Offset from RxBCN's TSF and local TSF * * Parameters: * In: * pDevice - The adapter to be sync. * qwTSF1 - Rx BCN's TSF * qwTSF2 - Local TSF * Out: * none * * Return Value: TSF Offset value * */ u64 CARDqGetTSFOffset(unsigned char byRxRate, u64 qwTSF1, u64 qwTSF2) { u64 qwTSFOffset = 0; unsigned short wRxBcnTSFOffst = 0; wRxBcnTSFOffst = cwRXBCNTSFOff[byRxRate%MAX_RATE]; qwTSF2 += (u64)wRxBcnTSFOffst; qwTSFOffset = qwTSF1 - qwTSF2; return qwTSFOffset; } /* * Description: Read NIC TSF counter * Get local TSF counter * * Parameters: * In: * pDevice - The adapter to be read * Out: * qwCurrTSF - Current TSF counter * * Return Value: true if success; otherwise false * */ bool CARDbGetCurrentTSF(void __iomem *dwIoBase, u64 *pqwCurrTSF) { unsigned short ww; unsigned char byData; MACvRegBitsOn(dwIoBase, MAC_REG_TFTCTL, TFTCTL_TSFCNTRRD); for (ww = 0; ww < W_MAX_TIMEOUT; ww++) { VNSvInPortB(dwIoBase + MAC_REG_TFTCTL, &byData); if (!(byData & TFTCTL_TSFCNTRRD)) break; } if (ww == W_MAX_TIMEOUT) return false; VNSvInPortD(dwIoBase + MAC_REG_TSFCNTR, (u32 *)pqwCurrTSF); VNSvInPortD(dwIoBase + MAC_REG_TSFCNTR + 4, (u32 *)pqwCurrTSF + 1); return true; } /* * Description: Read NIC TSF counter * Get NEXTTBTT from adjusted TSF and Beacon Interval * * Parameters: * In: * qwTSF - Current TSF counter * wbeaconInterval - Beacon Interval * Out: * qwCurrTSF - Current TSF counter * * Return Value: TSF value of next Beacon * */ u64 CARDqGetNextTBTT(u64 qwTSF, unsigned short wBeaconInterval) { u32 beacon_int; beacon_int = wBeaconInterval * 1024; /* Next TBTT = * ((local_current_TSF / beacon_interval) + 1) * beacon_interval */ if (beacon_int) { do_div(qwTSF, beacon_int); qwTSF += 1; qwTSF *= beacon_int; } return qwTSF; } /* * Description: Set NIC TSF counter for first Beacon time * Get NEXTTBTT from adjusted TSF and Beacon Interval * * Parameters: * In: * dwIoBase - IO Base * wBeaconInterval - Beacon Interval * Out: * none * * Return Value: none * */ void CARDvSetFirstNextTBTT(void __iomem *dwIoBase, unsigned short wBeaconInterval) { u64 qwNextTBTT = 0; CARDbGetCurrentTSF(dwIoBase, &qwNextTBTT); //Get Local TSF counter qwNextTBTT = CARDqGetNextTBTT(qwNextTBTT, wBeaconInterval); // Set NextTBTT VNSvOutPortD(dwIoBase + MAC_REG_NEXTTBTT, (u32)qwNextTBTT); VNSvOutPortD(dwIoBase + MAC_REG_NEXTTBTT + 4, (u32)(qwNextTBTT >> 32)); MACvRegBitsOn(dwIoBase, MAC_REG_TFTCTL, TFTCTL_TBTTSYNCEN); } /* * Description: Sync NIC TSF counter for Beacon time * Get NEXTTBTT and write to HW * * Parameters: * In: * pDevice - The adapter to be set * qwTSF - Current TSF counter * wBeaconInterval - Beacon Interval * Out: * none * * Return Value: none * */ void CARDvUpdateNextTBTT(void __iomem *dwIoBase, u64 qwTSF, unsigned short wBeaconInterval) { qwTSF = CARDqGetNextTBTT(qwTSF, wBeaconInterval); // Set NextTBTT VNSvOutPortD(dwIoBase + MAC_REG_NEXTTBTT, (u32)qwTSF); VNSvOutPortD(dwIoBase + MAC_REG_NEXTTBTT + 4, (u32)(qwTSF >> 32)); MACvRegBitsOn(dwIoBase, MAC_REG_TFTCTL, TFTCTL_TBTTSYNCEN); pr_debug("Card:Update Next TBTT[%8llx]\n", qwTSF); }