/* Driver for Realtek PCI-Express card reader * * Copyright(c) 2009-2013 Realtek Semiconductor Corp. All rights reserved. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2, or (at your option) any * later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, see <http://www.gnu.org/licenses/>. * * Author: * Wei WANG (wei_wang@realsil.com.cn) * Micky Ching (micky_ching@realsil.com.cn) */ #include <linux/blkdev.h> #include <linux/kthread.h> #include <linux/sched.h> #include <linux/workqueue.h> #include <linux/vmalloc.h> #include "rtsx.h" #include "rtsx_transport.h" #include "rtsx_scsi.h" #include "rtsx_card.h" #include "rtsx_chip.h" #include "rtsx_sys.h" #include "general.h" #include "sd.h" #include "xd.h" #include "ms.h" static void rtsx_calibration(struct rtsx_chip *chip) { rtsx_write_phy_register(chip, 0x1B, 0x135E); wait_timeout(10); rtsx_write_phy_register(chip, 0x00, 0x0280); rtsx_write_phy_register(chip, 0x01, 0x7112); rtsx_write_phy_register(chip, 0x01, 0x7110); rtsx_write_phy_register(chip, 0x01, 0x7112); rtsx_write_phy_register(chip, 0x01, 0x7113); rtsx_write_phy_register(chip, 0x00, 0x0288); } void rtsx_disable_card_int(struct rtsx_chip *chip) { u32 reg = rtsx_readl(chip, RTSX_BIER); reg &= ~(XD_INT_EN | SD_INT_EN | MS_INT_EN); rtsx_writel(chip, RTSX_BIER, reg); } void rtsx_enable_card_int(struct rtsx_chip *chip) { u32 reg = rtsx_readl(chip, RTSX_BIER); int i; for (i = 0; i <= chip->max_lun; i++) { if (chip->lun2card[i] & XD_CARD) reg |= XD_INT_EN; if (chip->lun2card[i] & SD_CARD) reg |= SD_INT_EN; if (chip->lun2card[i] & MS_CARD) reg |= MS_INT_EN; } if (chip->hw_bypass_sd) reg &= ~((u32)SD_INT_EN); rtsx_writel(chip, RTSX_BIER, reg); } void rtsx_enable_bus_int(struct rtsx_chip *chip) { u32 reg = 0; #ifndef DISABLE_CARD_INT int i; #endif reg = TRANS_OK_INT_EN | TRANS_FAIL_INT_EN; #ifndef DISABLE_CARD_INT for (i = 0; i <= chip->max_lun; i++) { dev_dbg(rtsx_dev(chip), "lun2card[%d] = 0x%02x\n", i, chip->lun2card[i]); if (chip->lun2card[i] & XD_CARD) reg |= XD_INT_EN; if (chip->lun2card[i] & SD_CARD) reg |= SD_INT_EN; if (chip->lun2card[i] & MS_CARD) reg |= MS_INT_EN; } if (chip->hw_bypass_sd) reg &= ~((u32)SD_INT_EN); #endif if (chip->ic_version >= IC_VER_C) reg |= DELINK_INT_EN; #ifdef SUPPORT_OCP reg |= OC_INT_EN; #endif if (!chip->adma_mode) reg |= DATA_DONE_INT_EN; /* Enable Bus Interrupt */ rtsx_writel(chip, RTSX_BIER, reg); dev_dbg(rtsx_dev(chip), "RTSX_BIER: 0x%08x\n", reg); } void rtsx_disable_bus_int(struct rtsx_chip *chip) { rtsx_writel(chip, RTSX_BIER, 0); } static int rtsx_pre_handle_sdio_old(struct rtsx_chip *chip) { if (chip->ignore_sd && CHK_SDIO_EXIST(chip)) { if (chip->asic_code) { RTSX_WRITE_REG(chip, CARD_PULL_CTL5, 0xFF, MS_INS_PU | SD_WP_PU | SD_CD_PU | SD_CMD_PU); } else { RTSX_WRITE_REG(chip, FPGA_PULL_CTL, 0xFF, FPGA_SD_PULL_CTL_EN); } RTSX_WRITE_REG(chip, CARD_SHARE_MODE, 0xFF, CARD_SHARE_48_SD); /* Enable SDIO internal clock */ RTSX_WRITE_REG(chip, 0xFF2C, 0x01, 0x01); RTSX_WRITE_REG(chip, SDIO_CTRL, 0xFF, SDIO_BUS_CTRL | SDIO_CD_CTRL); chip->sd_int = 1; chip->sd_io = 1; } else { chip->need_reset |= SD_CARD; } return STATUS_SUCCESS; } #ifdef HW_AUTO_SWITCH_SD_BUS static int rtsx_pre_handle_sdio_new(struct rtsx_chip *chip) { u8 tmp; int sw_bypass_sd = 0; int retval; if (chip->driver_first_load) { if (CHECK_PID(chip, 0x5288)) { RTSX_READ_REG(chip, 0xFE5A, &tmp); if (tmp & 0x08) sw_bypass_sd = 1; } else if (CHECK_PID(chip, 0x5208)) { RTSX_READ_REG(chip, 0xFE70, &tmp); if (tmp & 0x80) sw_bypass_sd = 1; } } else { if (chip->sdio_in_charge) sw_bypass_sd = 1; } dev_dbg(rtsx_dev(chip), "chip->sdio_in_charge = %d\n", chip->sdio_in_charge); dev_dbg(rtsx_dev(chip), "chip->driver_first_load = %d\n", chip->driver_first_load); dev_dbg(rtsx_dev(chip), "sw_bypass_sd = %d\n", sw_bypass_sd); if (sw_bypass_sd) { u8 cd_toggle_mask = 0; RTSX_READ_REG(chip, TLPTISTAT, &tmp); cd_toggle_mask = 0x08; if (tmp & cd_toggle_mask) { /* Disable sdio_bus_auto_switch */ if (CHECK_PID(chip, 0x5288)) RTSX_WRITE_REG(chip, 0xFE5A, 0x08, 0x00); else if (CHECK_PID(chip, 0x5208)) RTSX_WRITE_REG(chip, 0xFE70, 0x80, 0x00); RTSX_WRITE_REG(chip, TLPTISTAT, 0xFF, tmp); chip->need_reset |= SD_CARD; } else { dev_dbg(rtsx_dev(chip), "Chip inserted with SDIO!\n"); if (chip->asic_code) { retval = sd_pull_ctl_enable(chip); if (retval != STATUS_SUCCESS) TRACE_RET(chip, STATUS_FAIL); } else { RTSX_WRITE_REG(chip, FPGA_PULL_CTL, FPGA_SD_PULL_CTL_BIT | 0x20, 0); } retval = card_share_mode(chip, SD_CARD); if (retval != STATUS_SUCCESS) TRACE_RET(chip, STATUS_FAIL); /* Enable sdio_bus_auto_switch */ if (CHECK_PID(chip, 0x5288)) RTSX_WRITE_REG(chip, 0xFE5A, 0x08, 0x08); else if (CHECK_PID(chip, 0x5208)) RTSX_WRITE_REG(chip, 0xFE70, 0x80, 0x80); chip->chip_insert_with_sdio = 1; chip->sd_io = 1; } } else { RTSX_WRITE_REG(chip, TLPTISTAT, 0x08, 0x08); chip->need_reset |= SD_CARD; } return STATUS_SUCCESS; } #endif int rtsx_reset_chip(struct rtsx_chip *chip) { int retval; rtsx_writel(chip, RTSX_HCBAR, chip->host_cmds_addr); rtsx_disable_aspm(chip); RTSX_WRITE_REG(chip, HOST_SLEEP_STATE, 0x03, 0x00); /* Disable card clock */ RTSX_WRITE_REG(chip, CARD_CLK_EN, 0x1E, 0); #ifdef SUPPORT_OCP /* SSC power on, OCD power on */ if (CHECK_LUN_MODE(chip, SD_MS_2LUN)) RTSX_WRITE_REG(chip, FPDCTL, OC_POWER_DOWN, 0); else RTSX_WRITE_REG(chip, FPDCTL, OC_POWER_DOWN, MS_OC_POWER_DOWN); RTSX_WRITE_REG(chip, OCPPARA1, OCP_TIME_MASK, OCP_TIME_800); RTSX_WRITE_REG(chip, OCPPARA2, OCP_THD_MASK, OCP_THD_244_946); RTSX_WRITE_REG(chip, OCPCTL, 0xFF, CARD_OC_INT_EN | CARD_DETECT_EN); #else /* OC power down */ RTSX_WRITE_REG(chip, FPDCTL, OC_POWER_DOWN, OC_POWER_DOWN); #endif if (!CHECK_PID(chip, 0x5288)) RTSX_WRITE_REG(chip, CARD_GPIO_DIR, 0xFF, 0x03); /* Turn off LED */ RTSX_WRITE_REG(chip, CARD_GPIO, 0xFF, 0x03); /* Reset delink mode */ RTSX_WRITE_REG(chip, CHANGE_LINK_STATE, 0x0A, 0); /* Card driving select */ RTSX_WRITE_REG(chip, CARD_DRIVE_SEL, 0xFF, chip->card_drive_sel); #ifdef LED_AUTO_BLINK RTSX_WRITE_REG(chip, CARD_AUTO_BLINK, 0xFF, LED_BLINK_SPEED | BLINK_EN | LED_GPIO0); #endif if (chip->asic_code) { /* Enable SSC Clock */ RTSX_WRITE_REG(chip, SSC_CTL1, 0xFF, SSC_8X_EN | SSC_SEL_4M); RTSX_WRITE_REG(chip, SSC_CTL2, 0xFF, 0x12); } /* Disable cd_pwr_save (u_force_rst_core_en=0, u_cd_rst_core_en=0) 0xFE5B bit[1] u_cd_rst_core_en rst_value = 0 bit[2] u_force_rst_core_en rst_value = 0 bit[5] u_mac_phy_rst_n_dbg rst_value = 1 bit[4] u_non_sticky_rst_n_dbg rst_value = 0 */ RTSX_WRITE_REG(chip, CHANGE_LINK_STATE, 0x16, 0x10); /* Enable ASPM */ if (chip->aspm_l0s_l1_en) { if (chip->dynamic_aspm) { if (CHK_SDIO_EXIST(chip)) { if (CHECK_PID(chip, 0x5288)) { retval = rtsx_write_cfg_dw(chip, 2, 0xC0, 0xFF, chip->aspm_l0s_l1_en); if (retval != STATUS_SUCCESS) TRACE_RET(chip, STATUS_FAIL); } } } else { if (CHECK_PID(chip, 0x5208)) RTSX_WRITE_REG(chip, ASPM_FORCE_CTL, 0xFF, 0x3F); retval = rtsx_write_config_byte(chip, LCTLR, chip->aspm_l0s_l1_en); if (retval != STATUS_SUCCESS) TRACE_RET(chip, STATUS_FAIL); chip->aspm_level[0] = chip->aspm_l0s_l1_en; if (CHK_SDIO_EXIST(chip)) { chip->aspm_level[1] = chip->aspm_l0s_l1_en; if (CHECK_PID(chip, 0x5288)) retval = rtsx_write_cfg_dw(chip, 2, 0xC0, 0xFF, chip->aspm_l0s_l1_en); else retval = rtsx_write_cfg_dw(chip, 1, 0xC0, 0xFF, chip->aspm_l0s_l1_en); if (retval != STATUS_SUCCESS) TRACE_RET(chip, STATUS_FAIL); } chip->aspm_enabled = 1; } } else { if (chip->asic_code && CHECK_PID(chip, 0x5208)) { retval = rtsx_write_phy_register(chip, 0x07, 0x0129); if (retval != STATUS_SUCCESS) TRACE_RET(chip, STATUS_FAIL); } retval = rtsx_write_config_byte(chip, LCTLR, chip->aspm_l0s_l1_en); if (retval != STATUS_SUCCESS) TRACE_RET(chip, STATUS_FAIL); } retval = rtsx_write_config_byte(chip, 0x81, 1); if (retval != STATUS_SUCCESS) TRACE_RET(chip, STATUS_FAIL); if (CHK_SDIO_EXIST(chip)) { if (CHECK_PID(chip, 0x5288)) retval = rtsx_write_cfg_dw(chip, 2, 0xC0, 0xFF00, 0x0100); else retval = rtsx_write_cfg_dw(chip, 1, 0xC0, 0xFF00, 0x0100); if (retval != STATUS_SUCCESS) TRACE_RET(chip, STATUS_FAIL); } if (CHECK_PID(chip, 0x5288)) { if (!CHK_SDIO_EXIST(chip)) { retval = rtsx_write_cfg_dw(chip, 2, 0xC0, 0xFFFF, 0x0103); if (retval != STATUS_SUCCESS) TRACE_RET(chip, STATUS_FAIL); retval = rtsx_write_cfg_dw(chip, 2, 0x84, 0xFF, 0x03); if (retval != STATUS_SUCCESS) TRACE_RET(chip, STATUS_FAIL); } } RTSX_WRITE_REG(chip, IRQSTAT0, LINK_RDY_INT, LINK_RDY_INT); RTSX_WRITE_REG(chip, PERST_GLITCH_WIDTH, 0xFF, 0x80); /* Enable PCIE interrupt */ if (chip->asic_code) { if (CHECK_PID(chip, 0x5208)) { if (chip->phy_debug_mode) { RTSX_WRITE_REG(chip, CDRESUMECTL, 0x77, 0); rtsx_disable_bus_int(chip); } else { rtsx_enable_bus_int(chip); } if (chip->ic_version >= IC_VER_D) { u16 reg; retval = rtsx_read_phy_register(chip, 0x00, ®); if (retval != STATUS_SUCCESS) TRACE_RET(chip, STATUS_FAIL); reg &= 0xFE7F; reg |= 0x80; retval = rtsx_write_phy_register(chip, 0x00, reg); if (retval != STATUS_SUCCESS) TRACE_RET(chip, STATUS_FAIL); retval = rtsx_read_phy_register(chip, 0x1C, ®); if (retval != STATUS_SUCCESS) TRACE_RET(chip, STATUS_FAIL); reg &= 0xFFF7; retval = rtsx_write_phy_register(chip, 0x1C, reg); if (retval != STATUS_SUCCESS) TRACE_RET(chip, STATUS_FAIL); } if (chip->driver_first_load && (chip->ic_version < IC_VER_C)) rtsx_calibration(chip); } else { rtsx_enable_bus_int(chip); } } else { rtsx_enable_bus_int(chip); } chip->need_reset = 0; chip->int_reg = rtsx_readl(chip, RTSX_BIPR); if (chip->hw_bypass_sd) goto NextCard; dev_dbg(rtsx_dev(chip), "In %s, chip->int_reg = 0x%x\n", __func__, chip->int_reg); if (chip->int_reg & SD_EXIST) { #ifdef HW_AUTO_SWITCH_SD_BUS if (CHECK_PID(chip, 0x5208) && (chip->ic_version < IC_VER_C)) retval = rtsx_pre_handle_sdio_old(chip); else retval = rtsx_pre_handle_sdio_new(chip); dev_dbg(rtsx_dev(chip), "chip->need_reset = 0x%x (rtsx_reset_chip)\n", (unsigned int)(chip->need_reset)); #else /* HW_AUTO_SWITCH_SD_BUS */ retval = rtsx_pre_handle_sdio_old(chip); #endif /* HW_AUTO_SWITCH_SD_BUS */ if (retval != STATUS_SUCCESS) TRACE_RET(chip, STATUS_FAIL); } else { chip->sd_io = 0; RTSX_WRITE_REG(chip, SDIO_CTRL, SDIO_BUS_CTRL | SDIO_CD_CTRL, 0); } NextCard: if (chip->int_reg & XD_EXIST) chip->need_reset |= XD_CARD; if (chip->int_reg & MS_EXIST) chip->need_reset |= MS_CARD; if (chip->int_reg & CARD_EXIST) RTSX_WRITE_REG(chip, SSC_CTL1, SSC_RSTB, SSC_RSTB); dev_dbg(rtsx_dev(chip), "In %s, chip->need_reset = 0x%x\n", __func__, (unsigned int)(chip->need_reset)); RTSX_WRITE_REG(chip, RCCTL, 0x01, 0x00); if (CHECK_PID(chip, 0x5208) || CHECK_PID(chip, 0x5288)) { /* Turn off main power when entering S3/S4 state */ RTSX_WRITE_REG(chip, MAIN_PWR_OFF_CTL, 0x03, 0x03); } if (chip->remote_wakeup_en && !chip->auto_delink_en) { RTSX_WRITE_REG(chip, WAKE_SEL_CTL, 0x07, 0x07); if (chip->aux_pwr_exist) RTSX_WRITE_REG(chip, PME_FORCE_CTL, 0xFF, 0x33); } else { RTSX_WRITE_REG(chip, WAKE_SEL_CTL, 0x07, 0x04); RTSX_WRITE_REG(chip, PME_FORCE_CTL, 0xFF, 0x30); } if (CHECK_PID(chip, 0x5208) && (chip->ic_version >= IC_VER_D)) RTSX_WRITE_REG(chip, PETXCFG, 0x1C, 0x14); if (chip->asic_code && CHECK_PID(chip, 0x5208)) { retval = rtsx_clr_phy_reg_bit(chip, 0x1C, 2); if (retval != STATUS_SUCCESS) TRACE_RET(chip, STATUS_FAIL); } if (chip->ft2_fast_mode) { RTSX_WRITE_REG(chip, CARD_PWR_CTL, 0xFF, MS_PARTIAL_POWER_ON | SD_PARTIAL_POWER_ON); udelay(chip->pmos_pwr_on_interval); RTSX_WRITE_REG(chip, CARD_PWR_CTL, 0xFF, MS_POWER_ON | SD_POWER_ON); wait_timeout(200); } /* Reset card */ rtsx_reset_detected_cards(chip, 0); chip->driver_first_load = 0; return STATUS_SUCCESS; } static inline int check_sd_speed_prior(u32 sd_speed_prior) { int i, fake_para = 0; for (i = 0; i < 4; i++) { u8 tmp = (u8)(sd_speed_prior >> (i*8)); if ((tmp < 0x01) || (tmp > 0x04)) { fake_para = 1; break; } } return !fake_para; } static inline int check_sd_current_prior(u32 sd_current_prior) { int i, fake_para = 0; for (i = 0; i < 4; i++) { u8 tmp = (u8)(sd_current_prior >> (i*8)); if (tmp > 0x03) { fake_para = 1; break; } } return !fake_para; } static int rts5208_init(struct rtsx_chip *chip) { int retval; u16 reg = 0; u8 val = 0; RTSX_WRITE_REG(chip, CLK_SEL, 0x03, 0x03); RTSX_READ_REG(chip, CLK_SEL, &val); if (val == 0) chip->asic_code = 1; else chip->asic_code = 0; if (chip->asic_code) { retval = rtsx_read_phy_register(chip, 0x1C, ®); if (retval != STATUS_SUCCESS) TRACE_RET(chip, STATUS_FAIL); dev_dbg(rtsx_dev(chip), "Value of phy register 0x1C is 0x%x\n", reg); chip->ic_version = (reg >> 4) & 0x07; if (reg & PHY_DEBUG_MODE) chip->phy_debug_mode = 1; else chip->phy_debug_mode = 0; } else { RTSX_READ_REG(chip, 0xFE80, &val); chip->ic_version = val; chip->phy_debug_mode = 0; } RTSX_READ_REG(chip, PDINFO, &val); dev_dbg(rtsx_dev(chip), "PDINFO: 0x%x\n", val); if (val & AUX_PWR_DETECTED) chip->aux_pwr_exist = 1; else chip->aux_pwr_exist = 0; RTSX_READ_REG(chip, 0xFE50, &val); if (val & 0x01) chip->hw_bypass_sd = 1; else chip->hw_bypass_sd = 0; rtsx_read_config_byte(chip, 0x0E, &val); if (val & 0x80) SET_SDIO_EXIST(chip); else CLR_SDIO_EXIST(chip); if (chip->use_hw_setting) { RTSX_READ_REG(chip, CHANGE_LINK_STATE, &val); if (val & 0x80) chip->auto_delink_en = 1; else chip->auto_delink_en = 0; } return STATUS_SUCCESS; } static int rts5288_init(struct rtsx_chip *chip) { int retval; u8 val = 0, max_func; u32 lval = 0; RTSX_WRITE_REG(chip, CLK_SEL, 0x03, 0x03); RTSX_READ_REG(chip, CLK_SEL, &val); if (val == 0) chip->asic_code = 1; else chip->asic_code = 0; chip->ic_version = 0; chip->phy_debug_mode = 0; RTSX_READ_REG(chip, PDINFO, &val); dev_dbg(rtsx_dev(chip), "PDINFO: 0x%x\n", val); if (val & AUX_PWR_DETECTED) chip->aux_pwr_exist = 1; else chip->aux_pwr_exist = 0; RTSX_READ_REG(chip, CARD_SHARE_MODE, &val); dev_dbg(rtsx_dev(chip), "CARD_SHARE_MODE: 0x%x\n", val); if (val & 0x04) chip->baro_pkg = QFN; else chip->baro_pkg = LQFP; RTSX_READ_REG(chip, 0xFE5A, &val); if (val & 0x10) chip->hw_bypass_sd = 1; else chip->hw_bypass_sd = 0; retval = rtsx_read_cfg_dw(chip, 0, 0x718, &lval); if (retval != STATUS_SUCCESS) TRACE_RET(chip, STATUS_FAIL); max_func = (u8)((lval >> 29) & 0x07); dev_dbg(rtsx_dev(chip), "Max function number: %d\n", max_func); if (max_func == 0x02) SET_SDIO_EXIST(chip); else CLR_SDIO_EXIST(chip); if (chip->use_hw_setting) { RTSX_READ_REG(chip, CHANGE_LINK_STATE, &val); if (val & 0x80) chip->auto_delink_en = 1; else chip->auto_delink_en = 0; if (CHECK_BARO_PKG(chip, LQFP)) chip->lun_mode = SD_MS_1LUN; else chip->lun_mode = DEFAULT_SINGLE; } return STATUS_SUCCESS; } int rtsx_init_chip(struct rtsx_chip *chip) { struct sd_info *sd_card = &(chip->sd_card); struct xd_info *xd_card = &(chip->xd_card); struct ms_info *ms_card = &(chip->ms_card); int retval; unsigned int i; dev_dbg(rtsx_dev(chip), "Vendor ID: 0x%04x, Product ID: 0x%04x\n", chip->vendor_id, chip->product_id); chip->ic_version = 0; #ifdef _MSG_TRACE chip->msg_idx = 0; #endif memset(xd_card, 0, sizeof(struct xd_info)); memset(sd_card, 0, sizeof(struct sd_info)); memset(ms_card, 0, sizeof(struct ms_info)); chip->xd_reset_counter = 0; chip->sd_reset_counter = 0; chip->ms_reset_counter = 0; chip->xd_show_cnt = MAX_SHOW_CNT; chip->sd_show_cnt = MAX_SHOW_CNT; chip->ms_show_cnt = MAX_SHOW_CNT; chip->sd_io = 0; chip->auto_delink_cnt = 0; chip->auto_delink_allowed = 1; rtsx_set_stat(chip, RTSX_STAT_INIT); chip->aspm_enabled = 0; chip->chip_insert_with_sdio = 0; chip->sdio_aspm = 0; chip->sdio_idle = 0; chip->sdio_counter = 0; chip->cur_card = 0; chip->phy_debug_mode = 0; chip->sdio_func_exist = 0; memset(chip->sdio_raw_data, 0, 12); for (i = 0; i < MAX_ALLOWED_LUN_CNT; i++) { set_sense_type(chip, i, SENSE_TYPE_NO_SENSE); chip->rw_fail_cnt[i] = 0; } if (!check_sd_speed_prior(chip->sd_speed_prior)) chip->sd_speed_prior = 0x01040203; dev_dbg(rtsx_dev(chip), "sd_speed_prior = 0x%08x\n", chip->sd_speed_prior); if (!check_sd_current_prior(chip->sd_current_prior)) chip->sd_current_prior = 0x00010203; dev_dbg(rtsx_dev(chip), "sd_current_prior = 0x%08x\n", chip->sd_current_prior); if ((chip->sd_ddr_tx_phase > 31) || (chip->sd_ddr_tx_phase < 0)) chip->sd_ddr_tx_phase = 0; if ((chip->mmc_ddr_tx_phase > 31) || (chip->mmc_ddr_tx_phase < 0)) chip->mmc_ddr_tx_phase = 0; RTSX_WRITE_REG(chip, FPDCTL, SSC_POWER_DOWN, 0); wait_timeout(200); RTSX_WRITE_REG(chip, CLK_DIV, 0x07, 0x07); dev_dbg(rtsx_dev(chip), "chip->use_hw_setting = %d\n", chip->use_hw_setting); if (CHECK_PID(chip, 0x5208)) { retval = rts5208_init(chip); if (retval != STATUS_SUCCESS) TRACE_RET(chip, STATUS_FAIL); } else if (CHECK_PID(chip, 0x5288)) { retval = rts5288_init(chip); if (retval != STATUS_SUCCESS) TRACE_RET(chip, STATUS_FAIL); } if (chip->ss_en == 2) chip->ss_en = 0; dev_dbg(rtsx_dev(chip), "chip->asic_code = %d\n", chip->asic_code); dev_dbg(rtsx_dev(chip), "chip->ic_version = 0x%x\n", chip->ic_version); dev_dbg(rtsx_dev(chip), "chip->phy_debug_mode = %d\n", chip->phy_debug_mode); dev_dbg(rtsx_dev(chip), "chip->aux_pwr_exist = %d\n", chip->aux_pwr_exist); dev_dbg(rtsx_dev(chip), "chip->sdio_func_exist = %d\n", chip->sdio_func_exist); dev_dbg(rtsx_dev(chip), "chip->hw_bypass_sd = %d\n", chip->hw_bypass_sd); dev_dbg(rtsx_dev(chip), "chip->aspm_l0s_l1_en = %d\n", chip->aspm_l0s_l1_en); dev_dbg(rtsx_dev(chip), "chip->lun_mode = %d\n", chip->lun_mode); dev_dbg(rtsx_dev(chip), "chip->auto_delink_en = %d\n", chip->auto_delink_en); dev_dbg(rtsx_dev(chip), "chip->ss_en = %d\n", chip->ss_en); dev_dbg(rtsx_dev(chip), "chip->baro_pkg = %d\n", chip->baro_pkg); if (CHECK_LUN_MODE(chip, SD_MS_2LUN)) { chip->card2lun[SD_CARD] = 0; chip->card2lun[MS_CARD] = 1; chip->card2lun[XD_CARD] = 0xFF; chip->lun2card[0] = SD_CARD; chip->lun2card[1] = MS_CARD; chip->max_lun = 1; SET_SDIO_IGNORED(chip); } else if (CHECK_LUN_MODE(chip, SD_MS_1LUN)) { chip->card2lun[SD_CARD] = 0; chip->card2lun[MS_CARD] = 0; chip->card2lun[XD_CARD] = 0xFF; chip->lun2card[0] = SD_CARD | MS_CARD; chip->max_lun = 0; } else { chip->card2lun[XD_CARD] = 0; chip->card2lun[SD_CARD] = 0; chip->card2lun[MS_CARD] = 0; chip->lun2card[0] = XD_CARD | SD_CARD | MS_CARD; chip->max_lun = 0; } retval = rtsx_reset_chip(chip); if (retval != STATUS_SUCCESS) TRACE_RET(chip, STATUS_FAIL); return STATUS_SUCCESS; } void rtsx_release_chip(struct rtsx_chip *chip) { xd_free_l2p_tbl(chip); ms_free_l2p_tbl(chip); chip->card_exist = 0; chip->card_ready = 0; } #if !defined(LED_AUTO_BLINK) && defined(REGULAR_BLINK) static inline void rtsx_blink_led(struct rtsx_chip *chip) { if (chip->card_exist && chip->blink_led) { if (chip->led_toggle_counter < LED_TOGGLE_INTERVAL) { chip->led_toggle_counter++; } else { chip->led_toggle_counter = 0; toggle_gpio(chip, LED_GPIO); } } } #endif static void rtsx_monitor_aspm_config(struct rtsx_chip *chip) { int maybe_support_aspm, reg_changed; u32 tmp = 0; u8 reg0 = 0, reg1 = 0; maybe_support_aspm = 0; reg_changed = 0; rtsx_read_config_byte(chip, LCTLR, ®0); if (chip->aspm_level[0] != reg0) { reg_changed = 1; chip->aspm_level[0] = reg0; } if (CHK_SDIO_EXIST(chip) && !CHK_SDIO_IGNORED(chip)) { rtsx_read_cfg_dw(chip, 1, 0xC0, &tmp); reg1 = (u8)tmp; if (chip->aspm_level[1] != reg1) { reg_changed = 1; chip->aspm_level[1] = reg1; } if ((reg0 & 0x03) && (reg1 & 0x03)) maybe_support_aspm = 1; } else { if (reg0 & 0x03) maybe_support_aspm = 1; } if (reg_changed) { if (maybe_support_aspm) chip->aspm_l0s_l1_en = 0x03; dev_dbg(rtsx_dev(chip), "aspm_level[0] = 0x%02x, aspm_level[1] = 0x%02x\n", chip->aspm_level[0], chip->aspm_level[1]); if (chip->aspm_l0s_l1_en) { chip->aspm_enabled = 1; } else { chip->aspm_enabled = 0; chip->sdio_aspm = 0; } rtsx_write_register(chip, ASPM_FORCE_CTL, 0xFF, 0x30 | chip->aspm_level[0] | (chip->aspm_level[1] << 2)); } } void rtsx_polling_func(struct rtsx_chip *chip) { #ifdef SUPPORT_SD_LOCK struct sd_info *sd_card = &(chip->sd_card); #endif int ss_allowed; if (rtsx_chk_stat(chip, RTSX_STAT_SUSPEND)) return; if (rtsx_chk_stat(chip, RTSX_STAT_DELINK)) goto Delink_Stage; if (chip->polling_config) { u8 val; rtsx_read_config_byte(chip, 0, &val); } if (rtsx_chk_stat(chip, RTSX_STAT_SS)) return; #ifdef SUPPORT_OCP if (chip->ocp_int) { rtsx_read_register(chip, OCPSTAT, &(chip->ocp_stat)); if (chip->card_exist & SD_CARD) sd_power_off_card3v3(chip); else if (chip->card_exist & MS_CARD) ms_power_off_card3v3(chip); else if (chip->card_exist & XD_CARD) xd_power_off_card3v3(chip); chip->ocp_int = 0; } #endif #ifdef SUPPORT_SD_LOCK if (sd_card->sd_erase_status) { if (chip->card_exist & SD_CARD) { u8 val; rtsx_read_register(chip, 0xFD30, &val); if (val & 0x02) { sd_card->sd_erase_status = SD_NOT_ERASE; sd_card->sd_lock_notify = 1; chip->need_reinit |= SD_CARD; } } else { sd_card->sd_erase_status = SD_NOT_ERASE; } } #endif rtsx_init_cards(chip); if (chip->ss_en) { ss_allowed = 1; if (CHECK_PID(chip, 0x5288)) { ss_allowed = 0; } else { if (CHK_SDIO_EXIST(chip) && !CHK_SDIO_IGNORED(chip)) { u32 val; rtsx_read_cfg_dw(chip, 1, 0x04, &val); if (val & 0x07) ss_allowed = 0; } } } else { ss_allowed = 0; } if (ss_allowed && !chip->sd_io) { if (rtsx_get_stat(chip) != RTSX_STAT_IDLE) { chip->ss_counter = 0; } else { if (chip->ss_counter < (chip->ss_idle_period / POLLING_INTERVAL)) { chip->ss_counter++; } else { rtsx_exclusive_enter_ss(chip); return; } } } if (CHECK_PID(chip, 0x5208)) { rtsx_monitor_aspm_config(chip); #ifdef SUPPORT_SDIO_ASPM if (CHK_SDIO_EXIST(chip) && !CHK_SDIO_IGNORED(chip) && chip->aspm_l0s_l1_en && chip->dynamic_aspm) { if (chip->sd_io) { dynamic_configure_sdio_aspm(chip); } else { if (!chip->sdio_aspm) { dev_dbg(rtsx_dev(chip), "SDIO enter ASPM!\n"); rtsx_write_register(chip, ASPM_FORCE_CTL, 0xFC, 0x30 | (chip->aspm_level[1] << 2)); chip->sdio_aspm = 1; } } } #endif } if (chip->idle_counter < IDLE_MAX_COUNT) { chip->idle_counter++; } else { if (rtsx_get_stat(chip) != RTSX_STAT_IDLE) { dev_dbg(rtsx_dev(chip), "Idle state!\n"); rtsx_set_stat(chip, RTSX_STAT_IDLE); #if !defined(LED_AUTO_BLINK) && defined(REGULAR_BLINK) chip->led_toggle_counter = 0; #endif rtsx_force_power_on(chip, SSC_PDCTL); turn_off_led(chip, LED_GPIO); if (chip->auto_power_down && !chip->card_ready && !chip->sd_io) rtsx_force_power_down(chip, SSC_PDCTL | OC_PDCTL); } } switch (rtsx_get_stat(chip)) { case RTSX_STAT_RUN: #if !defined(LED_AUTO_BLINK) && defined(REGULAR_BLINK) rtsx_blink_led(chip); #endif do_remaining_work(chip); break; case RTSX_STAT_IDLE: if (chip->sd_io && !chip->sd_int) try_to_switch_sdio_ctrl(chip); rtsx_enable_aspm(chip); break; default: break; } #ifdef SUPPORT_OCP if (CHECK_LUN_MODE(chip, SD_MS_2LUN)) { if (chip->ocp_stat & (SD_OC_NOW | SD_OC_EVER | MS_OC_NOW | MS_OC_EVER)) dev_dbg(rtsx_dev(chip), "Over current, OCPSTAT is 0x%x\n", chip->ocp_stat); if (chip->ocp_stat & (SD_OC_NOW | SD_OC_EVER)) { if (chip->card_exist & SD_CARD) { rtsx_write_register(chip, CARD_OE, SD_OUTPUT_EN, 0); card_power_off(chip, SD_CARD); chip->card_fail |= SD_CARD; } } if (chip->ocp_stat & (MS_OC_NOW | MS_OC_EVER)) { if (chip->card_exist & MS_CARD) { rtsx_write_register(chip, CARD_OE, MS_OUTPUT_EN, 0); card_power_off(chip, MS_CARD); chip->card_fail |= MS_CARD; } } } else { if (chip->ocp_stat & (SD_OC_NOW | SD_OC_EVER)) { dev_dbg(rtsx_dev(chip), "Over current, OCPSTAT is 0x%x\n", chip->ocp_stat); if (chip->card_exist & SD_CARD) { rtsx_write_register(chip, CARD_OE, SD_OUTPUT_EN, 0); chip->card_fail |= SD_CARD; } else if (chip->card_exist & MS_CARD) { rtsx_write_register(chip, CARD_OE, MS_OUTPUT_EN, 0); chip->card_fail |= MS_CARD; } else if (chip->card_exist & XD_CARD) { rtsx_write_register(chip, CARD_OE, XD_OUTPUT_EN, 0); chip->card_fail |= XD_CARD; } card_power_off(chip, SD_CARD); } } #endif Delink_Stage: if (chip->auto_delink_en && chip->auto_delink_allowed && !chip->card_ready && !chip->card_ejected && !chip->sd_io) { int enter_L1 = chip->auto_delink_in_L1 && ( chip->aspm_l0s_l1_en || chip->ss_en); int delink_stage1_cnt = chip->delink_stage1_step; int delink_stage2_cnt = delink_stage1_cnt + chip->delink_stage2_step; int delink_stage3_cnt = delink_stage2_cnt + chip->delink_stage3_step; if (chip->auto_delink_cnt <= delink_stage3_cnt) { if (chip->auto_delink_cnt == delink_stage1_cnt) { rtsx_set_stat(chip, RTSX_STAT_DELINK); if (chip->asic_code && CHECK_PID(chip, 0x5208)) rtsx_set_phy_reg_bit(chip, 0x1C, 2); if (chip->card_exist) { dev_dbg(rtsx_dev(chip), "False card inserted, do force delink\n"); if (enter_L1) rtsx_write_register(chip, HOST_SLEEP_STATE, 0x03, 1); rtsx_write_register(chip, CHANGE_LINK_STATE, 0x0A, 0x0A); if (enter_L1) rtsx_enter_L1(chip); chip->auto_delink_cnt = delink_stage3_cnt + 1; } else { dev_dbg(rtsx_dev(chip), "No card inserted, do delink\n"); if (enter_L1) rtsx_write_register(chip, HOST_SLEEP_STATE, 0x03, 1); rtsx_write_register(chip, CHANGE_LINK_STATE, 0x02, 0x02); if (enter_L1) rtsx_enter_L1(chip); } } if (chip->auto_delink_cnt == delink_stage2_cnt) { dev_dbg(rtsx_dev(chip), "Try to do force delink\n"); if (enter_L1) rtsx_exit_L1(chip); if (chip->asic_code && CHECK_PID(chip, 0x5208)) rtsx_set_phy_reg_bit(chip, 0x1C, 2); rtsx_write_register(chip, CHANGE_LINK_STATE, 0x0A, 0x0A); } chip->auto_delink_cnt++; } } else { chip->auto_delink_cnt = 0; } } void rtsx_undo_delink(struct rtsx_chip *chip) { chip->auto_delink_allowed = 0; rtsx_write_register(chip, CHANGE_LINK_STATE, 0x0A, 0x00); } /** * rtsx_stop_cmd - stop command transfer and DMA transfer * @chip: Realtek's card reader chip * @card: flash card type * * Stop command transfer and DMA transfer. * This function is called in error handler. */ void rtsx_stop_cmd(struct rtsx_chip *chip, int card) { int i; for (i = 0; i <= 8; i++) { int addr = RTSX_HCBAR + i * 4; u32 reg; reg = rtsx_readl(chip, addr); dev_dbg(rtsx_dev(chip), "BAR (0x%02x): 0x%08x\n", addr, reg); } rtsx_writel(chip, RTSX_HCBCTLR, STOP_CMD); rtsx_writel(chip, RTSX_HDBCTLR, STOP_DMA); for (i = 0; i < 16; i++) { u16 addr = 0xFE20 + (u16)i; u8 val; rtsx_read_register(chip, addr, &val); dev_dbg(rtsx_dev(chip), "0x%04X: 0x%02x\n", addr, val); } rtsx_write_register(chip, DMACTL, 0x80, 0x80); rtsx_write_register(chip, RBCTL, 0x80, 0x80); } #define MAX_RW_REG_CNT 1024 int rtsx_write_register(struct rtsx_chip *chip, u16 addr, u8 mask, u8 data) { int i; u32 val = 3 << 30; val |= (u32)(addr & 0x3FFF) << 16; val |= (u32)mask << 8; val |= (u32)data; rtsx_writel(chip, RTSX_HAIMR, val); for (i = 0; i < MAX_RW_REG_CNT; i++) { val = rtsx_readl(chip, RTSX_HAIMR); if ((val & (1 << 31)) == 0) { if (data != (u8)val) TRACE_RET(chip, STATUS_FAIL); return STATUS_SUCCESS; } } TRACE_RET(chip, STATUS_TIMEDOUT); } int rtsx_read_register(struct rtsx_chip *chip, u16 addr, u8 *data) { u32 val = 2 << 30; int i; if (data) *data = 0; val |= (u32)(addr & 0x3FFF) << 16; rtsx_writel(chip, RTSX_HAIMR, val); for (i = 0; i < MAX_RW_REG_CNT; i++) { val = rtsx_readl(chip, RTSX_HAIMR); if ((val & (1 << 31)) == 0) break; } if (i >= MAX_RW_REG_CNT) TRACE_RET(chip, STATUS_TIMEDOUT); if (data) *data = (u8)(val & 0xFF); return STATUS_SUCCESS; } int rtsx_write_cfg_dw(struct rtsx_chip *chip, u8 func_no, u16 addr, u32 mask, u32 val) { u8 mode = 0, tmp; int i; for (i = 0; i < 4; i++) { if (mask & 0xFF) { RTSX_WRITE_REG(chip, CFGDATA0 + i, 0xFF, (u8)(val & mask & 0xFF)); mode |= (1 << i); } mask >>= 8; val >>= 8; } if (mode) { RTSX_WRITE_REG(chip, CFGADDR0, 0xFF, (u8)addr); RTSX_WRITE_REG(chip, CFGADDR1, 0xFF, (u8)(addr >> 8)); RTSX_WRITE_REG(chip, CFGRWCTL, 0xFF, 0x80 | mode | ((func_no & 0x03) << 4)); for (i = 0; i < MAX_RW_REG_CNT; i++) { RTSX_READ_REG(chip, CFGRWCTL, &tmp); if ((tmp & 0x80) == 0) break; } } return STATUS_SUCCESS; } int rtsx_read_cfg_dw(struct rtsx_chip *chip, u8 func_no, u16 addr, u32 *val) { int i; u8 tmp; u32 data = 0; RTSX_WRITE_REG(chip, CFGADDR0, 0xFF, (u8)addr); RTSX_WRITE_REG(chip, CFGADDR1, 0xFF, (u8)(addr >> 8)); RTSX_WRITE_REG(chip, CFGRWCTL, 0xFF, 0x80 | ((func_no & 0x03) << 4)); for (i = 0; i < MAX_RW_REG_CNT; i++) { RTSX_READ_REG(chip, CFGRWCTL, &tmp); if ((tmp & 0x80) == 0) break; } for (i = 0; i < 4; i++) { RTSX_READ_REG(chip, CFGDATA0 + i, &tmp); data |= (u32)tmp << (i * 8); } if (val) *val = data; return STATUS_SUCCESS; } int rtsx_write_cfg_seq(struct rtsx_chip *chip, u8 func, u16 addr, u8 *buf, int len) { u32 *data, *mask; u16 offset = addr % 4; u16 aligned_addr = addr - offset; int dw_len, i, j; int retval; if (!buf) TRACE_RET(chip, STATUS_NOMEM); if ((len + offset) % 4) dw_len = (len + offset) / 4 + 1; else dw_len = (len + offset) / 4; dev_dbg(rtsx_dev(chip), "dw_len = %d\n", dw_len); data = vzalloc(dw_len * 4); if (!data) TRACE_RET(chip, STATUS_NOMEM); mask = vzalloc(dw_len * 4); if (!mask) { vfree(data); TRACE_RET(chip, STATUS_NOMEM); } j = 0; for (i = 0; i < len; i++) { mask[j] |= 0xFF << (offset * 8); data[j] |= buf[i] << (offset * 8); if (++offset == 4) { j++; offset = 0; } } print_hex_dump_bytes(KBUILD_MODNAME ": ", DUMP_PREFIX_NONE, mask, dw_len * 4); print_hex_dump_bytes(KBUILD_MODNAME ": ", DUMP_PREFIX_NONE, data, dw_len * 4); for (i = 0; i < dw_len; i++) { retval = rtsx_write_cfg_dw(chip, func, aligned_addr + i * 4, mask[i], data[i]); if (retval != STATUS_SUCCESS) { vfree(data); vfree(mask); TRACE_RET(chip, STATUS_FAIL); } } vfree(data); vfree(mask); return STATUS_SUCCESS; } int rtsx_read_cfg_seq(struct rtsx_chip *chip, u8 func, u16 addr, u8 *buf, int len) { u32 *data; u16 offset = addr % 4; u16 aligned_addr = addr - offset; int dw_len, i, j; int retval; if ((len + offset) % 4) dw_len = (len + offset) / 4 + 1; else dw_len = (len + offset) / 4; dev_dbg(rtsx_dev(chip), "dw_len = %d\n", dw_len); data = vmalloc(dw_len * 4); if (!data) TRACE_RET(chip, STATUS_NOMEM); for (i = 0; i < dw_len; i++) { retval = rtsx_read_cfg_dw(chip, func, aligned_addr + i * 4, data + i); if (retval != STATUS_SUCCESS) { vfree(data); TRACE_RET(chip, STATUS_FAIL); } } if (buf) { j = 0; for (i = 0; i < len; i++) { buf[i] = (u8)(data[j] >> (offset * 8)); if (++offset == 4) { j++; offset = 0; } } } vfree(data); return STATUS_SUCCESS; } int rtsx_write_phy_register(struct rtsx_chip *chip, u8 addr, u16 val) { int i, finished = 0; u8 tmp; RTSX_WRITE_REG(chip, PHYDATA0, 0xFF, (u8)val); RTSX_WRITE_REG(chip, PHYDATA1, 0xFF, (u8)(val >> 8)); RTSX_WRITE_REG(chip, PHYADDR, 0xFF, addr); RTSX_WRITE_REG(chip, PHYRWCTL, 0xFF, 0x81); for (i = 0; i < 100000; i++) { RTSX_READ_REG(chip, PHYRWCTL, &tmp); if (!(tmp & 0x80)) { finished = 1; break; } } if (!finished) TRACE_RET(chip, STATUS_FAIL); return STATUS_SUCCESS; } int rtsx_read_phy_register(struct rtsx_chip *chip, u8 addr, u16 *val) { int i, finished = 0; u16 data = 0; u8 tmp; RTSX_WRITE_REG(chip, PHYADDR, 0xFF, addr); RTSX_WRITE_REG(chip, PHYRWCTL, 0xFF, 0x80); for (i = 0; i < 100000; i++) { RTSX_READ_REG(chip, PHYRWCTL, &tmp); if (!(tmp & 0x80)) { finished = 1; break; } } if (!finished) TRACE_RET(chip, STATUS_FAIL); RTSX_READ_REG(chip, PHYDATA0, &tmp); data = tmp; RTSX_READ_REG(chip, PHYDATA1, &tmp); data |= (u16)tmp << 8; if (val) *val = data; return STATUS_SUCCESS; } int rtsx_read_efuse(struct rtsx_chip *chip, u8 addr, u8 *val) { int i; u8 data = 0; RTSX_WRITE_REG(chip, EFUSE_CTRL, 0xFF, 0x80|addr); for (i = 0; i < 100; i++) { RTSX_READ_REG(chip, EFUSE_CTRL, &data); if (!(data & 0x80)) break; udelay(1); } if (data & 0x80) TRACE_RET(chip, STATUS_TIMEDOUT); RTSX_READ_REG(chip, EFUSE_DATA, &data); if (val) *val = data; return STATUS_SUCCESS; } int rtsx_write_efuse(struct rtsx_chip *chip, u8 addr, u8 val) { int i, j; u8 data = 0, tmp = 0xFF; for (i = 0; i < 8; i++) { if (val & (u8)(1 << i)) continue; tmp &= (~(u8)(1 << i)); dev_dbg(rtsx_dev(chip), "Write 0x%x to 0x%x\n", tmp, addr); RTSX_WRITE_REG(chip, EFUSE_DATA, 0xFF, tmp); RTSX_WRITE_REG(chip, EFUSE_CTRL, 0xFF, 0xA0|addr); for (j = 0; j < 100; j++) { RTSX_READ_REG(chip, EFUSE_CTRL, &data); if (!(data & 0x80)) break; wait_timeout(3); } if (data & 0x80) TRACE_RET(chip, STATUS_TIMEDOUT); wait_timeout(5); } return STATUS_SUCCESS; } int rtsx_clr_phy_reg_bit(struct rtsx_chip *chip, u8 reg, u8 bit) { int retval; u16 value; retval = rtsx_read_phy_register(chip, reg, &value); if (retval != STATUS_SUCCESS) TRACE_RET(chip, STATUS_FAIL); if (value & (1 << bit)) { value &= ~(1 << bit); retval = rtsx_write_phy_register(chip, reg, value); if (retval != STATUS_SUCCESS) TRACE_RET(chip, STATUS_FAIL); } return STATUS_SUCCESS; } int rtsx_set_phy_reg_bit(struct rtsx_chip *chip, u8 reg, u8 bit) { int retval; u16 value; retval = rtsx_read_phy_register(chip, reg, &value); if (retval != STATUS_SUCCESS) TRACE_RET(chip, STATUS_FAIL); if (0 == (value & (1 << bit))) { value |= (1 << bit); retval = rtsx_write_phy_register(chip, reg, value); if (retval != STATUS_SUCCESS) TRACE_RET(chip, STATUS_FAIL); } return STATUS_SUCCESS; } int rtsx_check_link_ready(struct rtsx_chip *chip) { u8 val; RTSX_READ_REG(chip, IRQSTAT0, &val); dev_dbg(rtsx_dev(chip), "IRQSTAT0: 0x%x\n", val); if (val & LINK_RDY_INT) { dev_dbg(rtsx_dev(chip), "Delinked!\n"); rtsx_write_register(chip, IRQSTAT0, LINK_RDY_INT, LINK_RDY_INT); return STATUS_FAIL; } return STATUS_SUCCESS; } static void rtsx_handle_pm_dstate(struct rtsx_chip *chip, u8 dstate) { u32 ultmp; dev_dbg(rtsx_dev(chip), "%04x set pm_dstate to %d\n", chip->product_id, dstate); if (CHK_SDIO_EXIST(chip)) { u8 func_no; if (CHECK_PID(chip, 0x5288)) func_no = 2; else func_no = 1; rtsx_read_cfg_dw(chip, func_no, 0x84, &ultmp); dev_dbg(rtsx_dev(chip), "pm_dstate of function %d: 0x%x\n", (int)func_no, ultmp); rtsx_write_cfg_dw(chip, func_no, 0x84, 0xFF, dstate); } rtsx_write_config_byte(chip, 0x44, dstate); rtsx_write_config_byte(chip, 0x45, 0); } void rtsx_enter_L1(struct rtsx_chip *chip) { rtsx_handle_pm_dstate(chip, 2); } void rtsx_exit_L1(struct rtsx_chip *chip) { rtsx_write_config_byte(chip, 0x44, 0); rtsx_write_config_byte(chip, 0x45, 0); } void rtsx_enter_ss(struct rtsx_chip *chip) { dev_dbg(rtsx_dev(chip), "Enter Selective Suspend State!\n"); rtsx_write_register(chip, IRQSTAT0, LINK_RDY_INT, LINK_RDY_INT); if (chip->power_down_in_ss) { rtsx_power_off_card(chip); rtsx_force_power_down(chip, SSC_PDCTL | OC_PDCTL); } if (CHK_SDIO_EXIST(chip)) { if (CHECK_PID(chip, 0x5288)) rtsx_write_cfg_dw(chip, 2, 0xC0, 0xFF00, 0x0100); else rtsx_write_cfg_dw(chip, 1, 0xC0, 0xFF00, 0x0100); } if (chip->auto_delink_en) { rtsx_write_register(chip, HOST_SLEEP_STATE, 0x01, 0x01); } else { if (!chip->phy_debug_mode) { u32 tmp; tmp = rtsx_readl(chip, RTSX_BIER); tmp |= CARD_INT; rtsx_writel(chip, RTSX_BIER, tmp); } rtsx_write_register(chip, CHANGE_LINK_STATE, 0x02, 0); } rtsx_enter_L1(chip); RTSX_CLR_DELINK(chip); rtsx_set_stat(chip, RTSX_STAT_SS); } void rtsx_exit_ss(struct rtsx_chip *chip) { dev_dbg(rtsx_dev(chip), "Exit Selective Suspend State!\n"); rtsx_exit_L1(chip); if (chip->power_down_in_ss) { rtsx_force_power_on(chip, SSC_PDCTL | OC_PDCTL); udelay(1000); } if (RTSX_TST_DELINK(chip)) { chip->need_reinit = SD_CARD | MS_CARD | XD_CARD; rtsx_reinit_cards(chip, 1); RTSX_CLR_DELINK(chip); } else if (chip->power_down_in_ss) { chip->need_reinit = SD_CARD | MS_CARD | XD_CARD; rtsx_reinit_cards(chip, 0); } } int rtsx_pre_handle_interrupt(struct rtsx_chip *chip) { u32 status, int_enable; int exit_ss = 0; #ifdef SUPPORT_OCP u32 ocp_int = 0; ocp_int = OC_INT; #endif if (chip->ss_en) { chip->ss_counter = 0; if (rtsx_get_stat(chip) == RTSX_STAT_SS) { exit_ss = 1; rtsx_exit_L1(chip); rtsx_set_stat(chip, RTSX_STAT_RUN); } } int_enable = rtsx_readl(chip, RTSX_BIER); chip->int_reg = rtsx_readl(chip, RTSX_BIPR); if (((chip->int_reg & int_enable) == 0) || (chip->int_reg == 0xFFFFFFFF)) return STATUS_FAIL; status = chip->int_reg &= (int_enable | 0x7FFFFF); if (status & CARD_INT) { chip->auto_delink_cnt = 0; if (status & SD_INT) { if (status & SD_EXIST) { set_bit(SD_NR, &(chip->need_reset)); } else { set_bit(SD_NR, &(chip->need_release)); chip->sd_reset_counter = 0; chip->sd_show_cnt = 0; clear_bit(SD_NR, &(chip->need_reset)); } } else { /* If multi-luns, it's possible that when plugging/unplugging one card there is another card which still exists in the slot. In this case, all existed cards should be reset. */ if (exit_ss && (status & SD_EXIST)) set_bit(SD_NR, &(chip->need_reinit)); } if (!CHECK_PID(chip, 0x5288) || CHECK_BARO_PKG(chip, QFN)) { if (status & XD_INT) { if (status & XD_EXIST) { set_bit(XD_NR, &(chip->need_reset)); } else { set_bit(XD_NR, &(chip->need_release)); chip->xd_reset_counter = 0; chip->xd_show_cnt = 0; clear_bit(XD_NR, &(chip->need_reset)); } } else { if (exit_ss && (status & XD_EXIST)) set_bit(XD_NR, &(chip->need_reinit)); } } if (status & MS_INT) { if (status & MS_EXIST) { set_bit(MS_NR, &(chip->need_reset)); } else { set_bit(MS_NR, &(chip->need_release)); chip->ms_reset_counter = 0; chip->ms_show_cnt = 0; clear_bit(MS_NR, &(chip->need_reset)); } } else { if (exit_ss && (status & MS_EXIST)) set_bit(MS_NR, &(chip->need_reinit)); } } #ifdef SUPPORT_OCP chip->ocp_int = ocp_int & status; #endif if (chip->sd_io) { if (chip->int_reg & DATA_DONE_INT) chip->int_reg &= ~(u32)DATA_DONE_INT; } return STATUS_SUCCESS; } void rtsx_do_before_power_down(struct rtsx_chip *chip, int pm_stat) { int retval; dev_dbg(rtsx_dev(chip), "%s, pm_stat = %d\n", __func__, pm_stat); rtsx_set_stat(chip, RTSX_STAT_SUSPEND); retval = rtsx_force_power_on(chip, SSC_PDCTL); if (retval != STATUS_SUCCESS) return; rtsx_release_cards(chip); rtsx_disable_bus_int(chip); turn_off_led(chip, LED_GPIO); #ifdef HW_AUTO_SWITCH_SD_BUS if (chip->sd_io) { chip->sdio_in_charge = 1; if (CHECK_PID(chip, 0x5208)) { rtsx_write_register(chip, TLPTISTAT, 0x08, 0x08); /* Enable sdio_bus_auto_switch */ rtsx_write_register(chip, 0xFE70, 0x80, 0x80); } else if (CHECK_PID(chip, 0x5288)) { rtsx_write_register(chip, TLPTISTAT, 0x08, 0x08); /* Enable sdio_bus_auto_switch */ rtsx_write_register(chip, 0xFE5A, 0x08, 0x08); } } #endif if (CHECK_PID(chip, 0x5208) && (chip->ic_version >= IC_VER_D)) { /* u_force_clkreq_0 */ rtsx_write_register(chip, PETXCFG, 0x08, 0x08); } if (pm_stat == PM_S1) { dev_dbg(rtsx_dev(chip), "Host enter S1\n"); rtsx_write_register(chip, HOST_SLEEP_STATE, 0x03, HOST_ENTER_S1); } else if (pm_stat == PM_S3) { if (chip->s3_pwr_off_delay > 0) wait_timeout(chip->s3_pwr_off_delay); dev_dbg(rtsx_dev(chip), "Host enter S3\n"); rtsx_write_register(chip, HOST_SLEEP_STATE, 0x03, HOST_ENTER_S3); } if (chip->do_delink_before_power_down && chip->auto_delink_en) rtsx_write_register(chip, CHANGE_LINK_STATE, 0x02, 2); rtsx_force_power_down(chip, SSC_PDCTL | OC_PDCTL); chip->cur_clk = 0; chip->cur_card = 0; chip->card_exist = 0; } void rtsx_enable_aspm(struct rtsx_chip *chip) { if (chip->aspm_l0s_l1_en && chip->dynamic_aspm) { if (!chip->aspm_enabled) { dev_dbg(rtsx_dev(chip), "Try to enable ASPM\n"); chip->aspm_enabled = 1; if (chip->asic_code && CHECK_PID(chip, 0x5208)) rtsx_write_phy_register(chip, 0x07, 0); if (CHECK_PID(chip, 0x5208)) { rtsx_write_register(chip, ASPM_FORCE_CTL, 0xF3, 0x30 | chip->aspm_level[0]); } else { rtsx_write_config_byte(chip, LCTLR, chip->aspm_l0s_l1_en); } if (CHK_SDIO_EXIST(chip)) { u16 val = chip->aspm_l0s_l1_en | 0x0100; if (CHECK_PID(chip, 0x5288)) rtsx_write_cfg_dw(chip, 2, 0xC0, 0xFFFF, val); else rtsx_write_cfg_dw(chip, 1, 0xC0, 0xFFFF, val); } } } } void rtsx_disable_aspm(struct rtsx_chip *chip) { if (CHECK_PID(chip, 0x5208)) rtsx_monitor_aspm_config(chip); if (chip->aspm_l0s_l1_en && chip->dynamic_aspm) { if (chip->aspm_enabled) { dev_dbg(rtsx_dev(chip), "Try to disable ASPM\n"); chip->aspm_enabled = 0; if (chip->asic_code && CHECK_PID(chip, 0x5208)) rtsx_write_phy_register(chip, 0x07, 0x0129); if (CHECK_PID(chip, 0x5208)) rtsx_write_register(chip, ASPM_FORCE_CTL, 0xF3, 0x30); else rtsx_write_config_byte(chip, LCTLR, 0x00); wait_timeout(1); } } } int rtsx_read_ppbuf(struct rtsx_chip *chip, u8 *buf, int buf_len) { int retval; int i, j; u16 reg_addr; u8 *ptr; if (!buf) TRACE_RET(chip, STATUS_ERROR); ptr = buf; reg_addr = PPBUF_BASE2; for (i = 0; i < buf_len/256; i++) { rtsx_init_cmd(chip); for (j = 0; j < 256; j++) rtsx_add_cmd(chip, READ_REG_CMD, reg_addr++, 0, 0); retval = rtsx_send_cmd(chip, 0, 250); if (retval < 0) TRACE_RET(chip, STATUS_FAIL); memcpy(ptr, rtsx_get_cmd_data(chip), 256); ptr += 256; } if (buf_len%256) { rtsx_init_cmd(chip); for (j = 0; j < buf_len%256; j++) rtsx_add_cmd(chip, READ_REG_CMD, reg_addr++, 0, 0); retval = rtsx_send_cmd(chip, 0, 250); if (retval < 0) TRACE_RET(chip, STATUS_FAIL); } memcpy(ptr, rtsx_get_cmd_data(chip), buf_len%256); return STATUS_SUCCESS; } int rtsx_write_ppbuf(struct rtsx_chip *chip, u8 *buf, int buf_len) { int retval; int i, j; u16 reg_addr; u8 *ptr; if (!buf) TRACE_RET(chip, STATUS_ERROR); ptr = buf; reg_addr = PPBUF_BASE2; for (i = 0; i < buf_len/256; i++) { rtsx_init_cmd(chip); for (j = 0; j < 256; j++) { rtsx_add_cmd(chip, WRITE_REG_CMD, reg_addr++, 0xFF, *ptr); ptr++; } retval = rtsx_send_cmd(chip, 0, 250); if (retval < 0) TRACE_RET(chip, STATUS_FAIL); } if (buf_len%256) { rtsx_init_cmd(chip); for (j = 0; j < buf_len%256; j++) { rtsx_add_cmd(chip, WRITE_REG_CMD, reg_addr++, 0xFF, *ptr); ptr++; } retval = rtsx_send_cmd(chip, 0, 250); if (retval < 0) TRACE_RET(chip, STATUS_FAIL); } return STATUS_SUCCESS; } int rtsx_check_chip_exist(struct rtsx_chip *chip) { if (rtsx_readl(chip, 0) == 0xFFFFFFFF) TRACE_RET(chip, STATUS_FAIL); return STATUS_SUCCESS; } int rtsx_force_power_on(struct rtsx_chip *chip, u8 ctl) { int retval; u8 mask = 0; if (ctl & SSC_PDCTL) mask |= SSC_POWER_DOWN; #ifdef SUPPORT_OCP if (ctl & OC_PDCTL) { mask |= SD_OC_POWER_DOWN; if (CHECK_LUN_MODE(chip, SD_MS_2LUN)) mask |= MS_OC_POWER_DOWN; } #endif if (mask) { retval = rtsx_write_register(chip, FPDCTL, mask, 0); if (retval != STATUS_SUCCESS) TRACE_RET(chip, STATUS_FAIL); if (CHECK_PID(chip, 0x5288)) wait_timeout(200); } return STATUS_SUCCESS; } int rtsx_force_power_down(struct rtsx_chip *chip, u8 ctl) { int retval; u8 mask = 0, val = 0; if (ctl & SSC_PDCTL) mask |= SSC_POWER_DOWN; #ifdef SUPPORT_OCP if (ctl & OC_PDCTL) { mask |= SD_OC_POWER_DOWN; if (CHECK_LUN_MODE(chip, SD_MS_2LUN)) mask |= MS_OC_POWER_DOWN; } #endif if (mask) { val = mask; retval = rtsx_write_register(chip, FPDCTL, mask, val); if (retval != STATUS_SUCCESS) TRACE_RET(chip, STATUS_FAIL); } return STATUS_SUCCESS; }