/* * Sample driver for HardMAC IEEE 802.15.4 devices * * Copyright (C) 2009 Siemens AG * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 * as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * * Written by: * Dmitry Eremin-Solenikov <dmitry.baryshkov@siemens.com> */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/netdevice.h> #include <linux/skbuff.h> #include <linux/if_arp.h> #include <net/af_ieee802154.h> #include <net/ieee802154_netdev.h> #include <net/ieee802154.h> #include <net/nl802154.h> #include <net/wpan-phy.h> struct fakehard_priv { struct wpan_phy *phy; }; static struct wpan_phy *fake_to_phy(const struct net_device *dev) { struct fakehard_priv *priv = netdev_priv(dev); return priv->phy; } /** * fake_get_phy - Return a phy corresponding to this device. * @dev: The network device for which to return the wan-phy object * * This function returns a wpan-phy object corresponding to the passed * network device. Reference counter for wpan-phy object is incremented, * so when the wpan-phy isn't necessary, you should drop the reference * via @wpan_phy_put() call. */ static struct wpan_phy *fake_get_phy(const struct net_device *dev) { struct wpan_phy *phy = fake_to_phy(dev); return to_phy(get_device(&phy->dev)); } /** * fake_get_pan_id - Retrieve the PAN ID of the device. * @dev: The network device to retrieve the PAN of. * * Return the ID of the PAN from the PIB. */ static __le16 fake_get_pan_id(const struct net_device *dev) { BUG_ON(dev->type != ARPHRD_IEEE802154); return cpu_to_le16(0xeba1); } /** * fake_get_short_addr - Retrieve the short address of the device. * @dev: The network device to retrieve the short address of. * * Returns the IEEE 802.15.4 short-form address cached for this * device. If the device has not yet had a short address assigned * then this should return 0xFFFF to indicate a lack of association. */ static __le16 fake_get_short_addr(const struct net_device *dev) { BUG_ON(dev->type != ARPHRD_IEEE802154); return cpu_to_le16(0x1); } /** * fake_get_dsn - Retrieve the DSN of the device. * @dev: The network device to retrieve the DSN for. * * Returns the IEEE 802.15.4 DSN for the network device. * The DSN is the sequence number which will be added to each * packet or MAC command frame by the MAC during transmission. * * DSN means 'Data Sequence Number'. * * Note: This is in section 7.2.1.2 of the IEEE 802.15.4-2006 * document. */ static u8 fake_get_dsn(const struct net_device *dev) { BUG_ON(dev->type != ARPHRD_IEEE802154); return 0x00; /* DSN are implemented in HW, so return just 0 */ } /** * fake_assoc_req - Make an association request to the HW. * @dev: The network device which we are associating to a network. * @addr: The coordinator with which we wish to associate. * @channel: The channel on which to associate. * @cap: The capability information field to use in the association. * * Start an association with a coordinator. The coordinator's address * and PAN ID can be found in @addr. * * Note: This is in section 7.3.1 and 7.5.3.1 of the IEEE * 802.15.4-2006 document. */ static int fake_assoc_req(struct net_device *dev, struct ieee802154_addr *addr, u8 channel, u8 page, u8 cap) { struct wpan_phy *phy = fake_to_phy(dev); mutex_lock(&phy->pib_lock); phy->current_channel = channel; phy->current_page = page; mutex_unlock(&phy->pib_lock); /* We simply emulate it here */ return ieee802154_nl_assoc_confirm(dev, fake_get_short_addr(dev), IEEE802154_SUCCESS); } /** * fake_assoc_resp - Send an association response to a device. * @dev: The network device on which to send the response. * @addr: The address of the device to respond to. * @short_addr: The assigned short address for the device (if any). * @status: The result of the association request. * * Queue the association response of the coordinator to another * device's attempt to associate with the network which we * coordinate. This is then added to the indirect-send queue to be * transmitted to the end device when it polls for data. * * Note: This is in section 7.3.2 and 7.5.3.1 of the IEEE * 802.15.4-2006 document. */ static int fake_assoc_resp(struct net_device *dev, struct ieee802154_addr *addr, __le16 short_addr, u8 status) { return 0; } /** * fake_disassoc_req - Disassociate a device from a network. * @dev: The network device on which we're disassociating a device. * @addr: The device to disassociate from the network. * @reason: The reason to give to the device for being disassociated. * * This sends a disassociation notification to the device being * disassociated from the network. * * Note: This is in section 7.5.3.2 of the IEEE 802.15.4-2006 * document, with the reason described in 7.3.3.2. */ static int fake_disassoc_req(struct net_device *dev, struct ieee802154_addr *addr, u8 reason) { return ieee802154_nl_disassoc_confirm(dev, IEEE802154_SUCCESS); } /** * fake_start_req - Start an IEEE 802.15.4 PAN. * @dev: The network device on which to start the PAN. * @addr: The coordinator address to use when starting the PAN. * @channel: The channel on which to start the PAN. * @bcn_ord: Beacon order. * @sf_ord: Superframe order. * @pan_coord: Whether or not we are the PAN coordinator or just * requesting a realignment perhaps? * @blx: Battery Life Extension feature bitfield. * @coord_realign: Something to realign something else. * * If pan_coord is non-zero then this starts a network with the * provided parameters, otherwise it attempts a coordinator * realignment of the stated network instead. * * Note: This is in section 7.5.2.3 of the IEEE 802.15.4-2006 * document, with 7.3.8 describing coordinator realignment. */ static int fake_start_req(struct net_device *dev, struct ieee802154_addr *addr, u8 channel, u8 page, u8 bcn_ord, u8 sf_ord, u8 pan_coord, u8 blx, u8 coord_realign) { struct wpan_phy *phy = fake_to_phy(dev); mutex_lock(&phy->pib_lock); phy->current_channel = channel; phy->current_page = page; mutex_unlock(&phy->pib_lock); /* We don't emulate beacons here at all, so START should fail */ ieee802154_nl_start_confirm(dev, IEEE802154_INVALID_PARAMETER); return 0; } /** * fake_scan_req - Start a channel scan. * @dev: The network device on which to perform a channel scan. * @type: The type of scan to perform. * @channels: The channel bitmask to scan. * @duration: How long to spend on each channel. * * This starts either a passive (energy) scan or an active (PAN) scan * on the channels indicated in the @channels bitmask. The duration of * the scan is measured in terms of superframe duration. Specifically, * the scan will spend aBaseSuperFrameDuration * ((2^n) + 1) on each * channel. * * Note: This is in section 7.5.2.1 of the IEEE 802.15.4-2006 document. */ static int fake_scan_req(struct net_device *dev, u8 type, u32 channels, u8 page, u8 duration) { u8 edl[27] = {}; return ieee802154_nl_scan_confirm(dev, IEEE802154_SUCCESS, type, channels, page, type == IEEE802154_MAC_SCAN_ED ? edl : NULL); } static struct ieee802154_mlme_ops fake_mlme = { .assoc_req = fake_assoc_req, .assoc_resp = fake_assoc_resp, .disassoc_req = fake_disassoc_req, .start_req = fake_start_req, .scan_req = fake_scan_req, .get_phy = fake_get_phy, .get_pan_id = fake_get_pan_id, .get_short_addr = fake_get_short_addr, .get_dsn = fake_get_dsn, }; static int ieee802154_fake_open(struct net_device *dev) { netif_start_queue(dev); return 0; } static int ieee802154_fake_close(struct net_device *dev) { netif_stop_queue(dev); return 0; } static netdev_tx_t ieee802154_fake_xmit(struct sk_buff *skb, struct net_device *dev) { dev->stats.tx_packets++; dev->stats.tx_bytes += skb->len; /* FIXME: do hardware work here ... */ dev_kfree_skb(skb); return NETDEV_TX_OK; } static int ieee802154_fake_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) { struct sockaddr_ieee802154 *sa = (struct sockaddr_ieee802154 *)&ifr->ifr_addr; u16 pan_id, short_addr; switch (cmd) { case SIOCGIFADDR: /* FIXME: fixed here, get from device IRL */ pan_id = le16_to_cpu(fake_get_pan_id(dev)); short_addr = le16_to_cpu(fake_get_short_addr(dev)); if (pan_id == IEEE802154_PANID_BROADCAST || short_addr == IEEE802154_ADDR_BROADCAST) return -EADDRNOTAVAIL; sa->family = AF_IEEE802154; sa->addr.addr_type = IEEE802154_ADDR_SHORT; sa->addr.pan_id = pan_id; sa->addr.short_addr = short_addr; return 0; } return -ENOIOCTLCMD; } static int ieee802154_fake_mac_addr(struct net_device *dev, void *p) { return -EBUSY; /* HW address is built into the device */ } static const struct net_device_ops fake_ops = { .ndo_open = ieee802154_fake_open, .ndo_stop = ieee802154_fake_close, .ndo_start_xmit = ieee802154_fake_xmit, .ndo_do_ioctl = ieee802154_fake_ioctl, .ndo_set_mac_address = ieee802154_fake_mac_addr, }; static void ieee802154_fake_destruct(struct net_device *dev) { struct wpan_phy *phy = fake_to_phy(dev); wpan_phy_unregister(phy); free_netdev(dev); wpan_phy_free(phy); } static void ieee802154_fake_setup(struct net_device *dev) { dev->addr_len = IEEE802154_ADDR_LEN; memset(dev->broadcast, 0xff, IEEE802154_ADDR_LEN); dev->features = NETIF_F_HW_CSUM; dev->needed_tailroom = 2; /* FCS */ dev->mtu = 127; dev->tx_queue_len = 10; dev->type = ARPHRD_IEEE802154; dev->flags = IFF_NOARP | IFF_BROADCAST; dev->watchdog_timeo = 0; dev->destructor = ieee802154_fake_destruct; } static int ieee802154fake_probe(struct platform_device *pdev) { struct net_device *dev; struct fakehard_priv *priv; struct wpan_phy *phy = wpan_phy_alloc(0); int err; if (!phy) return -ENOMEM; dev = alloc_netdev(sizeof(struct fakehard_priv), "hardwpan%d", NET_NAME_UNKNOWN, ieee802154_fake_setup); if (!dev) { wpan_phy_free(phy); return -ENOMEM; } memcpy(dev->dev_addr, "\xba\xbe\xca\xfe\xde\xad\xbe\xef", dev->addr_len); /* * For now we'd like to emulate 2.4 GHz-only device, * both O-QPSK and CSS */ /* 2.4 GHz O-QPSK 802.15.4-2003 */ phy->channels_supported[0] |= 0x7FFF800; /* 2.4 GHz CSS 802.15.4a-2007 */ phy->channels_supported[3] |= 0x3fff; phy->transmit_power = 0xbf; dev->netdev_ops = &fake_ops; dev->ml_priv = &fake_mlme; priv = netdev_priv(dev); priv->phy = phy; wpan_phy_set_dev(phy, &pdev->dev); SET_NETDEV_DEV(dev, &phy->dev); platform_set_drvdata(pdev, dev); err = wpan_phy_register(phy); if (err) goto err_phy_reg; err = register_netdev(dev); if (err) goto err_netdev_reg; dev_info(&pdev->dev, "Added ieee802154 HardMAC hardware\n"); return 0; err_netdev_reg: wpan_phy_unregister(phy); err_phy_reg: free_netdev(dev); wpan_phy_free(phy); return err; } static int ieee802154fake_remove(struct platform_device *pdev) { struct net_device *dev = platform_get_drvdata(pdev); unregister_netdev(dev); return 0; } static struct platform_device *ieee802154fake_dev; static struct platform_driver ieee802154fake_driver = { .probe = ieee802154fake_probe, .remove = ieee802154fake_remove, .driver = { .name = "ieee802154hardmac", .owner = THIS_MODULE, }, }; static __init int fake_init(void) { ieee802154fake_dev = platform_device_register_simple( "ieee802154hardmac", -1, NULL, 0); return platform_driver_register(&ieee802154fake_driver); } static __exit void fake_exit(void) { platform_driver_unregister(&ieee802154fake_driver); platform_device_unregister(ieee802154fake_dev); } module_init(fake_init); module_exit(fake_exit); MODULE_LICENSE("GPL");