/* * CAN driver for esd CAN-USB/2 and CAN-USB/Micro * * Copyright (C) 2010-2012 Matthias Fuchs <matthias.fuchs@esd.eu>, esd gmbh * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published * by the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #include <linux/signal.h> #include <linux/slab.h> #include <linux/module.h> #include <linux/netdevice.h> #include <linux/usb.h> #include <linux/can.h> #include <linux/can/dev.h> #include <linux/can/error.h> MODULE_AUTHOR("Matthias Fuchs <matthias.fuchs@esd.eu>"); MODULE_DESCRIPTION("CAN driver for esd CAN-USB/2 and CAN-USB/Micro interfaces"); MODULE_LICENSE("GPL v2"); /* Define these values to match your devices */ #define USB_ESDGMBH_VENDOR_ID 0x0ab4 #define USB_CANUSB2_PRODUCT_ID 0x0010 #define USB_CANUSBM_PRODUCT_ID 0x0011 #define ESD_USB2_CAN_CLOCK 60000000 #define ESD_USBM_CAN_CLOCK 36000000 #define ESD_USB2_MAX_NETS 2 /* USB2 commands */ #define CMD_VERSION 1 /* also used for VERSION_REPLY */ #define CMD_CAN_RX 2 /* device to host only */ #define CMD_CAN_TX 3 /* also used for TX_DONE */ #define CMD_SETBAUD 4 /* also used for SETBAUD_REPLY */ #define CMD_TS 5 /* also used for TS_REPLY */ #define CMD_IDADD 6 /* also used for IDADD_REPLY */ /* esd CAN message flags - dlc field */ #define ESD_RTR 0x10 /* esd CAN message flags - id field */ #define ESD_EXTID 0x20000000 #define ESD_EVENT 0x40000000 #define ESD_IDMASK 0x1fffffff /* esd CAN event ids used by this driver */ #define ESD_EV_CAN_ERROR_EXT 2 /* baudrate message flags */ #define ESD_USB2_UBR 0x80000000 #define ESD_USB2_LOM 0x40000000 #define ESD_USB2_NO_BAUDRATE 0x7fffffff #define ESD_USB2_TSEG1_MIN 1 #define ESD_USB2_TSEG1_MAX 16 #define ESD_USB2_TSEG1_SHIFT 16 #define ESD_USB2_TSEG2_MIN 1 #define ESD_USB2_TSEG2_MAX 8 #define ESD_USB2_TSEG2_SHIFT 20 #define ESD_USB2_SJW_MAX 4 #define ESD_USB2_SJW_SHIFT 14 #define ESD_USBM_SJW_SHIFT 24 #define ESD_USB2_BRP_MIN 1 #define ESD_USB2_BRP_MAX 1024 #define ESD_USB2_BRP_INC 1 #define ESD_USB2_3_SAMPLES 0x00800000 /* esd IDADD message */ #define ESD_ID_ENABLE 0x80 #define ESD_MAX_ID_SEGMENT 64 /* SJA1000 ECC register (emulated by usb2 firmware) */ #define SJA1000_ECC_SEG 0x1F #define SJA1000_ECC_DIR 0x20 #define SJA1000_ECC_ERR 0x06 #define SJA1000_ECC_BIT 0x00 #define SJA1000_ECC_FORM 0x40 #define SJA1000_ECC_STUFF 0x80 #define SJA1000_ECC_MASK 0xc0 /* esd bus state event codes */ #define ESD_BUSSTATE_MASK 0xc0 #define ESD_BUSSTATE_WARN 0x40 #define ESD_BUSSTATE_ERRPASSIVE 0x80 #define ESD_BUSSTATE_BUSOFF 0xc0 #define RX_BUFFER_SIZE 1024 #define MAX_RX_URBS 4 #define MAX_TX_URBS 16 /* must be power of 2 */ struct header_msg { u8 len; /* len is always the total message length in 32bit words */ u8 cmd; u8 rsvd[2]; }; struct version_msg { u8 len; u8 cmd; u8 rsvd; u8 flags; __le32 drv_version; }; struct version_reply_msg { u8 len; u8 cmd; u8 nets; u8 features; __le32 version; u8 name[16]; __le32 rsvd; __le32 ts; }; struct rx_msg { u8 len; u8 cmd; u8 net; u8 dlc; __le32 ts; __le32 id; /* upper 3 bits contain flags */ u8 data[8]; }; struct tx_msg { u8 len; u8 cmd; u8 net; u8 dlc; __le32 hnd; __le32 id; /* upper 3 bits contain flags */ u8 data[8]; }; struct tx_done_msg { u8 len; u8 cmd; u8 net; u8 status; __le32 hnd; __le32 ts; }; struct id_filter_msg { u8 len; u8 cmd; u8 net; u8 option; __le32 mask[ESD_MAX_ID_SEGMENT + 1]; }; struct set_baudrate_msg { u8 len; u8 cmd; u8 net; u8 rsvd; __le32 baud; }; /* Main message type used between library and application */ struct __attribute__ ((packed)) esd_usb2_msg { union { struct header_msg hdr; struct version_msg version; struct version_reply_msg version_reply; struct rx_msg rx; struct tx_msg tx; struct tx_done_msg txdone; struct set_baudrate_msg setbaud; struct id_filter_msg filter; } msg; }; static struct usb_device_id esd_usb2_table[] = { {USB_DEVICE(USB_ESDGMBH_VENDOR_ID, USB_CANUSB2_PRODUCT_ID)}, {USB_DEVICE(USB_ESDGMBH_VENDOR_ID, USB_CANUSBM_PRODUCT_ID)}, {} }; MODULE_DEVICE_TABLE(usb, esd_usb2_table); struct esd_usb2_net_priv; struct esd_tx_urb_context { struct esd_usb2_net_priv *priv; u32 echo_index; int dlc; }; struct esd_usb2 { struct usb_device *udev; struct esd_usb2_net_priv *nets[ESD_USB2_MAX_NETS]; struct usb_anchor rx_submitted; int net_count; u32 version; int rxinitdone; }; struct esd_usb2_net_priv { struct can_priv can; /* must be the first member */ atomic_t active_tx_jobs; struct usb_anchor tx_submitted; struct esd_tx_urb_context tx_contexts[MAX_TX_URBS]; struct esd_usb2 *usb2; struct net_device *netdev; int index; u8 old_state; struct can_berr_counter bec; }; static void esd_usb2_rx_event(struct esd_usb2_net_priv *priv, struct esd_usb2_msg *msg) { struct net_device_stats *stats = &priv->netdev->stats; struct can_frame *cf; struct sk_buff *skb; u32 id = le32_to_cpu(msg->msg.rx.id) & ESD_IDMASK; if (id == ESD_EV_CAN_ERROR_EXT) { u8 state = msg->msg.rx.data[0]; u8 ecc = msg->msg.rx.data[1]; u8 txerr = msg->msg.rx.data[2]; u8 rxerr = msg->msg.rx.data[3]; skb = alloc_can_err_skb(priv->netdev, &cf); if (skb == NULL) { stats->rx_dropped++; return; } if (state != priv->old_state) { priv->old_state = state; switch (state & ESD_BUSSTATE_MASK) { case ESD_BUSSTATE_BUSOFF: priv->can.state = CAN_STATE_BUS_OFF; cf->can_id |= CAN_ERR_BUSOFF; can_bus_off(priv->netdev); break; case ESD_BUSSTATE_WARN: priv->can.state = CAN_STATE_ERROR_WARNING; priv->can.can_stats.error_warning++; break; case ESD_BUSSTATE_ERRPASSIVE: priv->can.state = CAN_STATE_ERROR_PASSIVE; priv->can.can_stats.error_passive++; break; default: priv->can.state = CAN_STATE_ERROR_ACTIVE; break; } } else { priv->can.can_stats.bus_error++; stats->rx_errors++; cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR; switch (ecc & SJA1000_ECC_MASK) { case SJA1000_ECC_BIT: cf->data[2] |= CAN_ERR_PROT_BIT; break; case SJA1000_ECC_FORM: cf->data[2] |= CAN_ERR_PROT_FORM; break; case SJA1000_ECC_STUFF: cf->data[2] |= CAN_ERR_PROT_STUFF; break; default: cf->data[2] |= CAN_ERR_PROT_UNSPEC; cf->data[3] = ecc & SJA1000_ECC_SEG; break; } /* Error occurred during transmission? */ if (!(ecc & SJA1000_ECC_DIR)) cf->data[2] |= CAN_ERR_PROT_TX; if (priv->can.state == CAN_STATE_ERROR_WARNING || priv->can.state == CAN_STATE_ERROR_PASSIVE) { cf->data[1] = (txerr > rxerr) ? CAN_ERR_CRTL_TX_PASSIVE : CAN_ERR_CRTL_RX_PASSIVE; } cf->data[6] = txerr; cf->data[7] = rxerr; } netif_rx(skb); priv->bec.txerr = txerr; priv->bec.rxerr = rxerr; stats->rx_packets++; stats->rx_bytes += cf->can_dlc; } } static void esd_usb2_rx_can_msg(struct esd_usb2_net_priv *priv, struct esd_usb2_msg *msg) { struct net_device_stats *stats = &priv->netdev->stats; struct can_frame *cf; struct sk_buff *skb; int i; u32 id; if (!netif_device_present(priv->netdev)) return; id = le32_to_cpu(msg->msg.rx.id); if (id & ESD_EVENT) { esd_usb2_rx_event(priv, msg); } else { skb = alloc_can_skb(priv->netdev, &cf); if (skb == NULL) { stats->rx_dropped++; return; } cf->can_id = id & ESD_IDMASK; cf->can_dlc = get_can_dlc(msg->msg.rx.dlc); if (id & ESD_EXTID) cf->can_id |= CAN_EFF_FLAG; if (msg->msg.rx.dlc & ESD_RTR) { cf->can_id |= CAN_RTR_FLAG; } else { for (i = 0; i < cf->can_dlc; i++) cf->data[i] = msg->msg.rx.data[i]; } netif_rx(skb); stats->rx_packets++; stats->rx_bytes += cf->can_dlc; } return; } static void esd_usb2_tx_done_msg(struct esd_usb2_net_priv *priv, struct esd_usb2_msg *msg) { struct net_device_stats *stats = &priv->netdev->stats; struct net_device *netdev = priv->netdev; struct esd_tx_urb_context *context; if (!netif_device_present(netdev)) return; context = &priv->tx_contexts[msg->msg.txdone.hnd & (MAX_TX_URBS - 1)]; if (!msg->msg.txdone.status) { stats->tx_packets++; stats->tx_bytes += context->dlc; can_get_echo_skb(netdev, context->echo_index); } else { stats->tx_errors++; can_free_echo_skb(netdev, context->echo_index); } /* Release context */ context->echo_index = MAX_TX_URBS; atomic_dec(&priv->active_tx_jobs); netif_wake_queue(netdev); } static void esd_usb2_read_bulk_callback(struct urb *urb) { struct esd_usb2 *dev = urb->context; int retval; int pos = 0; int i; switch (urb->status) { case 0: /* success */ break; case -ENOENT: case -ESHUTDOWN: return; default: dev_info(dev->udev->dev.parent, "Rx URB aborted (%d)\n", urb->status); goto resubmit_urb; } while (pos < urb->actual_length) { struct esd_usb2_msg *msg; msg = (struct esd_usb2_msg *)(urb->transfer_buffer + pos); switch (msg->msg.hdr.cmd) { case CMD_CAN_RX: if (msg->msg.rx.net >= dev->net_count) { dev_err(dev->udev->dev.parent, "format error\n"); break; } esd_usb2_rx_can_msg(dev->nets[msg->msg.rx.net], msg); break; case CMD_CAN_TX: if (msg->msg.txdone.net >= dev->net_count) { dev_err(dev->udev->dev.parent, "format error\n"); break; } esd_usb2_tx_done_msg(dev->nets[msg->msg.txdone.net], msg); break; } pos += msg->msg.hdr.len << 2; if (pos > urb->actual_length) { dev_err(dev->udev->dev.parent, "format error\n"); break; } } resubmit_urb: usb_fill_bulk_urb(urb, dev->udev, usb_rcvbulkpipe(dev->udev, 1), urb->transfer_buffer, RX_BUFFER_SIZE, esd_usb2_read_bulk_callback, dev); retval = usb_submit_urb(urb, GFP_ATOMIC); if (retval == -ENODEV) { for (i = 0; i < dev->net_count; i++) { if (dev->nets[i]) netif_device_detach(dev->nets[i]->netdev); } } else if (retval) { dev_err(dev->udev->dev.parent, "failed resubmitting read bulk urb: %d\n", retval); } return; } /* * callback for bulk IN urb */ static void esd_usb2_write_bulk_callback(struct urb *urb) { struct esd_tx_urb_context *context = urb->context; struct esd_usb2_net_priv *priv; struct net_device *netdev; size_t size = sizeof(struct esd_usb2_msg); WARN_ON(!context); priv = context->priv; netdev = priv->netdev; /* free up our allocated buffer */ usb_free_coherent(urb->dev, size, urb->transfer_buffer, urb->transfer_dma); if (!netif_device_present(netdev)) return; if (urb->status) netdev_info(netdev, "Tx URB aborted (%d)\n", urb->status); netdev->trans_start = jiffies; } static ssize_t show_firmware(struct device *d, struct device_attribute *attr, char *buf) { struct usb_interface *intf = to_usb_interface(d); struct esd_usb2 *dev = usb_get_intfdata(intf); return sprintf(buf, "%d.%d.%d\n", (dev->version >> 12) & 0xf, (dev->version >> 8) & 0xf, dev->version & 0xff); } static DEVICE_ATTR(firmware, S_IRUGO, show_firmware, NULL); static ssize_t show_hardware(struct device *d, struct device_attribute *attr, char *buf) { struct usb_interface *intf = to_usb_interface(d); struct esd_usb2 *dev = usb_get_intfdata(intf); return sprintf(buf, "%d.%d.%d\n", (dev->version >> 28) & 0xf, (dev->version >> 24) & 0xf, (dev->version >> 16) & 0xff); } static DEVICE_ATTR(hardware, S_IRUGO, show_hardware, NULL); static ssize_t show_nets(struct device *d, struct device_attribute *attr, char *buf) { struct usb_interface *intf = to_usb_interface(d); struct esd_usb2 *dev = usb_get_intfdata(intf); return sprintf(buf, "%d", dev->net_count); } static DEVICE_ATTR(nets, S_IRUGO, show_nets, NULL); static int esd_usb2_send_msg(struct esd_usb2 *dev, struct esd_usb2_msg *msg) { int actual_length; return usb_bulk_msg(dev->udev, usb_sndbulkpipe(dev->udev, 2), msg, msg->msg.hdr.len << 2, &actual_length, 1000); } static int esd_usb2_wait_msg(struct esd_usb2 *dev, struct esd_usb2_msg *msg) { int actual_length; return usb_bulk_msg(dev->udev, usb_rcvbulkpipe(dev->udev, 1), msg, sizeof(*msg), &actual_length, 1000); } static int esd_usb2_setup_rx_urbs(struct esd_usb2 *dev) { int i, err = 0; if (dev->rxinitdone) return 0; for (i = 0; i < MAX_RX_URBS; i++) { struct urb *urb = NULL; u8 *buf = NULL; /* create a URB, and a buffer for it */ urb = usb_alloc_urb(0, GFP_KERNEL); if (!urb) { dev_warn(dev->udev->dev.parent, "No memory left for URBs\n"); err = -ENOMEM; break; } buf = usb_alloc_coherent(dev->udev, RX_BUFFER_SIZE, GFP_KERNEL, &urb->transfer_dma); if (!buf) { dev_warn(dev->udev->dev.parent, "No memory left for USB buffer\n"); err = -ENOMEM; goto freeurb; } usb_fill_bulk_urb(urb, dev->udev, usb_rcvbulkpipe(dev->udev, 1), buf, RX_BUFFER_SIZE, esd_usb2_read_bulk_callback, dev); urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; usb_anchor_urb(urb, &dev->rx_submitted); err = usb_submit_urb(urb, GFP_KERNEL); if (err) { usb_unanchor_urb(urb); usb_free_coherent(dev->udev, RX_BUFFER_SIZE, buf, urb->transfer_dma); } freeurb: /* Drop reference, USB core will take care of freeing it */ usb_free_urb(urb); if (err) break; } /* Did we submit any URBs */ if (i == 0) { dev_err(dev->udev->dev.parent, "couldn't setup read URBs\n"); return err; } /* Warn if we've couldn't transmit all the URBs */ if (i < MAX_RX_URBS) { dev_warn(dev->udev->dev.parent, "rx performance may be slow\n"); } dev->rxinitdone = 1; return 0; } /* * Start interface */ static int esd_usb2_start(struct esd_usb2_net_priv *priv) { struct esd_usb2 *dev = priv->usb2; struct net_device *netdev = priv->netdev; struct esd_usb2_msg *msg; int err, i; msg = kmalloc(sizeof(*msg), GFP_KERNEL); if (!msg) { err = -ENOMEM; goto out; } /* * Enable all IDs * The IDADD message takes up to 64 32 bit bitmasks (2048 bits). * Each bit represents one 11 bit CAN identifier. A set bit * enables reception of the corresponding CAN identifier. A cleared * bit disabled this identifier. An additional bitmask value * following the CAN 2.0A bits is used to enable reception of * extended CAN frames. Only the LSB of this final mask is checked * for the complete 29 bit ID range. The IDADD message also allows * filter configuration for an ID subset. In this case you can add * the number of the starting bitmask (0..64) to the filter.option * field followed by only some bitmasks. */ msg->msg.hdr.cmd = CMD_IDADD; msg->msg.hdr.len = 2 + ESD_MAX_ID_SEGMENT; msg->msg.filter.net = priv->index; msg->msg.filter.option = ESD_ID_ENABLE; /* start with segment 0 */ for (i = 0; i < ESD_MAX_ID_SEGMENT; i++) msg->msg.filter.mask[i] = cpu_to_le32(0xffffffff); /* enable 29bit extended IDs */ msg->msg.filter.mask[ESD_MAX_ID_SEGMENT] = cpu_to_le32(0x00000001); err = esd_usb2_send_msg(dev, msg); if (err) goto out; err = esd_usb2_setup_rx_urbs(dev); if (err) goto out; priv->can.state = CAN_STATE_ERROR_ACTIVE; out: if (err == -ENODEV) netif_device_detach(netdev); if (err) netdev_err(netdev, "couldn't start device: %d\n", err); kfree(msg); return err; } static void unlink_all_urbs(struct esd_usb2 *dev) { struct esd_usb2_net_priv *priv; int i, j; usb_kill_anchored_urbs(&dev->rx_submitted); for (i = 0; i < dev->net_count; i++) { priv = dev->nets[i]; if (priv) { usb_kill_anchored_urbs(&priv->tx_submitted); atomic_set(&priv->active_tx_jobs, 0); for (j = 0; j < MAX_TX_URBS; j++) priv->tx_contexts[j].echo_index = MAX_TX_URBS; } } } static int esd_usb2_open(struct net_device *netdev) { struct esd_usb2_net_priv *priv = netdev_priv(netdev); int err; /* common open */ err = open_candev(netdev); if (err) return err; /* finally start device */ err = esd_usb2_start(priv); if (err) { netdev_warn(netdev, "couldn't start device: %d\n", err); close_candev(netdev); return err; } netif_start_queue(netdev); return 0; } static netdev_tx_t esd_usb2_start_xmit(struct sk_buff *skb, struct net_device *netdev) { struct esd_usb2_net_priv *priv = netdev_priv(netdev); struct esd_usb2 *dev = priv->usb2; struct esd_tx_urb_context *context = NULL; struct net_device_stats *stats = &netdev->stats; struct can_frame *cf = (struct can_frame *)skb->data; struct esd_usb2_msg *msg; struct urb *urb; u8 *buf; int i, err; int ret = NETDEV_TX_OK; size_t size = sizeof(struct esd_usb2_msg); if (can_dropped_invalid_skb(netdev, skb)) return NETDEV_TX_OK; /* create a URB, and a buffer for it, and copy the data to the URB */ urb = usb_alloc_urb(0, GFP_ATOMIC); if (!urb) { netdev_err(netdev, "No memory left for URBs\n"); stats->tx_dropped++; dev_kfree_skb(skb); goto nourbmem; } buf = usb_alloc_coherent(dev->udev, size, GFP_ATOMIC, &urb->transfer_dma); if (!buf) { netdev_err(netdev, "No memory left for USB buffer\n"); stats->tx_dropped++; dev_kfree_skb(skb); goto nobufmem; } msg = (struct esd_usb2_msg *)buf; msg->msg.hdr.len = 3; /* minimal length */ msg->msg.hdr.cmd = CMD_CAN_TX; msg->msg.tx.net = priv->index; msg->msg.tx.dlc = cf->can_dlc; msg->msg.tx.id = cpu_to_le32(cf->can_id & CAN_ERR_MASK); if (cf->can_id & CAN_RTR_FLAG) msg->msg.tx.dlc |= ESD_RTR; if (cf->can_id & CAN_EFF_FLAG) msg->msg.tx.id |= cpu_to_le32(ESD_EXTID); for (i = 0; i < cf->can_dlc; i++) msg->msg.tx.data[i] = cf->data[i]; msg->msg.hdr.len += (cf->can_dlc + 3) >> 2; for (i = 0; i < MAX_TX_URBS; i++) { if (priv->tx_contexts[i].echo_index == MAX_TX_URBS) { context = &priv->tx_contexts[i]; break; } } /* * This may never happen. */ if (!context) { netdev_warn(netdev, "couldn't find free context\n"); ret = NETDEV_TX_BUSY; goto releasebuf; } context->priv = priv; context->echo_index = i; context->dlc = cf->can_dlc; /* hnd must not be 0 - MSB is stripped in txdone handling */ msg->msg.tx.hnd = 0x80000000 | i; /* returned in TX done message */ usb_fill_bulk_urb(urb, dev->udev, usb_sndbulkpipe(dev->udev, 2), buf, msg->msg.hdr.len << 2, esd_usb2_write_bulk_callback, context); urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; usb_anchor_urb(urb, &priv->tx_submitted); can_put_echo_skb(skb, netdev, context->echo_index); atomic_inc(&priv->active_tx_jobs); /* Slow down tx path */ if (atomic_read(&priv->active_tx_jobs) >= MAX_TX_URBS) netif_stop_queue(netdev); err = usb_submit_urb(urb, GFP_ATOMIC); if (err) { can_free_echo_skb(netdev, context->echo_index); atomic_dec(&priv->active_tx_jobs); usb_unanchor_urb(urb); stats->tx_dropped++; if (err == -ENODEV) netif_device_detach(netdev); else netdev_warn(netdev, "failed tx_urb %d\n", err); goto releasebuf; } netdev->trans_start = jiffies; /* * Release our reference to this URB, the USB core will eventually free * it entirely. */ usb_free_urb(urb); return NETDEV_TX_OK; releasebuf: usb_free_coherent(dev->udev, size, buf, urb->transfer_dma); nobufmem: usb_free_urb(urb); nourbmem: return ret; } static int esd_usb2_close(struct net_device *netdev) { struct esd_usb2_net_priv *priv = netdev_priv(netdev); struct esd_usb2_msg *msg; int i; msg = kmalloc(sizeof(*msg), GFP_KERNEL); if (!msg) return -ENOMEM; /* Disable all IDs (see esd_usb2_start()) */ msg->msg.hdr.cmd = CMD_IDADD; msg->msg.hdr.len = 2 + ESD_MAX_ID_SEGMENT; msg->msg.filter.net = priv->index; msg->msg.filter.option = ESD_ID_ENABLE; /* start with segment 0 */ for (i = 0; i <= ESD_MAX_ID_SEGMENT; i++) msg->msg.filter.mask[i] = 0; if (esd_usb2_send_msg(priv->usb2, msg) < 0) netdev_err(netdev, "sending idadd message failed\n"); /* set CAN controller to reset mode */ msg->msg.hdr.len = 2; msg->msg.hdr.cmd = CMD_SETBAUD; msg->msg.setbaud.net = priv->index; msg->msg.setbaud.rsvd = 0; msg->msg.setbaud.baud = cpu_to_le32(ESD_USB2_NO_BAUDRATE); if (esd_usb2_send_msg(priv->usb2, msg) < 0) netdev_err(netdev, "sending setbaud message failed\n"); priv->can.state = CAN_STATE_STOPPED; netif_stop_queue(netdev); close_candev(netdev); kfree(msg); return 0; } static const struct net_device_ops esd_usb2_netdev_ops = { .ndo_open = esd_usb2_open, .ndo_stop = esd_usb2_close, .ndo_start_xmit = esd_usb2_start_xmit, .ndo_change_mtu = can_change_mtu, }; static const struct can_bittiming_const esd_usb2_bittiming_const = { .name = "esd_usb2", .tseg1_min = ESD_USB2_TSEG1_MIN, .tseg1_max = ESD_USB2_TSEG1_MAX, .tseg2_min = ESD_USB2_TSEG2_MIN, .tseg2_max = ESD_USB2_TSEG2_MAX, .sjw_max = ESD_USB2_SJW_MAX, .brp_min = ESD_USB2_BRP_MIN, .brp_max = ESD_USB2_BRP_MAX, .brp_inc = ESD_USB2_BRP_INC, }; static int esd_usb2_set_bittiming(struct net_device *netdev) { struct esd_usb2_net_priv *priv = netdev_priv(netdev); struct can_bittiming *bt = &priv->can.bittiming; struct esd_usb2_msg *msg; int err; u32 canbtr; int sjw_shift; canbtr = ESD_USB2_UBR; if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) canbtr |= ESD_USB2_LOM; canbtr |= (bt->brp - 1) & (ESD_USB2_BRP_MAX - 1); if (le16_to_cpu(priv->usb2->udev->descriptor.idProduct) == USB_CANUSBM_PRODUCT_ID) sjw_shift = ESD_USBM_SJW_SHIFT; else sjw_shift = ESD_USB2_SJW_SHIFT; canbtr |= ((bt->sjw - 1) & (ESD_USB2_SJW_MAX - 1)) << sjw_shift; canbtr |= ((bt->prop_seg + bt->phase_seg1 - 1) & (ESD_USB2_TSEG1_MAX - 1)) << ESD_USB2_TSEG1_SHIFT; canbtr |= ((bt->phase_seg2 - 1) & (ESD_USB2_TSEG2_MAX - 1)) << ESD_USB2_TSEG2_SHIFT; if (priv->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES) canbtr |= ESD_USB2_3_SAMPLES; msg = kmalloc(sizeof(*msg), GFP_KERNEL); if (!msg) return -ENOMEM; msg->msg.hdr.len = 2; msg->msg.hdr.cmd = CMD_SETBAUD; msg->msg.setbaud.net = priv->index; msg->msg.setbaud.rsvd = 0; msg->msg.setbaud.baud = cpu_to_le32(canbtr); netdev_info(netdev, "setting BTR=%#x\n", canbtr); err = esd_usb2_send_msg(priv->usb2, msg); kfree(msg); return err; } static int esd_usb2_get_berr_counter(const struct net_device *netdev, struct can_berr_counter *bec) { struct esd_usb2_net_priv *priv = netdev_priv(netdev); bec->txerr = priv->bec.txerr; bec->rxerr = priv->bec.rxerr; return 0; } static int esd_usb2_set_mode(struct net_device *netdev, enum can_mode mode) { switch (mode) { case CAN_MODE_START: netif_wake_queue(netdev); break; default: return -EOPNOTSUPP; } return 0; } static int esd_usb2_probe_one_net(struct usb_interface *intf, int index) { struct esd_usb2 *dev = usb_get_intfdata(intf); struct net_device *netdev; struct esd_usb2_net_priv *priv; int err = 0; int i; netdev = alloc_candev(sizeof(*priv), MAX_TX_URBS); if (!netdev) { dev_err(&intf->dev, "couldn't alloc candev\n"); err = -ENOMEM; goto done; } priv = netdev_priv(netdev); init_usb_anchor(&priv->tx_submitted); atomic_set(&priv->active_tx_jobs, 0); for (i = 0; i < MAX_TX_URBS; i++) priv->tx_contexts[i].echo_index = MAX_TX_URBS; priv->usb2 = dev; priv->netdev = netdev; priv->index = index; priv->can.state = CAN_STATE_STOPPED; priv->can.ctrlmode_supported = CAN_CTRLMODE_LISTENONLY; if (le16_to_cpu(dev->udev->descriptor.idProduct) == USB_CANUSBM_PRODUCT_ID) priv->can.clock.freq = ESD_USBM_CAN_CLOCK; else { priv->can.clock.freq = ESD_USB2_CAN_CLOCK; priv->can.ctrlmode_supported |= CAN_CTRLMODE_3_SAMPLES; } priv->can.bittiming_const = &esd_usb2_bittiming_const; priv->can.do_set_bittiming = esd_usb2_set_bittiming; priv->can.do_set_mode = esd_usb2_set_mode; priv->can.do_get_berr_counter = esd_usb2_get_berr_counter; netdev->flags |= IFF_ECHO; /* we support local echo */ netdev->netdev_ops = &esd_usb2_netdev_ops; SET_NETDEV_DEV(netdev, &intf->dev); netdev->dev_id = index; err = register_candev(netdev); if (err) { dev_err(&intf->dev, "couldn't register CAN device: %d\n", err); free_candev(netdev); err = -ENOMEM; goto done; } dev->nets[index] = priv; netdev_info(netdev, "device %s registered\n", netdev->name); done: return err; } /* * probe function for new USB2 devices * * check version information and number of available * CAN interfaces */ static int esd_usb2_probe(struct usb_interface *intf, const struct usb_device_id *id) { struct esd_usb2 *dev; struct esd_usb2_msg *msg; int i, err; dev = kzalloc(sizeof(*dev), GFP_KERNEL); if (!dev) { err = -ENOMEM; goto done; } dev->udev = interface_to_usbdev(intf); init_usb_anchor(&dev->rx_submitted); usb_set_intfdata(intf, dev); msg = kmalloc(sizeof(*msg), GFP_KERNEL); if (!msg) { err = -ENOMEM; goto free_msg; } /* query number of CAN interfaces (nets) */ msg->msg.hdr.cmd = CMD_VERSION; msg->msg.hdr.len = 2; msg->msg.version.rsvd = 0; msg->msg.version.flags = 0; msg->msg.version.drv_version = 0; err = esd_usb2_send_msg(dev, msg); if (err < 0) { dev_err(&intf->dev, "sending version message failed\n"); goto free_msg; } err = esd_usb2_wait_msg(dev, msg); if (err < 0) { dev_err(&intf->dev, "no version message answer\n"); goto free_msg; } dev->net_count = (int)msg->msg.version_reply.nets; dev->version = le32_to_cpu(msg->msg.version_reply.version); if (device_create_file(&intf->dev, &dev_attr_firmware)) dev_err(&intf->dev, "Couldn't create device file for firmware\n"); if (device_create_file(&intf->dev, &dev_attr_hardware)) dev_err(&intf->dev, "Couldn't create device file for hardware\n"); if (device_create_file(&intf->dev, &dev_attr_nets)) dev_err(&intf->dev, "Couldn't create device file for nets\n"); /* do per device probing */ for (i = 0; i < dev->net_count; i++) esd_usb2_probe_one_net(intf, i); free_msg: kfree(msg); if (err) kfree(dev); done: return err; } /* * called by the usb core when the device is removed from the system */ static void esd_usb2_disconnect(struct usb_interface *intf) { struct esd_usb2 *dev = usb_get_intfdata(intf); struct net_device *netdev; int i; device_remove_file(&intf->dev, &dev_attr_firmware); device_remove_file(&intf->dev, &dev_attr_hardware); device_remove_file(&intf->dev, &dev_attr_nets); usb_set_intfdata(intf, NULL); if (dev) { for (i = 0; i < dev->net_count; i++) { if (dev->nets[i]) { netdev = dev->nets[i]->netdev; unregister_netdev(netdev); free_candev(netdev); } } unlink_all_urbs(dev); kfree(dev); } } /* usb specific object needed to register this driver with the usb subsystem */ static struct usb_driver esd_usb2_driver = { .name = "esd_usb2", .probe = esd_usb2_probe, .disconnect = esd_usb2_disconnect, .id_table = esd_usb2_table, }; module_usb_driver(esd_usb2_driver);