/* * drivers/media/i2c/smiapp-pll.c * * Generic driver for SMIA/SMIA++ compliant camera modules * * Copyright (C) 2011--2012 Nokia Corporation * Contact: Sakari Ailus <sakari.ailus@iki.fi> * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA * 02110-1301 USA * */ #include <linux/gcd.h> #include <linux/lcm.h> #include <linux/module.h> #include "smiapp-pll.h" /* Return an even number or one. */ static inline uint32_t clk_div_even(uint32_t a) { return max_t(uint32_t, 1, a & ~1); } /* Return an even number or one. */ static inline uint32_t clk_div_even_up(uint32_t a) { if (a == 1) return 1; return (a + 1) & ~1; } static inline uint32_t is_one_or_even(uint32_t a) { if (a == 1) return 1; if (a & 1) return 0; return 1; } static int bounds_check(struct device *dev, uint32_t val, uint32_t min, uint32_t max, char *str) { if (val >= min && val <= max) return 0; dev_dbg(dev, "%s out of bounds: %d (%d--%d)\n", str, val, min, max); return -EINVAL; } static void print_pll(struct device *dev, struct smiapp_pll *pll) { dev_dbg(dev, "pre_pll_clk_div\t%d\n", pll->pre_pll_clk_div); dev_dbg(dev, "pll_multiplier \t%d\n", pll->pll_multiplier); if (pll->flags != SMIAPP_PLL_FLAG_NO_OP_CLOCKS) { dev_dbg(dev, "op_sys_clk_div \t%d\n", pll->op_sys_clk_div); dev_dbg(dev, "op_pix_clk_div \t%d\n", pll->op_pix_clk_div); } dev_dbg(dev, "vt_sys_clk_div \t%d\n", pll->vt_sys_clk_div); dev_dbg(dev, "vt_pix_clk_div \t%d\n", pll->vt_pix_clk_div); dev_dbg(dev, "ext_clk_freq_hz \t%d\n", pll->ext_clk_freq_hz); dev_dbg(dev, "pll_ip_clk_freq_hz \t%d\n", pll->pll_ip_clk_freq_hz); dev_dbg(dev, "pll_op_clk_freq_hz \t%d\n", pll->pll_op_clk_freq_hz); if (pll->flags & SMIAPP_PLL_FLAG_NO_OP_CLOCKS) { dev_dbg(dev, "op_sys_clk_freq_hz \t%d\n", pll->op_sys_clk_freq_hz); dev_dbg(dev, "op_pix_clk_freq_hz \t%d\n", pll->op_pix_clk_freq_hz); } dev_dbg(dev, "vt_sys_clk_freq_hz \t%d\n", pll->vt_sys_clk_freq_hz); dev_dbg(dev, "vt_pix_clk_freq_hz \t%d\n", pll->vt_pix_clk_freq_hz); } /* * Heuristically guess the PLL tree for a given common multiplier and * divisor. Begin with the operational timing and continue to video * timing once operational timing has been verified. * * @mul is the PLL multiplier and @div is the common divisor * (pre_pll_clk_div and op_sys_clk_div combined). The final PLL * multiplier will be a multiple of @mul. * * @return Zero on success, error code on error. */ static int __smiapp_pll_calculate(struct device *dev, const struct smiapp_pll_limits *limits, struct smiapp_pll *pll, uint32_t mul, uint32_t div, uint32_t lane_op_clock_ratio) { uint32_t sys_div; uint32_t best_pix_div = INT_MAX >> 1; uint32_t vt_op_binning_div; /* * Higher multipliers (and divisors) are often required than * necessitated by the external clock and the output clocks. * There are limits for all values in the clock tree. These * are the minimum and maximum multiplier for mul. */ uint32_t more_mul_min, more_mul_max; uint32_t more_mul_factor; uint32_t min_vt_div, max_vt_div, vt_div; uint32_t min_sys_div, max_sys_div; unsigned int i; int rval; /* * Get pre_pll_clk_div so that our pll_op_clk_freq_hz won't be * too high. */ dev_dbg(dev, "pre_pll_clk_div %d\n", pll->pre_pll_clk_div); /* Don't go above max pll multiplier. */ more_mul_max = limits->max_pll_multiplier / mul; dev_dbg(dev, "more_mul_max: max_pll_multiplier check: %d\n", more_mul_max); /* Don't go above max pll op frequency. */ more_mul_max = min_t(uint32_t, more_mul_max, limits->max_pll_op_freq_hz / (pll->ext_clk_freq_hz / pll->pre_pll_clk_div * mul)); dev_dbg(dev, "more_mul_max: max_pll_op_freq_hz check: %d\n", more_mul_max); /* Don't go above the division capability of op sys clock divider. */ more_mul_max = min(more_mul_max, limits->op.max_sys_clk_div * pll->pre_pll_clk_div / div); dev_dbg(dev, "more_mul_max: max_op_sys_clk_div check: %d\n", more_mul_max); /* Ensure we won't go above min_pll_multiplier. */ more_mul_max = min(more_mul_max, DIV_ROUND_UP(limits->max_pll_multiplier, mul)); dev_dbg(dev, "more_mul_max: min_pll_multiplier check: %d\n", more_mul_max); /* Ensure we won't go below min_pll_op_freq_hz. */ more_mul_min = DIV_ROUND_UP(limits->min_pll_op_freq_hz, pll->ext_clk_freq_hz / pll->pre_pll_clk_div * mul); dev_dbg(dev, "more_mul_min: min_pll_op_freq_hz check: %d\n", more_mul_min); /* Ensure we won't go below min_pll_multiplier. */ more_mul_min = max(more_mul_min, DIV_ROUND_UP(limits->min_pll_multiplier, mul)); dev_dbg(dev, "more_mul_min: min_pll_multiplier check: %d\n", more_mul_min); if (more_mul_min > more_mul_max) { dev_dbg(dev, "unable to compute more_mul_min and more_mul_max\n"); return -EINVAL; } more_mul_factor = lcm(div, pll->pre_pll_clk_div) / div; dev_dbg(dev, "more_mul_factor: %d\n", more_mul_factor); more_mul_factor = lcm(more_mul_factor, limits->op.min_sys_clk_div); dev_dbg(dev, "more_mul_factor: min_op_sys_clk_div: %d\n", more_mul_factor); i = roundup(more_mul_min, more_mul_factor); if (!is_one_or_even(i)) i <<= 1; dev_dbg(dev, "final more_mul: %d\n", i); if (i > more_mul_max) { dev_dbg(dev, "final more_mul is bad, max %d\n", more_mul_max); return -EINVAL; } pll->pll_multiplier = mul * i; pll->op_sys_clk_div = div * i / pll->pre_pll_clk_div; dev_dbg(dev, "op_sys_clk_div: %d\n", pll->op_sys_clk_div); pll->pll_ip_clk_freq_hz = pll->ext_clk_freq_hz / pll->pre_pll_clk_div; pll->pll_op_clk_freq_hz = pll->pll_ip_clk_freq_hz * pll->pll_multiplier; /* Derive pll_op_clk_freq_hz. */ pll->op_sys_clk_freq_hz = pll->pll_op_clk_freq_hz / pll->op_sys_clk_div; pll->op_pix_clk_div = pll->bits_per_pixel; dev_dbg(dev, "op_pix_clk_div: %d\n", pll->op_pix_clk_div); pll->op_pix_clk_freq_hz = pll->op_sys_clk_freq_hz / pll->op_pix_clk_div; /* * Some sensors perform analogue binning and some do this * digitally. The ones doing this digitally can be roughly be * found out using this formula. The ones doing this digitally * should run at higher clock rate, so smaller divisor is used * on video timing side. */ if (limits->min_line_length_pck_bin > limits->min_line_length_pck / pll->binning_horizontal) vt_op_binning_div = pll->binning_horizontal; else vt_op_binning_div = 1; dev_dbg(dev, "vt_op_binning_div: %d\n", vt_op_binning_div); /* * Profile 2 supports vt_pix_clk_div E [4, 10] * * Horizontal binning can be used as a base for difference in * divisors. One must make sure that horizontal blanking is * enough to accommodate the CSI-2 sync codes. * * Take scaling factor into account as well. * * Find absolute limits for the factor of vt divider. */ dev_dbg(dev, "scale_m: %d\n", pll->scale_m); min_vt_div = DIV_ROUND_UP(pll->op_pix_clk_div * pll->op_sys_clk_div * pll->scale_n, lane_op_clock_ratio * vt_op_binning_div * pll->scale_m); /* Find smallest and biggest allowed vt divisor. */ dev_dbg(dev, "min_vt_div: %d\n", min_vt_div); min_vt_div = max(min_vt_div, DIV_ROUND_UP(pll->pll_op_clk_freq_hz, limits->vt.max_pix_clk_freq_hz)); dev_dbg(dev, "min_vt_div: max_vt_pix_clk_freq_hz: %d\n", min_vt_div); min_vt_div = max_t(uint32_t, min_vt_div, limits->vt.min_pix_clk_div * limits->vt.min_sys_clk_div); dev_dbg(dev, "min_vt_div: min_vt_clk_div: %d\n", min_vt_div); max_vt_div = limits->vt.max_sys_clk_div * limits->vt.max_pix_clk_div; dev_dbg(dev, "max_vt_div: %d\n", max_vt_div); max_vt_div = min(max_vt_div, DIV_ROUND_UP(pll->pll_op_clk_freq_hz, limits->vt.min_pix_clk_freq_hz)); dev_dbg(dev, "max_vt_div: min_vt_pix_clk_freq_hz: %d\n", max_vt_div); /* * Find limitsits for sys_clk_div. Not all values are possible * with all values of pix_clk_div. */ min_sys_div = limits->vt.min_sys_clk_div; dev_dbg(dev, "min_sys_div: %d\n", min_sys_div); min_sys_div = max(min_sys_div, DIV_ROUND_UP(min_vt_div, limits->vt.max_pix_clk_div)); dev_dbg(dev, "min_sys_div: max_vt_pix_clk_div: %d\n", min_sys_div); min_sys_div = max(min_sys_div, pll->pll_op_clk_freq_hz / limits->vt.max_sys_clk_freq_hz); dev_dbg(dev, "min_sys_div: max_pll_op_clk_freq_hz: %d\n", min_sys_div); min_sys_div = clk_div_even_up(min_sys_div); dev_dbg(dev, "min_sys_div: one or even: %d\n", min_sys_div); max_sys_div = limits->vt.max_sys_clk_div; dev_dbg(dev, "max_sys_div: %d\n", max_sys_div); max_sys_div = min(max_sys_div, DIV_ROUND_UP(max_vt_div, limits->vt.min_pix_clk_div)); dev_dbg(dev, "max_sys_div: min_vt_pix_clk_div: %d\n", max_sys_div); max_sys_div = min(max_sys_div, DIV_ROUND_UP(pll->pll_op_clk_freq_hz, limits->vt.min_pix_clk_freq_hz)); dev_dbg(dev, "max_sys_div: min_vt_pix_clk_freq_hz: %d\n", max_sys_div); /* * Find pix_div such that a legal pix_div * sys_div results * into a value which is not smaller than div, the desired * divisor. */ for (vt_div = min_vt_div; vt_div <= max_vt_div; vt_div += 2 - (vt_div & 1)) { for (sys_div = min_sys_div; sys_div <= max_sys_div; sys_div += 2 - (sys_div & 1)) { uint16_t pix_div = DIV_ROUND_UP(vt_div, sys_div); if (pix_div < limits->vt.min_pix_clk_div || pix_div > limits->vt.max_pix_clk_div) { dev_dbg(dev, "pix_div %d too small or too big (%d--%d)\n", pix_div, limits->vt.min_pix_clk_div, limits->vt.max_pix_clk_div); continue; } /* Check if this one is better. */ if (pix_div * sys_div <= roundup(min_vt_div, best_pix_div)) best_pix_div = pix_div; } if (best_pix_div < INT_MAX >> 1) break; } pll->vt_sys_clk_div = DIV_ROUND_UP(min_vt_div, best_pix_div); pll->vt_pix_clk_div = best_pix_div; pll->vt_sys_clk_freq_hz = pll->pll_op_clk_freq_hz / pll->vt_sys_clk_div; pll->vt_pix_clk_freq_hz = pll->vt_sys_clk_freq_hz / pll->vt_pix_clk_div; pll->pixel_rate_csi = pll->op_pix_clk_freq_hz * lane_op_clock_ratio; rval = bounds_check(dev, pll->pll_ip_clk_freq_hz, limits->min_pll_ip_freq_hz, limits->max_pll_ip_freq_hz, "pll_ip_clk_freq_hz"); if (!rval) rval = bounds_check( dev, pll->pll_multiplier, limits->min_pll_multiplier, limits->max_pll_multiplier, "pll_multiplier"); if (!rval) rval = bounds_check( dev, pll->pll_op_clk_freq_hz, limits->min_pll_op_freq_hz, limits->max_pll_op_freq_hz, "pll_op_clk_freq_hz"); if (!rval) rval = bounds_check( dev, pll->op_sys_clk_div, limits->op.min_sys_clk_div, limits->op.max_sys_clk_div, "op_sys_clk_div"); if (!rval) rval = bounds_check( dev, pll->op_pix_clk_div, limits->op.min_pix_clk_div, limits->op.max_pix_clk_div, "op_pix_clk_div"); if (!rval) rval = bounds_check( dev, pll->op_sys_clk_freq_hz, limits->op.min_sys_clk_freq_hz, limits->op.max_sys_clk_freq_hz, "op_sys_clk_freq_hz"); if (!rval) rval = bounds_check( dev, pll->op_pix_clk_freq_hz, limits->op.min_pix_clk_freq_hz, limits->op.max_pix_clk_freq_hz, "op_pix_clk_freq_hz"); if (!rval) rval = bounds_check( dev, pll->vt_sys_clk_freq_hz, limits->vt.min_sys_clk_freq_hz, limits->vt.max_sys_clk_freq_hz, "vt_sys_clk_freq_hz"); if (!rval) rval = bounds_check( dev, pll->vt_pix_clk_freq_hz, limits->vt.min_pix_clk_freq_hz, limits->vt.max_pix_clk_freq_hz, "vt_pix_clk_freq_hz"); return rval; } int smiapp_pll_calculate(struct device *dev, const struct smiapp_pll_limits *limits, struct smiapp_pll *pll) { uint16_t min_pre_pll_clk_div; uint16_t max_pre_pll_clk_div; uint32_t lane_op_clock_ratio; uint32_t mul, div; unsigned int i; int rval = -EINVAL; if (pll->flags & SMIAPP_PLL_FLAG_OP_PIX_CLOCK_PER_LANE) lane_op_clock_ratio = pll->csi2.lanes; else lane_op_clock_ratio = 1; dev_dbg(dev, "lane_op_clock_ratio: %d\n", lane_op_clock_ratio); dev_dbg(dev, "binning: %dx%d\n", pll->binning_horizontal, pll->binning_vertical); switch (pll->bus_type) { case SMIAPP_PLL_BUS_TYPE_CSI2: /* CSI transfers 2 bits per clock per lane; thus times 2 */ pll->pll_op_clk_freq_hz = pll->link_freq * 2 * (pll->csi2.lanes / lane_op_clock_ratio); break; case SMIAPP_PLL_BUS_TYPE_PARALLEL: pll->pll_op_clk_freq_hz = pll->link_freq * pll->bits_per_pixel / DIV_ROUND_UP(pll->bits_per_pixel, pll->parallel.bus_width); break; default: return -EINVAL; } /* Figure out limits for pre-pll divider based on extclk */ dev_dbg(dev, "min / max pre_pll_clk_div: %d / %d\n", limits->min_pre_pll_clk_div, limits->max_pre_pll_clk_div); max_pre_pll_clk_div = min_t(uint16_t, limits->max_pre_pll_clk_div, clk_div_even(pll->ext_clk_freq_hz / limits->min_pll_ip_freq_hz)); min_pre_pll_clk_div = max_t(uint16_t, limits->min_pre_pll_clk_div, clk_div_even_up( DIV_ROUND_UP(pll->ext_clk_freq_hz, limits->max_pll_ip_freq_hz))); dev_dbg(dev, "pre-pll check: min / max pre_pll_clk_div: %d / %d\n", min_pre_pll_clk_div, max_pre_pll_clk_div); i = gcd(pll->pll_op_clk_freq_hz, pll->ext_clk_freq_hz); mul = div_u64(pll->pll_op_clk_freq_hz, i); div = pll->ext_clk_freq_hz / i; dev_dbg(dev, "mul %d / div %d\n", mul, div); min_pre_pll_clk_div = max_t(uint16_t, min_pre_pll_clk_div, clk_div_even_up( DIV_ROUND_UP(mul * pll->ext_clk_freq_hz, limits->max_pll_op_freq_hz))); dev_dbg(dev, "pll_op check: min / max pre_pll_clk_div: %d / %d\n", min_pre_pll_clk_div, max_pre_pll_clk_div); for (pll->pre_pll_clk_div = min_pre_pll_clk_div; pll->pre_pll_clk_div <= max_pre_pll_clk_div; pll->pre_pll_clk_div += 2 - (pll->pre_pll_clk_div & 1)) { rval = __smiapp_pll_calculate(dev, limits, pll, mul, div, lane_op_clock_ratio); if (rval) continue; print_pll(dev, pll); return 0; } dev_info(dev, "unable to compute pre_pll divisor\n"); return rval; } EXPORT_SYMBOL_GPL(smiapp_pll_calculate); MODULE_AUTHOR("Sakari Ailus <sakari.ailus@iki.fi>"); MODULE_DESCRIPTION("Generic SMIA/SMIA++ PLL calculator"); MODULE_LICENSE("GPL");