/* * Analog Devices ADV7511 HDMI Transmitter Device Driver * * Copyright 2013 Cisco Systems, Inc. and/or its affiliates. All rights reserved. * * This program is free software; you may redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/i2c.h> #include <linux/delay.h> #include <linux/videodev2.h> #include <linux/gpio.h> #include <linux/workqueue.h> #include <linux/v4l2-dv-timings.h> #include <media/v4l2-device.h> #include <media/v4l2-common.h> #include <media/v4l2-ctrls.h> #include <media/v4l2-dv-timings.h> #include <media/adv7511.h> static int debug; module_param(debug, int, 0644); MODULE_PARM_DESC(debug, "debug level (0-2)"); MODULE_DESCRIPTION("Analog Devices ADV7511 HDMI Transmitter Device Driver"); MODULE_AUTHOR("Hans Verkuil"); MODULE_LICENSE("GPL"); #define MASK_ADV7511_EDID_RDY_INT 0x04 #define MASK_ADV7511_MSEN_INT 0x40 #define MASK_ADV7511_HPD_INT 0x80 #define MASK_ADV7511_HPD_DETECT 0x40 #define MASK_ADV7511_MSEN_DETECT 0x20 #define MASK_ADV7511_EDID_RDY 0x10 #define EDID_MAX_RETRIES (8) #define EDID_DELAY 250 #define EDID_MAX_SEGM 8 #define ADV7511_MAX_WIDTH 1920 #define ADV7511_MAX_HEIGHT 1200 #define ADV7511_MIN_PIXELCLOCK 20000000 #define ADV7511_MAX_PIXELCLOCK 225000000 /* ********************************************************************** * * Arrays with configuration parameters for the ADV7511 * ********************************************************************** */ struct i2c_reg_value { unsigned char reg; unsigned char value; }; struct adv7511_state_edid { /* total number of blocks */ u32 blocks; /* Number of segments read */ u32 segments; uint8_t data[EDID_MAX_SEGM * 256]; /* Number of EDID read retries left */ unsigned read_retries; bool complete; }; struct adv7511_state { struct adv7511_platform_data pdata; struct v4l2_subdev sd; struct media_pad pad; struct v4l2_ctrl_handler hdl; int chip_revision; uint8_t i2c_edid_addr; uint8_t i2c_cec_addr; /* Is the adv7511 powered on? */ bool power_on; /* Did we receive hotplug and rx-sense signals? */ bool have_monitor; /* timings from s_dv_timings */ struct v4l2_dv_timings dv_timings; /* controls */ struct v4l2_ctrl *hdmi_mode_ctrl; struct v4l2_ctrl *hotplug_ctrl; struct v4l2_ctrl *rx_sense_ctrl; struct v4l2_ctrl *have_edid0_ctrl; struct v4l2_ctrl *rgb_quantization_range_ctrl; struct i2c_client *i2c_edid; struct adv7511_state_edid edid; /* Running counter of the number of detected EDIDs (for debugging) */ unsigned edid_detect_counter; struct workqueue_struct *work_queue; struct delayed_work edid_handler; /* work entry */ }; static void adv7511_check_monitor_present_status(struct v4l2_subdev *sd); static bool adv7511_check_edid_status(struct v4l2_subdev *sd); static void adv7511_setup(struct v4l2_subdev *sd); static int adv7511_s_i2s_clock_freq(struct v4l2_subdev *sd, u32 freq); static int adv7511_s_clock_freq(struct v4l2_subdev *sd, u32 freq); static const struct v4l2_dv_timings_cap adv7511_timings_cap = { .type = V4L2_DV_BT_656_1120, /* keep this initialization for compatibility with GCC < 4.4.6 */ .reserved = { 0 }, V4L2_INIT_BT_TIMINGS(0, ADV7511_MAX_WIDTH, 0, ADV7511_MAX_HEIGHT, ADV7511_MIN_PIXELCLOCK, ADV7511_MAX_PIXELCLOCK, V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT | V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT, V4L2_DV_BT_CAP_PROGRESSIVE | V4L2_DV_BT_CAP_REDUCED_BLANKING | V4L2_DV_BT_CAP_CUSTOM) }; static inline struct adv7511_state *get_adv7511_state(struct v4l2_subdev *sd) { return container_of(sd, struct adv7511_state, sd); } static inline struct v4l2_subdev *to_sd(struct v4l2_ctrl *ctrl) { return &container_of(ctrl->handler, struct adv7511_state, hdl)->sd; } /* ------------------------ I2C ----------------------------------------------- */ static s32 adv_smbus_read_byte_data_check(struct i2c_client *client, u8 command, bool check) { union i2c_smbus_data data; if (!i2c_smbus_xfer(client->adapter, client->addr, client->flags, I2C_SMBUS_READ, command, I2C_SMBUS_BYTE_DATA, &data)) return data.byte; if (check) v4l_err(client, "error reading %02x, %02x\n", client->addr, command); return -1; } static s32 adv_smbus_read_byte_data(struct i2c_client *client, u8 command) { int i; for (i = 0; i < 3; i++) { int ret = adv_smbus_read_byte_data_check(client, command, true); if (ret >= 0) { if (i) v4l_err(client, "read ok after %d retries\n", i); return ret; } } v4l_err(client, "read failed\n"); return -1; } static int adv7511_rd(struct v4l2_subdev *sd, u8 reg) { struct i2c_client *client = v4l2_get_subdevdata(sd); return adv_smbus_read_byte_data(client, reg); } static int adv7511_wr(struct v4l2_subdev *sd, u8 reg, u8 val) { struct i2c_client *client = v4l2_get_subdevdata(sd); int ret; int i; for (i = 0; i < 3; i++) { ret = i2c_smbus_write_byte_data(client, reg, val); if (ret == 0) return 0; } v4l2_err(sd, "%s: i2c write error\n", __func__); return ret; } /* To set specific bits in the register, a clear-mask is given (to be AND-ed), and then the value-mask (to be OR-ed). */ static inline void adv7511_wr_and_or(struct v4l2_subdev *sd, u8 reg, uint8_t clr_mask, uint8_t val_mask) { adv7511_wr(sd, reg, (adv7511_rd(sd, reg) & clr_mask) | val_mask); } static int adv_smbus_read_i2c_block_data(struct i2c_client *client, u8 command, unsigned length, u8 *values) { union i2c_smbus_data data; int ret; if (length > I2C_SMBUS_BLOCK_MAX) length = I2C_SMBUS_BLOCK_MAX; data.block[0] = length; ret = i2c_smbus_xfer(client->adapter, client->addr, client->flags, I2C_SMBUS_READ, command, I2C_SMBUS_I2C_BLOCK_DATA, &data); memcpy(values, data.block + 1, length); return ret; } static inline void adv7511_edid_rd(struct v4l2_subdev *sd, uint16_t len, uint8_t *buf) { struct adv7511_state *state = get_adv7511_state(sd); int i; int err = 0; v4l2_dbg(1, debug, sd, "%s:\n", __func__); for (i = 0; !err && i < len; i += I2C_SMBUS_BLOCK_MAX) err = adv_smbus_read_i2c_block_data(state->i2c_edid, i, I2C_SMBUS_BLOCK_MAX, buf + i); if (err) v4l2_err(sd, "%s: i2c read error\n", __func__); } static inline bool adv7511_have_hotplug(struct v4l2_subdev *sd) { return adv7511_rd(sd, 0x42) & MASK_ADV7511_HPD_DETECT; } static inline bool adv7511_have_rx_sense(struct v4l2_subdev *sd) { return adv7511_rd(sd, 0x42) & MASK_ADV7511_MSEN_DETECT; } static void adv7511_csc_conversion_mode(struct v4l2_subdev *sd, uint8_t mode) { adv7511_wr_and_or(sd, 0x18, 0x9f, (mode & 0x3)<<5); } static void adv7511_csc_coeff(struct v4l2_subdev *sd, u16 A1, u16 A2, u16 A3, u16 A4, u16 B1, u16 B2, u16 B3, u16 B4, u16 C1, u16 C2, u16 C3, u16 C4) { /* A */ adv7511_wr_and_or(sd, 0x18, 0xe0, A1>>8); adv7511_wr(sd, 0x19, A1); adv7511_wr_and_or(sd, 0x1A, 0xe0, A2>>8); adv7511_wr(sd, 0x1B, A2); adv7511_wr_and_or(sd, 0x1c, 0xe0, A3>>8); adv7511_wr(sd, 0x1d, A3); adv7511_wr_and_or(sd, 0x1e, 0xe0, A4>>8); adv7511_wr(sd, 0x1f, A4); /* B */ adv7511_wr_and_or(sd, 0x20, 0xe0, B1>>8); adv7511_wr(sd, 0x21, B1); adv7511_wr_and_or(sd, 0x22, 0xe0, B2>>8); adv7511_wr(sd, 0x23, B2); adv7511_wr_and_or(sd, 0x24, 0xe0, B3>>8); adv7511_wr(sd, 0x25, B3); adv7511_wr_and_or(sd, 0x26, 0xe0, B4>>8); adv7511_wr(sd, 0x27, B4); /* C */ adv7511_wr_and_or(sd, 0x28, 0xe0, C1>>8); adv7511_wr(sd, 0x29, C1); adv7511_wr_and_or(sd, 0x2A, 0xe0, C2>>8); adv7511_wr(sd, 0x2B, C2); adv7511_wr_and_or(sd, 0x2C, 0xe0, C3>>8); adv7511_wr(sd, 0x2D, C3); adv7511_wr_and_or(sd, 0x2E, 0xe0, C4>>8); adv7511_wr(sd, 0x2F, C4); } static void adv7511_csc_rgb_full2limit(struct v4l2_subdev *sd, bool enable) { if (enable) { uint8_t csc_mode = 0; adv7511_csc_conversion_mode(sd, csc_mode); adv7511_csc_coeff(sd, 4096-564, 0, 0, 256, 0, 4096-564, 0, 256, 0, 0, 4096-564, 256); /* enable CSC */ adv7511_wr_and_or(sd, 0x18, 0x7f, 0x80); /* AVI infoframe: Limited range RGB (16-235) */ adv7511_wr_and_or(sd, 0x57, 0xf3, 0x04); } else { /* disable CSC */ adv7511_wr_and_or(sd, 0x18, 0x7f, 0x0); /* AVI infoframe: Full range RGB (0-255) */ adv7511_wr_and_or(sd, 0x57, 0xf3, 0x08); } } static void adv7511_set_IT_content_AVI_InfoFrame(struct v4l2_subdev *sd) { struct adv7511_state *state = get_adv7511_state(sd); if (state->dv_timings.bt.standards & V4L2_DV_BT_STD_CEA861) { /* CEA format, not IT */ adv7511_wr_and_or(sd, 0x57, 0x7f, 0x00); } else { /* IT format */ adv7511_wr_and_or(sd, 0x57, 0x7f, 0x80); } } static int adv7511_set_rgb_quantization_mode(struct v4l2_subdev *sd, struct v4l2_ctrl *ctrl) { switch (ctrl->val) { default: return -EINVAL; break; case V4L2_DV_RGB_RANGE_AUTO: { /* automatic */ struct adv7511_state *state = get_adv7511_state(sd); if (state->dv_timings.bt.standards & V4L2_DV_BT_STD_CEA861) { /* cea format, RGB limited range (16-235) */ adv7511_csc_rgb_full2limit(sd, true); } else { /* not cea format, RGB full range (0-255) */ adv7511_csc_rgb_full2limit(sd, false); } } break; case V4L2_DV_RGB_RANGE_LIMITED: /* RGB limited range (16-235) */ adv7511_csc_rgb_full2limit(sd, true); break; case V4L2_DV_RGB_RANGE_FULL: /* RGB full range (0-255) */ adv7511_csc_rgb_full2limit(sd, false); break; } return 0; } /* ------------------------------ CTRL OPS ------------------------------ */ static int adv7511_s_ctrl(struct v4l2_ctrl *ctrl) { struct v4l2_subdev *sd = to_sd(ctrl); struct adv7511_state *state = get_adv7511_state(sd); v4l2_dbg(1, debug, sd, "%s: ctrl id: %d, ctrl->val %d\n", __func__, ctrl->id, ctrl->val); if (state->hdmi_mode_ctrl == ctrl) { /* Set HDMI or DVI-D */ adv7511_wr_and_or(sd, 0xaf, 0xfd, ctrl->val == V4L2_DV_TX_MODE_HDMI ? 0x02 : 0x00); return 0; } if (state->rgb_quantization_range_ctrl == ctrl) return adv7511_set_rgb_quantization_mode(sd, ctrl); return -EINVAL; } static const struct v4l2_ctrl_ops adv7511_ctrl_ops = { .s_ctrl = adv7511_s_ctrl, }; /* ---------------------------- CORE OPS ------------------------------------------- */ #ifdef CONFIG_VIDEO_ADV_DEBUG static void adv7511_inv_register(struct v4l2_subdev *sd) { v4l2_info(sd, "0x000-0x0ff: Main Map\n"); } static int adv7511_g_register(struct v4l2_subdev *sd, struct v4l2_dbg_register *reg) { reg->size = 1; switch (reg->reg >> 8) { case 0: reg->val = adv7511_rd(sd, reg->reg & 0xff); break; default: v4l2_info(sd, "Register %03llx not supported\n", reg->reg); adv7511_inv_register(sd); break; } return 0; } static int adv7511_s_register(struct v4l2_subdev *sd, const struct v4l2_dbg_register *reg) { switch (reg->reg >> 8) { case 0: adv7511_wr(sd, reg->reg & 0xff, reg->val & 0xff); break; default: v4l2_info(sd, "Register %03llx not supported\n", reg->reg); adv7511_inv_register(sd); break; } return 0; } #endif static int adv7511_log_status(struct v4l2_subdev *sd) { struct adv7511_state *state = get_adv7511_state(sd); struct adv7511_state_edid *edid = &state->edid; static const char * const states[] = { "in reset", "reading EDID", "idle", "initializing HDCP", "HDCP enabled", "initializing HDCP repeater", "6", "7", "8", "9", "A", "B", "C", "D", "E", "F" }; static const char * const errors[] = { "no error", "bad receiver BKSV", "Ri mismatch", "Pj mismatch", "i2c error", "timed out", "max repeater cascade exceeded", "hash check failed", "too many devices", "9", "A", "B", "C", "D", "E", "F" }; v4l2_info(sd, "power %s\n", state->power_on ? "on" : "off"); v4l2_info(sd, "%s hotplug, %s Rx Sense, %s EDID (%d block(s))\n", (adv7511_rd(sd, 0x42) & MASK_ADV7511_HPD_DETECT) ? "detected" : "no", (adv7511_rd(sd, 0x42) & MASK_ADV7511_MSEN_DETECT) ? "detected" : "no", edid->segments ? "found" : "no", edid->blocks); v4l2_info(sd, "%s output %s\n", (adv7511_rd(sd, 0xaf) & 0x02) ? "HDMI" : "DVI-D", (adv7511_rd(sd, 0xa1) & 0x3c) ? "disabled" : "enabled"); v4l2_info(sd, "state: %s, error: %s, detect count: %u, msk/irq: %02x/%02x\n", states[adv7511_rd(sd, 0xc8) & 0xf], errors[adv7511_rd(sd, 0xc8) >> 4], state->edid_detect_counter, adv7511_rd(sd, 0x94), adv7511_rd(sd, 0x96)); v4l2_info(sd, "RGB quantization: %s range\n", adv7511_rd(sd, 0x18) & 0x80 ? "limited" : "full"); if (adv7511_rd(sd, 0xaf) & 0x02) { /* HDMI only */ u8 manual_cts = adv7511_rd(sd, 0x0a) & 0x80; u32 N = (adv7511_rd(sd, 0x01) & 0xf) << 16 | adv7511_rd(sd, 0x02) << 8 | adv7511_rd(sd, 0x03); u8 vic_detect = adv7511_rd(sd, 0x3e) >> 2; u8 vic_sent = adv7511_rd(sd, 0x3d) & 0x3f; u32 CTS; if (manual_cts) CTS = (adv7511_rd(sd, 0x07) & 0xf) << 16 | adv7511_rd(sd, 0x08) << 8 | adv7511_rd(sd, 0x09); else CTS = (adv7511_rd(sd, 0x04) & 0xf) << 16 | adv7511_rd(sd, 0x05) << 8 | adv7511_rd(sd, 0x06); v4l2_info(sd, "CTS %s mode: N %d, CTS %d\n", manual_cts ? "manual" : "automatic", N, CTS); v4l2_info(sd, "VIC: detected %d, sent %d\n", vic_detect, vic_sent); } if (state->dv_timings.type == V4L2_DV_BT_656_1120) v4l2_print_dv_timings(sd->name, "timings: ", &state->dv_timings, false); else v4l2_info(sd, "no timings set\n"); v4l2_info(sd, "i2c edid addr: 0x%x\n", state->i2c_edid_addr); v4l2_info(sd, "i2c cec addr: 0x%x\n", state->i2c_cec_addr); return 0; } /* Power up/down adv7511 */ static int adv7511_s_power(struct v4l2_subdev *sd, int on) { struct adv7511_state *state = get_adv7511_state(sd); const int retries = 20; int i; v4l2_dbg(1, debug, sd, "%s: power %s\n", __func__, on ? "on" : "off"); state->power_on = on; if (!on) { /* Power down */ adv7511_wr_and_or(sd, 0x41, 0xbf, 0x40); return true; } /* Power up */ /* The adv7511 does not always come up immediately. Retry multiple times. */ for (i = 0; i < retries; i++) { adv7511_wr_and_or(sd, 0x41, 0xbf, 0x0); if ((adv7511_rd(sd, 0x41) & 0x40) == 0) break; adv7511_wr_and_or(sd, 0x41, 0xbf, 0x40); msleep(10); } if (i == retries) { v4l2_dbg(1, debug, sd, "%s: failed to powerup the adv7511!\n", __func__); adv7511_s_power(sd, 0); return false; } if (i > 1) v4l2_dbg(1, debug, sd, "%s: needed %d retries to powerup the adv7511\n", __func__, i); /* Reserved registers that must be set */ adv7511_wr(sd, 0x98, 0x03); adv7511_wr_and_or(sd, 0x9a, 0xfe, 0x70); adv7511_wr(sd, 0x9c, 0x30); adv7511_wr_and_or(sd, 0x9d, 0xfc, 0x01); adv7511_wr(sd, 0xa2, 0xa4); adv7511_wr(sd, 0xa3, 0xa4); adv7511_wr(sd, 0xe0, 0xd0); adv7511_wr(sd, 0xf9, 0x00); adv7511_wr(sd, 0x43, state->i2c_edid_addr); /* Set number of attempts to read the EDID */ adv7511_wr(sd, 0xc9, 0xf); return true; } /* Enable interrupts */ static void adv7511_set_isr(struct v4l2_subdev *sd, bool enable) { uint8_t irqs = MASK_ADV7511_HPD_INT | MASK_ADV7511_MSEN_INT; uint8_t irqs_rd; int retries = 100; v4l2_dbg(2, debug, sd, "%s: %s\n", __func__, enable ? "enable" : "disable"); /* The datasheet says that the EDID ready interrupt should be disabled if there is no hotplug. */ if (!enable) irqs = 0; else if (adv7511_have_hotplug(sd)) irqs |= MASK_ADV7511_EDID_RDY_INT; /* * This i2c write can fail (approx. 1 in 1000 writes). But it * is essential that this register is correct, so retry it * multiple times. * * Note that the i2c write does not report an error, but the readback * clearly shows the wrong value. */ do { adv7511_wr(sd, 0x94, irqs); irqs_rd = adv7511_rd(sd, 0x94); } while (retries-- && irqs_rd != irqs); if (irqs_rd == irqs) return; v4l2_err(sd, "Could not set interrupts: hw failure?\n"); } /* Interrupt handler */ static int adv7511_isr(struct v4l2_subdev *sd, u32 status, bool *handled) { uint8_t irq_status; /* disable interrupts to prevent a race condition */ adv7511_set_isr(sd, false); irq_status = adv7511_rd(sd, 0x96); /* clear detected interrupts */ adv7511_wr(sd, 0x96, irq_status); v4l2_dbg(1, debug, sd, "%s: irq 0x%x\n", __func__, irq_status); if (irq_status & (MASK_ADV7511_HPD_INT | MASK_ADV7511_MSEN_INT)) adv7511_check_monitor_present_status(sd); if (irq_status & MASK_ADV7511_EDID_RDY_INT) adv7511_check_edid_status(sd); /* enable interrupts */ adv7511_set_isr(sd, true); if (handled) *handled = true; return 0; } static const struct v4l2_subdev_core_ops adv7511_core_ops = { .log_status = adv7511_log_status, #ifdef CONFIG_VIDEO_ADV_DEBUG .g_register = adv7511_g_register, .s_register = adv7511_s_register, #endif .s_power = adv7511_s_power, .interrupt_service_routine = adv7511_isr, }; /* ------------------------------ VIDEO OPS ------------------------------ */ /* Enable/disable adv7511 output */ static int adv7511_s_stream(struct v4l2_subdev *sd, int enable) { struct adv7511_state *state = get_adv7511_state(sd); v4l2_dbg(1, debug, sd, "%s: %sable\n", __func__, (enable ? "en" : "dis")); adv7511_wr_and_or(sd, 0xa1, ~0x3c, (enable ? 0 : 0x3c)); if (enable) { adv7511_check_monitor_present_status(sd); } else { adv7511_s_power(sd, 0); state->have_monitor = false; } return 0; } static int adv7511_s_dv_timings(struct v4l2_subdev *sd, struct v4l2_dv_timings *timings) { struct adv7511_state *state = get_adv7511_state(sd); v4l2_dbg(1, debug, sd, "%s:\n", __func__); /* quick sanity check */ if (!v4l2_valid_dv_timings(timings, &adv7511_timings_cap, NULL, NULL)) return -EINVAL; /* Fill the optional fields .standards and .flags in struct v4l2_dv_timings if the format is one of the CEA or DMT timings. */ v4l2_find_dv_timings_cap(timings, &adv7511_timings_cap, 0, NULL, NULL); timings->bt.flags &= ~V4L2_DV_FL_REDUCED_FPS; /* save timings */ state->dv_timings = *timings; /* update quantization range based on new dv_timings */ adv7511_set_rgb_quantization_mode(sd, state->rgb_quantization_range_ctrl); /* update AVI infoframe */ adv7511_set_IT_content_AVI_InfoFrame(sd); return 0; } static int adv7511_g_dv_timings(struct v4l2_subdev *sd, struct v4l2_dv_timings *timings) { struct adv7511_state *state = get_adv7511_state(sd); v4l2_dbg(1, debug, sd, "%s:\n", __func__); if (!timings) return -EINVAL; *timings = state->dv_timings; return 0; } static int adv7511_enum_dv_timings(struct v4l2_subdev *sd, struct v4l2_enum_dv_timings *timings) { if (timings->pad != 0) return -EINVAL; return v4l2_enum_dv_timings_cap(timings, &adv7511_timings_cap, NULL, NULL); } static int adv7511_dv_timings_cap(struct v4l2_subdev *sd, struct v4l2_dv_timings_cap *cap) { if (cap->pad != 0) return -EINVAL; *cap = adv7511_timings_cap; return 0; } static const struct v4l2_subdev_video_ops adv7511_video_ops = { .s_stream = adv7511_s_stream, .s_dv_timings = adv7511_s_dv_timings, .g_dv_timings = adv7511_g_dv_timings, }; /* ------------------------------ AUDIO OPS ------------------------------ */ static int adv7511_s_audio_stream(struct v4l2_subdev *sd, int enable) { v4l2_dbg(1, debug, sd, "%s: %sable\n", __func__, (enable ? "en" : "dis")); if (enable) adv7511_wr_and_or(sd, 0x4b, 0x3f, 0x80); else adv7511_wr_and_or(sd, 0x4b, 0x3f, 0x40); return 0; } static int adv7511_s_clock_freq(struct v4l2_subdev *sd, u32 freq) { u32 N; switch (freq) { case 32000: N = 4096; break; case 44100: N = 6272; break; case 48000: N = 6144; break; case 88200: N = 12544; break; case 96000: N = 12288; break; case 176400: N = 25088; break; case 192000: N = 24576; break; default: return -EINVAL; } /* Set N (used with CTS to regenerate the audio clock) */ adv7511_wr(sd, 0x01, (N >> 16) & 0xf); adv7511_wr(sd, 0x02, (N >> 8) & 0xff); adv7511_wr(sd, 0x03, N & 0xff); return 0; } static int adv7511_s_i2s_clock_freq(struct v4l2_subdev *sd, u32 freq) { u32 i2s_sf; switch (freq) { case 32000: i2s_sf = 0x30; break; case 44100: i2s_sf = 0x00; break; case 48000: i2s_sf = 0x20; break; case 88200: i2s_sf = 0x80; break; case 96000: i2s_sf = 0xa0; break; case 176400: i2s_sf = 0xc0; break; case 192000: i2s_sf = 0xe0; break; default: return -EINVAL; } /* Set sampling frequency for I2S audio to 48 kHz */ adv7511_wr_and_or(sd, 0x15, 0xf, i2s_sf); return 0; } static int adv7511_s_routing(struct v4l2_subdev *sd, u32 input, u32 output, u32 config) { /* Only 2 channels in use for application */ adv7511_wr_and_or(sd, 0x73, 0xf8, 0x1); /* Speaker mapping */ adv7511_wr(sd, 0x76, 0x00); /* 16 bit audio word length */ adv7511_wr_and_or(sd, 0x14, 0xf0, 0x02); return 0; } static const struct v4l2_subdev_audio_ops adv7511_audio_ops = { .s_stream = adv7511_s_audio_stream, .s_clock_freq = adv7511_s_clock_freq, .s_i2s_clock_freq = adv7511_s_i2s_clock_freq, .s_routing = adv7511_s_routing, }; /* ---------------------------- PAD OPS ------------------------------------- */ static int adv7511_get_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid) { struct adv7511_state *state = get_adv7511_state(sd); if (edid->pad != 0) return -EINVAL; if ((edid->blocks == 0) || (edid->blocks > 256)) return -EINVAL; if (!state->edid.segments) { v4l2_dbg(1, debug, sd, "EDID segment 0 not found\n"); return -ENODATA; } if (edid->start_block >= state->edid.segments * 2) return -E2BIG; if ((edid->blocks + edid->start_block) >= state->edid.segments * 2) edid->blocks = state->edid.segments * 2 - edid->start_block; memcpy(edid->edid, &state->edid.data[edid->start_block * 128], 128 * edid->blocks); return 0; } static const struct v4l2_subdev_pad_ops adv7511_pad_ops = { .get_edid = adv7511_get_edid, .enum_dv_timings = adv7511_enum_dv_timings, .dv_timings_cap = adv7511_dv_timings_cap, }; /* --------------------- SUBDEV OPS --------------------------------------- */ static const struct v4l2_subdev_ops adv7511_ops = { .core = &adv7511_core_ops, .pad = &adv7511_pad_ops, .video = &adv7511_video_ops, .audio = &adv7511_audio_ops, }; /* ----------------------------------------------------------------------- */ static void adv7511_dbg_dump_edid(int lvl, int debug, struct v4l2_subdev *sd, int segment, uint8_t *buf) { if (debug >= lvl) { int i, j; v4l2_dbg(lvl, debug, sd, "edid segment %d\n", segment); for (i = 0; i < 256; i += 16) { u8 b[128]; u8 *bp = b; if (i == 128) v4l2_dbg(lvl, debug, sd, "\n"); for (j = i; j < i + 16; j++) { sprintf(bp, "0x%02x, ", buf[j]); bp += 6; } bp[0] = '\0'; v4l2_dbg(lvl, debug, sd, "%s\n", b); } } } static void adv7511_edid_handler(struct work_struct *work) { struct delayed_work *dwork = to_delayed_work(work); struct adv7511_state *state = container_of(dwork, struct adv7511_state, edid_handler); struct v4l2_subdev *sd = &state->sd; struct adv7511_edid_detect ed; v4l2_dbg(1, debug, sd, "%s:\n", __func__); if (adv7511_check_edid_status(sd)) { /* Return if we received the EDID. */ return; } if (adv7511_have_hotplug(sd)) { /* We must retry reading the EDID several times, it is possible * that initially the EDID couldn't be read due to i2c errors * (DVI connectors are particularly prone to this problem). */ if (state->edid.read_retries) { state->edid.read_retries--; v4l2_dbg(1, debug, sd, "%s: edid read failed\n", __func__); state->have_monitor = false; adv7511_s_power(sd, false); adv7511_s_power(sd, true); queue_delayed_work(state->work_queue, &state->edid_handler, EDID_DELAY); return; } } /* We failed to read the EDID, so send an event for this. */ ed.present = false; ed.segment = adv7511_rd(sd, 0xc4); v4l2_subdev_notify(sd, ADV7511_EDID_DETECT, (void *)&ed); v4l2_dbg(1, debug, sd, "%s: no edid found\n", __func__); } static void adv7511_audio_setup(struct v4l2_subdev *sd) { v4l2_dbg(1, debug, sd, "%s\n", __func__); adv7511_s_i2s_clock_freq(sd, 48000); adv7511_s_clock_freq(sd, 48000); adv7511_s_routing(sd, 0, 0, 0); } /* Configure hdmi transmitter. */ static void adv7511_setup(struct v4l2_subdev *sd) { struct adv7511_state *state = get_adv7511_state(sd); v4l2_dbg(1, debug, sd, "%s\n", __func__); /* Input format: RGB 4:4:4 */ adv7511_wr_and_or(sd, 0x15, 0xf0, 0x0); /* Output format: RGB 4:4:4 */ adv7511_wr_and_or(sd, 0x16, 0x7f, 0x0); /* 1st order interpolation 4:2:2 -> 4:4:4 up conversion, Aspect ratio: 16:9 */ adv7511_wr_and_or(sd, 0x17, 0xf9, 0x06); /* Disable pixel repetition */ adv7511_wr_and_or(sd, 0x3b, 0x9f, 0x0); /* Disable CSC */ adv7511_wr_and_or(sd, 0x18, 0x7f, 0x0); /* Output format: RGB 4:4:4, Active Format Information is valid, * underscanned */ adv7511_wr_and_or(sd, 0x55, 0x9c, 0x12); /* AVI Info frame packet enable, Audio Info frame disable */ adv7511_wr_and_or(sd, 0x44, 0xe7, 0x10); /* Colorimetry, Active format aspect ratio: same as picure. */ adv7511_wr(sd, 0x56, 0xa8); /* No encryption */ adv7511_wr_and_or(sd, 0xaf, 0xed, 0x0); /* Positive clk edge capture for input video clock */ adv7511_wr_and_or(sd, 0xba, 0x1f, 0x60); adv7511_audio_setup(sd); v4l2_ctrl_handler_setup(&state->hdl); } static void adv7511_notify_monitor_detect(struct v4l2_subdev *sd) { struct adv7511_monitor_detect mdt; struct adv7511_state *state = get_adv7511_state(sd); mdt.present = state->have_monitor; v4l2_subdev_notify(sd, ADV7511_MONITOR_DETECT, (void *)&mdt); } static void adv7511_check_monitor_present_status(struct v4l2_subdev *sd) { struct adv7511_state *state = get_adv7511_state(sd); /* read hotplug and rx-sense state */ uint8_t status = adv7511_rd(sd, 0x42); v4l2_dbg(1, debug, sd, "%s: status: 0x%x%s%s\n", __func__, status, status & MASK_ADV7511_HPD_DETECT ? ", hotplug" : "", status & MASK_ADV7511_MSEN_DETECT ? ", rx-sense" : ""); /* update read only ctrls */ v4l2_ctrl_s_ctrl(state->hotplug_ctrl, adv7511_have_hotplug(sd) ? 0x1 : 0x0); v4l2_ctrl_s_ctrl(state->rx_sense_ctrl, adv7511_have_rx_sense(sd) ? 0x1 : 0x0); v4l2_ctrl_s_ctrl(state->have_edid0_ctrl, state->edid.segments ? 0x1 : 0x0); if ((status & MASK_ADV7511_HPD_DETECT) && ((status & MASK_ADV7511_MSEN_DETECT) || state->edid.segments)) { v4l2_dbg(1, debug, sd, "%s: hotplug and (rx-sense or edid)\n", __func__); if (!state->have_monitor) { v4l2_dbg(1, debug, sd, "%s: monitor detected\n", __func__); state->have_monitor = true; adv7511_set_isr(sd, true); if (!adv7511_s_power(sd, true)) { v4l2_dbg(1, debug, sd, "%s: monitor detected, powerup failed\n", __func__); return; } adv7511_setup(sd); adv7511_notify_monitor_detect(sd); state->edid.read_retries = EDID_MAX_RETRIES; queue_delayed_work(state->work_queue, &state->edid_handler, EDID_DELAY); } } else if (status & MASK_ADV7511_HPD_DETECT) { v4l2_dbg(1, debug, sd, "%s: hotplug detected\n", __func__); state->edid.read_retries = EDID_MAX_RETRIES; queue_delayed_work(state->work_queue, &state->edid_handler, EDID_DELAY); } else if (!(status & MASK_ADV7511_HPD_DETECT)) { v4l2_dbg(1, debug, sd, "%s: hotplug not detected\n", __func__); if (state->have_monitor) { v4l2_dbg(1, debug, sd, "%s: monitor not detected\n", __func__); state->have_monitor = false; adv7511_notify_monitor_detect(sd); } adv7511_s_power(sd, false); memset(&state->edid, 0, sizeof(struct adv7511_state_edid)); } } static bool edid_block_verify_crc(uint8_t *edid_block) { uint8_t sum = 0; int i; for (i = 0; i < 128; i++) sum += edid_block[i]; return sum == 0; } static bool edid_verify_crc(struct v4l2_subdev *sd, u32 segment) { struct adv7511_state *state = get_adv7511_state(sd); u32 blocks = state->edid.blocks; uint8_t *data = state->edid.data; if (!edid_block_verify_crc(&data[segment * 256])) return false; if ((segment + 1) * 2 <= blocks) return edid_block_verify_crc(&data[segment * 256 + 128]); return true; } static bool edid_verify_header(struct v4l2_subdev *sd, u32 segment) { static const u8 hdmi_header[] = { 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00 }; struct adv7511_state *state = get_adv7511_state(sd); u8 *data = state->edid.data; if (segment != 0) return true; return !memcmp(data, hdmi_header, sizeof(hdmi_header)); } static bool adv7511_check_edid_status(struct v4l2_subdev *sd) { struct adv7511_state *state = get_adv7511_state(sd); uint8_t edidRdy = adv7511_rd(sd, 0xc5); v4l2_dbg(1, debug, sd, "%s: edid ready (retries: %d)\n", __func__, EDID_MAX_RETRIES - state->edid.read_retries); if (state->edid.complete) return true; if (edidRdy & MASK_ADV7511_EDID_RDY) { int segment = adv7511_rd(sd, 0xc4); struct adv7511_edid_detect ed; if (segment >= EDID_MAX_SEGM) { v4l2_err(sd, "edid segment number too big\n"); return false; } v4l2_dbg(1, debug, sd, "%s: got segment %d\n", __func__, segment); adv7511_edid_rd(sd, 256, &state->edid.data[segment * 256]); adv7511_dbg_dump_edid(2, debug, sd, segment, &state->edid.data[segment * 256]); if (segment == 0) { state->edid.blocks = state->edid.data[0x7e] + 1; v4l2_dbg(1, debug, sd, "%s: %d blocks in total\n", __func__, state->edid.blocks); } if (!edid_verify_crc(sd, segment) || !edid_verify_header(sd, segment)) { /* edid crc error, force reread of edid segment */ v4l2_err(sd, "%s: edid crc or header error\n", __func__); state->have_monitor = false; adv7511_s_power(sd, false); adv7511_s_power(sd, true); return false; } /* one more segment read ok */ state->edid.segments = segment + 1; if (((state->edid.data[0x7e] >> 1) + 1) > state->edid.segments) { /* Request next EDID segment */ v4l2_dbg(1, debug, sd, "%s: request segment %d\n", __func__, state->edid.segments); adv7511_wr(sd, 0xc9, 0xf); adv7511_wr(sd, 0xc4, state->edid.segments); state->edid.read_retries = EDID_MAX_RETRIES; queue_delayed_work(state->work_queue, &state->edid_handler, EDID_DELAY); return false; } v4l2_dbg(1, debug, sd, "%s: edid complete with %d segment(s)\n", __func__, state->edid.segments); state->edid.complete = true; /* report when we have all segments but report only for segment 0 */ ed.present = true; ed.segment = 0; state->edid_detect_counter++; v4l2_ctrl_s_ctrl(state->have_edid0_ctrl, state->edid.segments ? 0x1 : 0x0); v4l2_subdev_notify(sd, ADV7511_EDID_DETECT, (void *)&ed); return ed.present; } return false; } /* ----------------------------------------------------------------------- */ /* Setup ADV7511 */ static void adv7511_init_setup(struct v4l2_subdev *sd) { struct adv7511_state *state = get_adv7511_state(sd); struct adv7511_state_edid *edid = &state->edid; v4l2_dbg(1, debug, sd, "%s\n", __func__); /* clear all interrupts */ adv7511_wr(sd, 0x96, 0xff); /* * Stop HPD from resetting a lot of registers. * It might leave the chip in a partly un-initialized state, * in particular with regards to hotplug bounces. */ adv7511_wr_and_or(sd, 0xd6, 0x3f, 0xc0); memset(edid, 0, sizeof(struct adv7511_state_edid)); state->have_monitor = false; adv7511_set_isr(sd, false); adv7511_s_stream(sd, false); adv7511_s_audio_stream(sd, false); } static int adv7511_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct adv7511_state *state; struct adv7511_platform_data *pdata = client->dev.platform_data; struct v4l2_ctrl_handler *hdl; struct v4l2_subdev *sd; u8 chip_id[2]; int err = -EIO; /* Check if the adapter supports the needed features */ if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA)) return -EIO; state = devm_kzalloc(&client->dev, sizeof(struct adv7511_state), GFP_KERNEL); if (!state) return -ENOMEM; /* Platform data */ if (!pdata) { v4l_err(client, "No platform data!\n"); return -ENODEV; } memcpy(&state->pdata, pdata, sizeof(state->pdata)); sd = &state->sd; v4l2_dbg(1, debug, sd, "detecting adv7511 client on address 0x%x\n", client->addr << 1); v4l2_i2c_subdev_init(sd, client, &adv7511_ops); hdl = &state->hdl; v4l2_ctrl_handler_init(hdl, 10); /* add in ascending ID order */ state->hdmi_mode_ctrl = v4l2_ctrl_new_std_menu(hdl, &adv7511_ctrl_ops, V4L2_CID_DV_TX_MODE, V4L2_DV_TX_MODE_HDMI, 0, V4L2_DV_TX_MODE_DVI_D); state->hotplug_ctrl = v4l2_ctrl_new_std(hdl, NULL, V4L2_CID_DV_TX_HOTPLUG, 0, 1, 0, 0); state->rx_sense_ctrl = v4l2_ctrl_new_std(hdl, NULL, V4L2_CID_DV_TX_RXSENSE, 0, 1, 0, 0); state->have_edid0_ctrl = v4l2_ctrl_new_std(hdl, NULL, V4L2_CID_DV_TX_EDID_PRESENT, 0, 1, 0, 0); state->rgb_quantization_range_ctrl = v4l2_ctrl_new_std_menu(hdl, &adv7511_ctrl_ops, V4L2_CID_DV_TX_RGB_RANGE, V4L2_DV_RGB_RANGE_FULL, 0, V4L2_DV_RGB_RANGE_AUTO); sd->ctrl_handler = hdl; if (hdl->error) { err = hdl->error; goto err_hdl; } state->hdmi_mode_ctrl->is_private = true; state->hotplug_ctrl->is_private = true; state->rx_sense_ctrl->is_private = true; state->have_edid0_ctrl->is_private = true; state->rgb_quantization_range_ctrl->is_private = true; state->pad.flags = MEDIA_PAD_FL_SINK; err = media_entity_init(&sd->entity, 1, &state->pad, 0); if (err) goto err_hdl; /* EDID and CEC i2c addr */ state->i2c_edid_addr = state->pdata.i2c_edid << 1; state->i2c_cec_addr = state->pdata.i2c_cec << 1; state->chip_revision = adv7511_rd(sd, 0x0); chip_id[0] = adv7511_rd(sd, 0xf5); chip_id[1] = adv7511_rd(sd, 0xf6); if (chip_id[0] != 0x75 || chip_id[1] != 0x11) { v4l2_err(sd, "chip_id != 0x7511, read 0x%02x%02x\n", chip_id[0], chip_id[1]); err = -EIO; goto err_entity; } state->i2c_edid = i2c_new_dummy(client->adapter, state->i2c_edid_addr >> 1); if (state->i2c_edid == NULL) { v4l2_err(sd, "failed to register edid i2c client\n"); err = -ENOMEM; goto err_entity; } adv7511_wr(sd, 0xe2, 0x01); /* power down cec section */ state->work_queue = create_singlethread_workqueue(sd->name); if (state->work_queue == NULL) { v4l2_err(sd, "could not create workqueue\n"); err = -ENOMEM; goto err_unreg_cec; } INIT_DELAYED_WORK(&state->edid_handler, adv7511_edid_handler); adv7511_init_setup(sd); adv7511_set_isr(sd, true); adv7511_check_monitor_present_status(sd); v4l2_info(sd, "%s found @ 0x%x (%s)\n", client->name, client->addr << 1, client->adapter->name); return 0; err_unreg_cec: i2c_unregister_device(state->i2c_edid); err_entity: media_entity_cleanup(&sd->entity); err_hdl: v4l2_ctrl_handler_free(&state->hdl); return err; } /* ----------------------------------------------------------------------- */ static int adv7511_remove(struct i2c_client *client) { struct v4l2_subdev *sd = i2c_get_clientdata(client); struct adv7511_state *state = get_adv7511_state(sd); state->chip_revision = -1; v4l2_dbg(1, debug, sd, "%s removed @ 0x%x (%s)\n", client->name, client->addr << 1, client->adapter->name); adv7511_init_setup(sd); cancel_delayed_work(&state->edid_handler); i2c_unregister_device(state->i2c_edid); destroy_workqueue(state->work_queue); v4l2_device_unregister_subdev(sd); media_entity_cleanup(&sd->entity); v4l2_ctrl_handler_free(sd->ctrl_handler); return 0; } /* ----------------------------------------------------------------------- */ static struct i2c_device_id adv7511_id[] = { { "adv7511", 0 }, { } }; MODULE_DEVICE_TABLE(i2c, adv7511_id); static struct i2c_driver adv7511_driver = { .driver = { .owner = THIS_MODULE, .name = "adv7511", }, .probe = adv7511_probe, .remove = adv7511_remove, .id_table = adv7511_id, }; module_i2c_driver(adv7511_driver);