/* * Support for NXT2002 and NXT2004 - VSB/QAM * * Copyright (C) 2005 Kirk Lapray <kirk.lapray@gmail.com> * Copyright (C) 2006-2014 Michael Krufky <mkrufky@linuxtv.org> * based on nxt2002 by Taylor Jacob <rtjacob@earthlink.net> * and nxt2004 by Jean-Francois Thibert <jeanfrancois@sagetv.com> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * */ /* * NOTES ABOUT THIS DRIVER * * This Linux driver supports: * B2C2/BBTI Technisat Air2PC - ATSC (NXT2002) * AverTVHD MCE A180 (NXT2004) * ATI HDTV Wonder (NXT2004) * * This driver needs external firmware. Please use the command * "<kerneldir>/Documentation/dvb/get_dvb_firmware nxt2002" or * "<kerneldir>/Documentation/dvb/get_dvb_firmware nxt2004" to * download/extract the appropriate firmware, and then copy it to * /usr/lib/hotplug/firmware/ or /lib/firmware/ * (depending on configuration of firmware hotplug). */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt /* Max transfer size done by I2C transfer functions */ #define MAX_XFER_SIZE 256 #define NXT2002_DEFAULT_FIRMWARE "dvb-fe-nxt2002.fw" #define NXT2004_DEFAULT_FIRMWARE "dvb-fe-nxt2004.fw" #define CRC_CCIT_MASK 0x1021 #include <linux/kernel.h> #include <linux/init.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/string.h> #include "dvb_frontend.h" #include "nxt200x.h" struct nxt200x_state { struct i2c_adapter* i2c; const struct nxt200x_config* config; struct dvb_frontend frontend; /* demodulator private data */ nxt_chip_type demod_chip; u8 initialised:1; }; static int debug; #define dprintk(args...) do { if (debug) pr_debug(args); } while (0) static int i2c_writebytes (struct nxt200x_state* state, u8 addr, u8 *buf, u8 len) { int err; struct i2c_msg msg = { .addr = addr, .flags = 0, .buf = buf, .len = len }; if ((err = i2c_transfer (state->i2c, &msg, 1)) != 1) { pr_warn("%s: i2c write error (addr 0x%02x, err == %i)\n", __func__, addr, err); return -EREMOTEIO; } return 0; } static int i2c_readbytes(struct nxt200x_state *state, u8 addr, u8 *buf, u8 len) { int err; struct i2c_msg msg = { .addr = addr, .flags = I2C_M_RD, .buf = buf, .len = len }; if ((err = i2c_transfer (state->i2c, &msg, 1)) != 1) { pr_warn("%s: i2c read error (addr 0x%02x, err == %i)\n", __func__, addr, err); return -EREMOTEIO; } return 0; } static int nxt200x_writebytes (struct nxt200x_state* state, u8 reg, const u8 *buf, u8 len) { u8 buf2[MAX_XFER_SIZE]; int err; struct i2c_msg msg = { .addr = state->config->demod_address, .flags = 0, .buf = buf2, .len = len + 1 }; if (1 + len > sizeof(buf2)) { pr_warn("%s: i2c wr reg=%04x: len=%d is too big!\n", __func__, reg, len); return -EINVAL; } buf2[0] = reg; memcpy(&buf2[1], buf, len); if ((err = i2c_transfer (state->i2c, &msg, 1)) != 1) { pr_warn("%s: i2c write error (addr 0x%02x, err == %i)\n", __func__, state->config->demod_address, err); return -EREMOTEIO; } return 0; } static int nxt200x_readbytes(struct nxt200x_state *state, u8 reg, u8 *buf, u8 len) { u8 reg2 [] = { reg }; struct i2c_msg msg [] = { { .addr = state->config->demod_address, .flags = 0, .buf = reg2, .len = 1 }, { .addr = state->config->demod_address, .flags = I2C_M_RD, .buf = buf, .len = len } }; int err; if ((err = i2c_transfer (state->i2c, msg, 2)) != 2) { pr_warn("%s: i2c read error (addr 0x%02x, err == %i)\n", __func__, state->config->demod_address, err); return -EREMOTEIO; } return 0; } static u16 nxt200x_crc(u16 crc, u8 c) { u8 i; u16 input = (u16) c & 0xFF; input<<=8; for(i=0; i<8; i++) { if((crc^input) & 0x8000) crc=(crc<<1)^CRC_CCIT_MASK; else crc<<=1; input<<=1; } return crc; } static int nxt200x_writereg_multibyte (struct nxt200x_state* state, u8 reg, u8* data, u8 len) { u8 attr, len2, buf; dprintk("%s\n", __func__); /* set mutli register register */ nxt200x_writebytes(state, 0x35, ®, 1); /* send the actual data */ nxt200x_writebytes(state, 0x36, data, len); switch (state->demod_chip) { case NXT2002: len2 = len; buf = 0x02; break; case NXT2004: /* probably not right, but gives correct values */ attr = 0x02; if (reg & 0x80) { attr = attr << 1; if (reg & 0x04) attr = attr >> 1; } /* set write bit */ len2 = ((attr << 4) | 0x10) | len; buf = 0x80; break; default: return -EINVAL; break; } /* set multi register length */ nxt200x_writebytes(state, 0x34, &len2, 1); /* toggle the multireg write bit */ nxt200x_writebytes(state, 0x21, &buf, 1); nxt200x_readbytes(state, 0x21, &buf, 1); switch (state->demod_chip) { case NXT2002: if ((buf & 0x02) == 0) return 0; break; case NXT2004: if (buf == 0) return 0; break; default: return -EINVAL; break; } pr_warn("Error writing multireg register 0x%02X\n", reg); return 0; } static int nxt200x_readreg_multibyte (struct nxt200x_state* state, u8 reg, u8* data, u8 len) { int i; u8 buf, len2, attr; dprintk("%s\n", __func__); /* set mutli register register */ nxt200x_writebytes(state, 0x35, ®, 1); switch (state->demod_chip) { case NXT2002: /* set multi register length */ len2 = len & 0x80; nxt200x_writebytes(state, 0x34, &len2, 1); /* read the actual data */ nxt200x_readbytes(state, reg, data, len); return 0; break; case NXT2004: /* probably not right, but gives correct values */ attr = 0x02; if (reg & 0x80) { attr = attr << 1; if (reg & 0x04) attr = attr >> 1; } /* set multi register length */ len2 = (attr << 4) | len; nxt200x_writebytes(state, 0x34, &len2, 1); /* toggle the multireg bit*/ buf = 0x80; nxt200x_writebytes(state, 0x21, &buf, 1); /* read the actual data */ for(i = 0; i < len; i++) { nxt200x_readbytes(state, 0x36 + i, &data[i], 1); } return 0; break; default: return -EINVAL; break; } } static void nxt200x_microcontroller_stop (struct nxt200x_state* state) { u8 buf, stopval, counter = 0; dprintk("%s\n", __func__); /* set correct stop value */ switch (state->demod_chip) { case NXT2002: stopval = 0x40; break; case NXT2004: stopval = 0x10; break; default: stopval = 0; break; } buf = 0x80; nxt200x_writebytes(state, 0x22, &buf, 1); while (counter < 20) { nxt200x_readbytes(state, 0x31, &buf, 1); if (buf & stopval) return; msleep(10); counter++; } pr_warn("Timeout waiting for nxt200x to stop. This is ok after " "firmware upload.\n"); return; } static void nxt200x_microcontroller_start (struct nxt200x_state* state) { u8 buf; dprintk("%s\n", __func__); buf = 0x00; nxt200x_writebytes(state, 0x22, &buf, 1); } static void nxt2004_microcontroller_init (struct nxt200x_state* state) { u8 buf[9]; u8 counter = 0; dprintk("%s\n", __func__); buf[0] = 0x00; nxt200x_writebytes(state, 0x2b, buf, 1); buf[0] = 0x70; nxt200x_writebytes(state, 0x34, buf, 1); buf[0] = 0x04; nxt200x_writebytes(state, 0x35, buf, 1); buf[0] = 0x01; buf[1] = 0x23; buf[2] = 0x45; buf[3] = 0x67; buf[4] = 0x89; buf[5] = 0xAB; buf[6] = 0xCD; buf[7] = 0xEF; buf[8] = 0xC0; nxt200x_writebytes(state, 0x36, buf, 9); buf[0] = 0x80; nxt200x_writebytes(state, 0x21, buf, 1); while (counter < 20) { nxt200x_readbytes(state, 0x21, buf, 1); if (buf[0] == 0) return; msleep(10); counter++; } pr_warn("Timeout waiting for nxt2004 to init.\n"); return; } static int nxt200x_writetuner (struct nxt200x_state* state, u8* data) { u8 buf, count = 0; dprintk("%s\n", __func__); dprintk("Tuner Bytes: %*ph\n", 4, data + 1); /* if NXT2004, write directly to tuner. if NXT2002, write through NXT chip. * direct write is required for Philips TUV1236D and ALPS TDHU2 */ switch (state->demod_chip) { case NXT2004: if (i2c_writebytes(state, data[0], data+1, 4)) pr_warn("error writing to tuner\n"); /* wait until we have a lock */ while (count < 20) { i2c_readbytes(state, data[0], &buf, 1); if (buf & 0x40) return 0; msleep(100); count++; } pr_warn("timeout waiting for tuner lock\n"); break; case NXT2002: /* set the i2c transfer speed to the tuner */ buf = 0x03; nxt200x_writebytes(state, 0x20, &buf, 1); /* setup to transfer 4 bytes via i2c */ buf = 0x04; nxt200x_writebytes(state, 0x34, &buf, 1); /* write actual tuner bytes */ nxt200x_writebytes(state, 0x36, data+1, 4); /* set tuner i2c address */ buf = data[0] << 1; nxt200x_writebytes(state, 0x35, &buf, 1); /* write UC Opmode to begin transfer */ buf = 0x80; nxt200x_writebytes(state, 0x21, &buf, 1); while (count < 20) { nxt200x_readbytes(state, 0x21, &buf, 1); if ((buf & 0x80)== 0x00) return 0; msleep(100); count++; } pr_warn("timeout error writing to tuner\n"); break; default: return -EINVAL; break; } return 0; } static void nxt200x_agc_reset(struct nxt200x_state* state) { u8 buf; dprintk("%s\n", __func__); switch (state->demod_chip) { case NXT2002: buf = 0x08; nxt200x_writebytes(state, 0x08, &buf, 1); buf = 0x00; nxt200x_writebytes(state, 0x08, &buf, 1); break; case NXT2004: nxt200x_readreg_multibyte(state, 0x08, &buf, 1); buf = 0x08; nxt200x_writereg_multibyte(state, 0x08, &buf, 1); buf = 0x00; nxt200x_writereg_multibyte(state, 0x08, &buf, 1); break; default: break; } return; } static int nxt2002_load_firmware (struct dvb_frontend* fe, const struct firmware *fw) { struct nxt200x_state* state = fe->demodulator_priv; u8 buf[3], written = 0, chunkpos = 0; u16 rambase, position, crc = 0; dprintk("%s\n", __func__); dprintk("Firmware is %zu bytes\n", fw->size); /* Get the RAM base for this nxt2002 */ nxt200x_readbytes(state, 0x10, buf, 1); if (buf[0] & 0x10) rambase = 0x1000; else rambase = 0x0000; dprintk("rambase on this nxt2002 is %04X\n", rambase); /* Hold the micro in reset while loading firmware */ buf[0] = 0x80; nxt200x_writebytes(state, 0x2B, buf, 1); for (position = 0; position < fw->size; position++) { if (written == 0) { crc = 0; chunkpos = 0x28; buf[0] = ((rambase + position) >> 8); buf[1] = (rambase + position) & 0xFF; buf[2] = 0x81; /* write starting address */ nxt200x_writebytes(state, 0x29, buf, 3); } written++; chunkpos++; if ((written % 4) == 0) nxt200x_writebytes(state, chunkpos, &fw->data[position-3], 4); crc = nxt200x_crc(crc, fw->data[position]); if ((written == 255) || (position+1 == fw->size)) { /* write remaining bytes of firmware */ nxt200x_writebytes(state, chunkpos+4-(written %4), &fw->data[position-(written %4) + 1], written %4); buf[0] = crc << 8; buf[1] = crc & 0xFF; /* write crc */ nxt200x_writebytes(state, 0x2C, buf, 2); /* do a read to stop things */ nxt200x_readbytes(state, 0x2A, buf, 1); /* set transfer mode to complete */ buf[0] = 0x80; nxt200x_writebytes(state, 0x2B, buf, 1); written = 0; } } return 0; }; static int nxt2004_load_firmware (struct dvb_frontend* fe, const struct firmware *fw) { struct nxt200x_state* state = fe->demodulator_priv; u8 buf[3]; u16 rambase, position, crc=0; dprintk("%s\n", __func__); dprintk("Firmware is %zu bytes\n", fw->size); /* set rambase */ rambase = 0x1000; /* hold the micro in reset while loading firmware */ buf[0] = 0x80; nxt200x_writebytes(state, 0x2B, buf,1); /* calculate firmware CRC */ for (position = 0; position < fw->size; position++) { crc = nxt200x_crc(crc, fw->data[position]); } buf[0] = rambase >> 8; buf[1] = rambase & 0xFF; buf[2] = 0x81; /* write starting address */ nxt200x_writebytes(state,0x29,buf,3); for (position = 0; position < fw->size;) { nxt200x_writebytes(state, 0x2C, &fw->data[position], fw->size-position > 255 ? 255 : fw->size-position); position += (fw->size-position > 255 ? 255 : fw->size-position); } buf[0] = crc >> 8; buf[1] = crc & 0xFF; dprintk("firmware crc is 0x%02X 0x%02X\n", buf[0], buf[1]); /* write crc */ nxt200x_writebytes(state, 0x2C, buf,2); /* do a read to stop things */ nxt200x_readbytes(state, 0x2C, buf, 1); /* set transfer mode to complete */ buf[0] = 0x80; nxt200x_writebytes(state, 0x2B, buf,1); return 0; }; static int nxt200x_setup_frontend_parameters(struct dvb_frontend *fe) { struct dtv_frontend_properties *p = &fe->dtv_property_cache; struct nxt200x_state* state = fe->demodulator_priv; u8 buf[5]; /* stop the micro first */ nxt200x_microcontroller_stop(state); if (state->demod_chip == NXT2004) { /* make sure demod is set to digital */ buf[0] = 0x04; nxt200x_writebytes(state, 0x14, buf, 1); buf[0] = 0x00; nxt200x_writebytes(state, 0x17, buf, 1); } /* set additional params */ switch (p->modulation) { case QAM_64: case QAM_256: /* Set punctured clock for QAM */ /* This is just a guess since I am unable to test it */ if (state->config->set_ts_params) state->config->set_ts_params(fe, 1); break; case VSB_8: /* Set non-punctured clock for VSB */ if (state->config->set_ts_params) state->config->set_ts_params(fe, 0); break; default: return -EINVAL; break; } if (fe->ops.tuner_ops.calc_regs) { /* get tuning information */ fe->ops.tuner_ops.calc_regs(fe, buf, 5); /* write frequency information */ nxt200x_writetuner(state, buf); } /* reset the agc now that tuning has been completed */ nxt200x_agc_reset(state); /* set target power level */ switch (p->modulation) { case QAM_64: case QAM_256: buf[0] = 0x74; break; case VSB_8: buf[0] = 0x70; break; default: return -EINVAL; break; } nxt200x_writebytes(state, 0x42, buf, 1); /* configure sdm */ switch (state->demod_chip) { case NXT2002: buf[0] = 0x87; break; case NXT2004: buf[0] = 0x07; break; default: return -EINVAL; break; } nxt200x_writebytes(state, 0x57, buf, 1); /* write sdm1 input */ buf[0] = 0x10; buf[1] = 0x00; switch (state->demod_chip) { case NXT2002: nxt200x_writereg_multibyte(state, 0x58, buf, 2); break; case NXT2004: nxt200x_writebytes(state, 0x58, buf, 2); break; default: return -EINVAL; break; } /* write sdmx input */ switch (p->modulation) { case QAM_64: buf[0] = 0x68; break; case QAM_256: buf[0] = 0x64; break; case VSB_8: buf[0] = 0x60; break; default: return -EINVAL; break; } buf[1] = 0x00; switch (state->demod_chip) { case NXT2002: nxt200x_writereg_multibyte(state, 0x5C, buf, 2); break; case NXT2004: nxt200x_writebytes(state, 0x5C, buf, 2); break; default: return -EINVAL; break; } /* write adc power lpf fc */ buf[0] = 0x05; nxt200x_writebytes(state, 0x43, buf, 1); if (state->demod_chip == NXT2004) { /* write ??? */ buf[0] = 0x00; buf[1] = 0x00; nxt200x_writebytes(state, 0x46, buf, 2); } /* write accumulator2 input */ buf[0] = 0x80; buf[1] = 0x00; switch (state->demod_chip) { case NXT2002: nxt200x_writereg_multibyte(state, 0x4B, buf, 2); break; case NXT2004: nxt200x_writebytes(state, 0x4B, buf, 2); break; default: return -EINVAL; break; } /* write kg1 */ buf[0] = 0x00; nxt200x_writebytes(state, 0x4D, buf, 1); /* write sdm12 lpf fc */ buf[0] = 0x44; nxt200x_writebytes(state, 0x55, buf, 1); /* write agc control reg */ buf[0] = 0x04; nxt200x_writebytes(state, 0x41, buf, 1); if (state->demod_chip == NXT2004) { nxt200x_readreg_multibyte(state, 0x80, buf, 1); buf[0] = 0x24; nxt200x_writereg_multibyte(state, 0x80, buf, 1); /* soft reset? */ nxt200x_readreg_multibyte(state, 0x08, buf, 1); buf[0] = 0x10; nxt200x_writereg_multibyte(state, 0x08, buf, 1); nxt200x_readreg_multibyte(state, 0x08, buf, 1); buf[0] = 0x00; nxt200x_writereg_multibyte(state, 0x08, buf, 1); nxt200x_readreg_multibyte(state, 0x80, buf, 1); buf[0] = 0x04; nxt200x_writereg_multibyte(state, 0x80, buf, 1); buf[0] = 0x00; nxt200x_writereg_multibyte(state, 0x81, buf, 1); buf[0] = 0x80; buf[1] = 0x00; buf[2] = 0x00; nxt200x_writereg_multibyte(state, 0x82, buf, 3); nxt200x_readreg_multibyte(state, 0x88, buf, 1); buf[0] = 0x11; nxt200x_writereg_multibyte(state, 0x88, buf, 1); nxt200x_readreg_multibyte(state, 0x80, buf, 1); buf[0] = 0x44; nxt200x_writereg_multibyte(state, 0x80, buf, 1); } /* write agc ucgp0 */ switch (p->modulation) { case QAM_64: buf[0] = 0x02; break; case QAM_256: buf[0] = 0x03; break; case VSB_8: buf[0] = 0x00; break; default: return -EINVAL; break; } nxt200x_writebytes(state, 0x30, buf, 1); /* write agc control reg */ buf[0] = 0x00; nxt200x_writebytes(state, 0x41, buf, 1); /* write accumulator2 input */ buf[0] = 0x80; buf[1] = 0x00; switch (state->demod_chip) { case NXT2002: nxt200x_writereg_multibyte(state, 0x49, buf, 2); nxt200x_writereg_multibyte(state, 0x4B, buf, 2); break; case NXT2004: nxt200x_writebytes(state, 0x49, buf, 2); nxt200x_writebytes(state, 0x4B, buf, 2); break; default: return -EINVAL; break; } /* write agc control reg */ buf[0] = 0x04; nxt200x_writebytes(state, 0x41, buf, 1); nxt200x_microcontroller_start(state); if (state->demod_chip == NXT2004) { nxt2004_microcontroller_init(state); /* ???? */ buf[0] = 0xF0; buf[1] = 0x00; nxt200x_writebytes(state, 0x5C, buf, 2); } /* adjacent channel detection should be done here, but I don't have any stations with this need so I cannot test it */ return 0; } static int nxt200x_read_status(struct dvb_frontend* fe, fe_status_t* status) { struct nxt200x_state* state = fe->demodulator_priv; u8 lock; nxt200x_readbytes(state, 0x31, &lock, 1); *status = 0; if (lock & 0x20) { *status |= FE_HAS_SIGNAL; *status |= FE_HAS_CARRIER; *status |= FE_HAS_VITERBI; *status |= FE_HAS_SYNC; *status |= FE_HAS_LOCK; } return 0; } static int nxt200x_read_ber(struct dvb_frontend* fe, u32* ber) { struct nxt200x_state* state = fe->demodulator_priv; u8 b[3]; nxt200x_readreg_multibyte(state, 0xE6, b, 3); *ber = ((b[0] << 8) + b[1]) * 8; return 0; } static int nxt200x_read_signal_strength(struct dvb_frontend* fe, u16* strength) { struct nxt200x_state* state = fe->demodulator_priv; u8 b[2]; u16 temp = 0; /* setup to read cluster variance */ b[0] = 0x00; nxt200x_writebytes(state, 0xA1, b, 1); /* get multreg val */ nxt200x_readreg_multibyte(state, 0xA6, b, 2); temp = (b[0] << 8) | b[1]; *strength = ((0x7FFF - temp) & 0x0FFF) * 16; return 0; } static int nxt200x_read_snr(struct dvb_frontend* fe, u16* snr) { struct nxt200x_state* state = fe->demodulator_priv; u8 b[2]; u16 temp = 0, temp2; u32 snrdb = 0; /* setup to read cluster variance */ b[0] = 0x00; nxt200x_writebytes(state, 0xA1, b, 1); /* get multreg val from 0xA6 */ nxt200x_readreg_multibyte(state, 0xA6, b, 2); temp = (b[0] << 8) | b[1]; temp2 = 0x7FFF - temp; /* snr will be in db */ if (temp2 > 0x7F00) snrdb = 1000*24 + ( 1000*(30-24) * ( temp2 - 0x7F00 ) / ( 0x7FFF - 0x7F00 ) ); else if (temp2 > 0x7EC0) snrdb = 1000*18 + ( 1000*(24-18) * ( temp2 - 0x7EC0 ) / ( 0x7F00 - 0x7EC0 ) ); else if (temp2 > 0x7C00) snrdb = 1000*12 + ( 1000*(18-12) * ( temp2 - 0x7C00 ) / ( 0x7EC0 - 0x7C00 ) ); else snrdb = 1000*0 + ( 1000*(12-0) * ( temp2 - 0 ) / ( 0x7C00 - 0 ) ); /* the value reported back from the frontend will be FFFF=32db 0000=0db */ *snr = snrdb * (0xFFFF/32000); return 0; } static int nxt200x_read_ucblocks(struct dvb_frontend* fe, u32* ucblocks) { struct nxt200x_state* state = fe->demodulator_priv; u8 b[3]; nxt200x_readreg_multibyte(state, 0xE6, b, 3); *ucblocks = b[2]; return 0; } static int nxt200x_sleep(struct dvb_frontend* fe) { return 0; } static int nxt2002_init(struct dvb_frontend* fe) { struct nxt200x_state* state = fe->demodulator_priv; const struct firmware *fw; int ret; u8 buf[2]; /* request the firmware, this will block until someone uploads it */ pr_debug("%s: Waiting for firmware upload (%s)...\n", __func__, NXT2002_DEFAULT_FIRMWARE); ret = request_firmware(&fw, NXT2002_DEFAULT_FIRMWARE, state->i2c->dev.parent); pr_debug("%s: Waiting for firmware upload(2)...\n", __func__); if (ret) { pr_err("%s: No firmware uploaded (timeout or file not found?)" "\n", __func__); return ret; } ret = nxt2002_load_firmware(fe, fw); release_firmware(fw); if (ret) { pr_err("%s: Writing firmware to device failed\n", __func__); return ret; } pr_info("%s: Firmware upload complete\n", __func__); /* Put the micro into reset */ nxt200x_microcontroller_stop(state); /* ensure transfer is complete */ buf[0]=0x00; nxt200x_writebytes(state, 0x2B, buf, 1); /* Put the micro into reset for real this time */ nxt200x_microcontroller_stop(state); /* soft reset everything (agc,frontend,eq,fec)*/ buf[0] = 0x0F; nxt200x_writebytes(state, 0x08, buf, 1); buf[0] = 0x00; nxt200x_writebytes(state, 0x08, buf, 1); /* write agc sdm configure */ buf[0] = 0xF1; nxt200x_writebytes(state, 0x57, buf, 1); /* write mod output format */ buf[0] = 0x20; nxt200x_writebytes(state, 0x09, buf, 1); /* write fec mpeg mode */ buf[0] = 0x7E; buf[1] = 0x00; nxt200x_writebytes(state, 0xE9, buf, 2); /* write mux selection */ buf[0] = 0x00; nxt200x_writebytes(state, 0xCC, buf, 1); return 0; } static int nxt2004_init(struct dvb_frontend* fe) { struct nxt200x_state* state = fe->demodulator_priv; const struct firmware *fw; int ret; u8 buf[3]; /* ??? */ buf[0]=0x00; nxt200x_writebytes(state, 0x1E, buf, 1); /* request the firmware, this will block until someone uploads it */ pr_debug("%s: Waiting for firmware upload (%s)...\n", __func__, NXT2004_DEFAULT_FIRMWARE); ret = request_firmware(&fw, NXT2004_DEFAULT_FIRMWARE, state->i2c->dev.parent); pr_debug("%s: Waiting for firmware upload(2)...\n", __func__); if (ret) { pr_err("%s: No firmware uploaded (timeout or file not found?)" "\n", __func__); return ret; } ret = nxt2004_load_firmware(fe, fw); release_firmware(fw); if (ret) { pr_err("%s: Writing firmware to device failed\n", __func__); return ret; } pr_info("%s: Firmware upload complete\n", __func__); /* ensure transfer is complete */ buf[0] = 0x01; nxt200x_writebytes(state, 0x19, buf, 1); nxt2004_microcontroller_init(state); nxt200x_microcontroller_stop(state); nxt200x_microcontroller_stop(state); nxt2004_microcontroller_init(state); nxt200x_microcontroller_stop(state); /* soft reset everything (agc,frontend,eq,fec)*/ buf[0] = 0xFF; nxt200x_writereg_multibyte(state, 0x08, buf, 1); buf[0] = 0x00; nxt200x_writereg_multibyte(state, 0x08, buf, 1); /* write agc sdm configure */ buf[0] = 0xD7; nxt200x_writebytes(state, 0x57, buf, 1); /* ???*/ buf[0] = 0x07; buf[1] = 0xfe; nxt200x_writebytes(state, 0x35, buf, 2); buf[0] = 0x12; nxt200x_writebytes(state, 0x34, buf, 1); buf[0] = 0x80; nxt200x_writebytes(state, 0x21, buf, 1); /* ???*/ buf[0] = 0x21; nxt200x_writebytes(state, 0x0A, buf, 1); /* ???*/ buf[0] = 0x01; nxt200x_writereg_multibyte(state, 0x80, buf, 1); /* write fec mpeg mode */ buf[0] = 0x7E; buf[1] = 0x00; nxt200x_writebytes(state, 0xE9, buf, 2); /* write mux selection */ buf[0] = 0x00; nxt200x_writebytes(state, 0xCC, buf, 1); /* ???*/ nxt200x_readreg_multibyte(state, 0x80, buf, 1); buf[0] = 0x00; nxt200x_writereg_multibyte(state, 0x80, buf, 1); /* soft reset? */ nxt200x_readreg_multibyte(state, 0x08, buf, 1); buf[0] = 0x10; nxt200x_writereg_multibyte(state, 0x08, buf, 1); nxt200x_readreg_multibyte(state, 0x08, buf, 1); buf[0] = 0x00; nxt200x_writereg_multibyte(state, 0x08, buf, 1); /* ???*/ nxt200x_readreg_multibyte(state, 0x80, buf, 1); buf[0] = 0x01; nxt200x_writereg_multibyte(state, 0x80, buf, 1); buf[0] = 0x70; nxt200x_writereg_multibyte(state, 0x81, buf, 1); buf[0] = 0x31; buf[1] = 0x5E; buf[2] = 0x66; nxt200x_writereg_multibyte(state, 0x82, buf, 3); nxt200x_readreg_multibyte(state, 0x88, buf, 1); buf[0] = 0x11; nxt200x_writereg_multibyte(state, 0x88, buf, 1); nxt200x_readreg_multibyte(state, 0x80, buf, 1); buf[0] = 0x40; nxt200x_writereg_multibyte(state, 0x80, buf, 1); nxt200x_readbytes(state, 0x10, buf, 1); buf[0] = 0x10; nxt200x_writebytes(state, 0x10, buf, 1); nxt200x_readbytes(state, 0x0A, buf, 1); buf[0] = 0x21; nxt200x_writebytes(state, 0x0A, buf, 1); nxt2004_microcontroller_init(state); buf[0] = 0x21; nxt200x_writebytes(state, 0x0A, buf, 1); buf[0] = 0x7E; nxt200x_writebytes(state, 0xE9, buf, 1); buf[0] = 0x00; nxt200x_writebytes(state, 0xEA, buf, 1); nxt200x_readreg_multibyte(state, 0x80, buf, 1); buf[0] = 0x00; nxt200x_writereg_multibyte(state, 0x80, buf, 1); nxt200x_readreg_multibyte(state, 0x80, buf, 1); buf[0] = 0x00; nxt200x_writereg_multibyte(state, 0x80, buf, 1); /* soft reset? */ nxt200x_readreg_multibyte(state, 0x08, buf, 1); buf[0] = 0x10; nxt200x_writereg_multibyte(state, 0x08, buf, 1); nxt200x_readreg_multibyte(state, 0x08, buf, 1); buf[0] = 0x00; nxt200x_writereg_multibyte(state, 0x08, buf, 1); nxt200x_readreg_multibyte(state, 0x80, buf, 1); buf[0] = 0x04; nxt200x_writereg_multibyte(state, 0x80, buf, 1); buf[0] = 0x00; nxt200x_writereg_multibyte(state, 0x81, buf, 1); buf[0] = 0x80; buf[1] = 0x00; buf[2] = 0x00; nxt200x_writereg_multibyte(state, 0x82, buf, 3); nxt200x_readreg_multibyte(state, 0x88, buf, 1); buf[0] = 0x11; nxt200x_writereg_multibyte(state, 0x88, buf, 1); nxt200x_readreg_multibyte(state, 0x80, buf, 1); buf[0] = 0x44; nxt200x_writereg_multibyte(state, 0x80, buf, 1); /* initialize tuner */ nxt200x_readbytes(state, 0x10, buf, 1); buf[0] = 0x12; nxt200x_writebytes(state, 0x10, buf, 1); buf[0] = 0x04; nxt200x_writebytes(state, 0x13, buf, 1); buf[0] = 0x00; nxt200x_writebytes(state, 0x16, buf, 1); buf[0] = 0x04; nxt200x_writebytes(state, 0x14, buf, 1); buf[0] = 0x00; nxt200x_writebytes(state, 0x14, buf, 1); nxt200x_writebytes(state, 0x17, buf, 1); nxt200x_writebytes(state, 0x14, buf, 1); nxt200x_writebytes(state, 0x17, buf, 1); return 0; } static int nxt200x_init(struct dvb_frontend* fe) { struct nxt200x_state* state = fe->demodulator_priv; int ret = 0; if (!state->initialised) { switch (state->demod_chip) { case NXT2002: ret = nxt2002_init(fe); break; case NXT2004: ret = nxt2004_init(fe); break; default: return -EINVAL; break; } state->initialised = 1; } return ret; } static int nxt200x_get_tune_settings(struct dvb_frontend* fe, struct dvb_frontend_tune_settings* fesettings) { fesettings->min_delay_ms = 500; fesettings->step_size = 0; fesettings->max_drift = 0; return 0; } static void nxt200x_release(struct dvb_frontend* fe) { struct nxt200x_state* state = fe->demodulator_priv; kfree(state); } static struct dvb_frontend_ops nxt200x_ops; struct dvb_frontend* nxt200x_attach(const struct nxt200x_config* config, struct i2c_adapter* i2c) { struct nxt200x_state* state = NULL; u8 buf [] = {0,0,0,0,0}; /* allocate memory for the internal state */ state = kzalloc(sizeof(struct nxt200x_state), GFP_KERNEL); if (state == NULL) goto error; /* setup the state */ state->config = config; state->i2c = i2c; state->initialised = 0; /* read card id */ nxt200x_readbytes(state, 0x00, buf, 5); dprintk("NXT info: %*ph\n", 5, buf); /* set demod chip */ switch (buf[0]) { case 0x04: state->demod_chip = NXT2002; pr_info("NXT2002 Detected\n"); break; case 0x05: state->demod_chip = NXT2004; pr_info("NXT2004 Detected\n"); break; default: goto error; } /* make sure demod chip is supported */ switch (state->demod_chip) { case NXT2002: if (buf[0] != 0x04) goto error; /* device id */ if (buf[1] != 0x02) goto error; /* fab id */ if (buf[2] != 0x11) goto error; /* month */ if (buf[3] != 0x20) goto error; /* year msb */ if (buf[4] != 0x00) goto error; /* year lsb */ break; case NXT2004: if (buf[0] != 0x05) goto error; /* device id */ break; default: goto error; } /* create dvb_frontend */ memcpy(&state->frontend.ops, &nxt200x_ops, sizeof(struct dvb_frontend_ops)); state->frontend.demodulator_priv = state; return &state->frontend; error: kfree(state); pr_err("Unknown/Unsupported NXT chip: %*ph\n", 5, buf); return NULL; } static struct dvb_frontend_ops nxt200x_ops = { .delsys = { SYS_ATSC, SYS_DVBC_ANNEX_B }, .info = { .name = "Nextwave NXT200X VSB/QAM frontend", .frequency_min = 54000000, .frequency_max = 860000000, .frequency_stepsize = 166666, /* stepsize is just a guess */ .caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO | FE_CAN_8VSB | FE_CAN_QAM_64 | FE_CAN_QAM_256 }, .release = nxt200x_release, .init = nxt200x_init, .sleep = nxt200x_sleep, .set_frontend = nxt200x_setup_frontend_parameters, .get_tune_settings = nxt200x_get_tune_settings, .read_status = nxt200x_read_status, .read_ber = nxt200x_read_ber, .read_signal_strength = nxt200x_read_signal_strength, .read_snr = nxt200x_read_snr, .read_ucblocks = nxt200x_read_ucblocks, }; module_param(debug, int, 0644); MODULE_PARM_DESC(debug, "Turn on/off frontend debugging (default:off)."); MODULE_DESCRIPTION("NXT200X (ATSC 8VSB & ITU-T J.83 AnnexB 64/256 QAM) Demodulator Driver"); MODULE_AUTHOR("Kirk Lapray, Michael Krufky, Jean-Francois Thibert, and Taylor Jacob"); MODULE_LICENSE("GPL"); EXPORT_SYMBOL(nxt200x_attach);