/* Fujitsu MB86A16 DVB-S/DSS DC Receiver driver Copyright (C) Manu Abraham (abraham.manu@gmail.com) This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include <linux/init.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/slab.h> #include "dvb_frontend.h" #include "mb86a16.h" #include "mb86a16_priv.h" static unsigned int verbose = 5; module_param(verbose, int, 0644); #define ABS(x) ((x) < 0 ? (-x) : (x)) struct mb86a16_state { struct i2c_adapter *i2c_adap; const struct mb86a16_config *config; struct dvb_frontend frontend; /* tuning parameters */ int frequency; int srate; /* Internal stuff */ int master_clk; int deci; int csel; int rsel; }; #define MB86A16_ERROR 0 #define MB86A16_NOTICE 1 #define MB86A16_INFO 2 #define MB86A16_DEBUG 3 #define dprintk(x, y, z, format, arg...) do { \ if (z) { \ if ((x > MB86A16_ERROR) && (x > y)) \ printk(KERN_ERR "%s: " format "\n", __func__, ##arg); \ else if ((x > MB86A16_NOTICE) && (x > y)) \ printk(KERN_NOTICE "%s: " format "\n", __func__, ##arg); \ else if ((x > MB86A16_INFO) && (x > y)) \ printk(KERN_INFO "%s: " format "\n", __func__, ##arg); \ else if ((x > MB86A16_DEBUG) && (x > y)) \ printk(KERN_DEBUG "%s: " format "\n", __func__, ##arg); \ } else { \ if (x > y) \ printk(format, ##arg); \ } \ } while (0) #define TRACE_IN dprintk(verbose, MB86A16_DEBUG, 1, "-->()") #define TRACE_OUT dprintk(verbose, MB86A16_DEBUG, 1, "()-->") static int mb86a16_write(struct mb86a16_state *state, u8 reg, u8 val) { int ret; u8 buf[] = { reg, val }; struct i2c_msg msg = { .addr = state->config->demod_address, .flags = 0, .buf = buf, .len = 2 }; dprintk(verbose, MB86A16_DEBUG, 1, "writing to [0x%02x],Reg[0x%02x],Data[0x%02x]", state->config->demod_address, buf[0], buf[1]); ret = i2c_transfer(state->i2c_adap, &msg, 1); return (ret != 1) ? -EREMOTEIO : 0; } static int mb86a16_read(struct mb86a16_state *state, u8 reg, u8 *val) { int ret; u8 b0[] = { reg }; u8 b1[] = { 0 }; struct i2c_msg msg[] = { { .addr = state->config->demod_address, .flags = 0, .buf = b0, .len = 1 }, { .addr = state->config->demod_address, .flags = I2C_M_RD, .buf = b1, .len = 1 } }; ret = i2c_transfer(state->i2c_adap, msg, 2); if (ret != 2) { dprintk(verbose, MB86A16_ERROR, 1, "read error(reg=0x%02x, ret=%i)", reg, ret); if (ret < 0) return ret; return -EREMOTEIO; } *val = b1[0]; return ret; } static int CNTM_set(struct mb86a16_state *state, unsigned char timint1, unsigned char timint2, unsigned char cnext) { unsigned char val; val = (timint1 << 4) | (timint2 << 2) | cnext; if (mb86a16_write(state, MB86A16_CNTMR, val) < 0) goto err; return 0; err: dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error"); return -EREMOTEIO; } static int smrt_set(struct mb86a16_state *state, int rate) { int tmp ; int m ; unsigned char STOFS0, STOFS1; m = 1 << state->deci; tmp = (8192 * state->master_clk - 2 * m * rate * 8192 + state->master_clk / 2) / state->master_clk; STOFS0 = tmp & 0x0ff; STOFS1 = (tmp & 0xf00) >> 8; if (mb86a16_write(state, MB86A16_SRATE1, (state->deci << 2) | (state->csel << 1) | state->rsel) < 0) goto err; if (mb86a16_write(state, MB86A16_SRATE2, STOFS0) < 0) goto err; if (mb86a16_write(state, MB86A16_SRATE3, STOFS1) < 0) goto err; return 0; err: dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error"); return -1; } static int srst(struct mb86a16_state *state) { if (mb86a16_write(state, MB86A16_RESET, 0x04) < 0) goto err; return 0; err: dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error"); return -EREMOTEIO; } static int afcex_data_set(struct mb86a16_state *state, unsigned char AFCEX_L, unsigned char AFCEX_H) { if (mb86a16_write(state, MB86A16_AFCEXL, AFCEX_L) < 0) goto err; if (mb86a16_write(state, MB86A16_AFCEXH, AFCEX_H) < 0) goto err; return 0; err: dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error"); return -1; } static int afcofs_data_set(struct mb86a16_state *state, unsigned char AFCEX_L, unsigned char AFCEX_H) { if (mb86a16_write(state, 0x58, AFCEX_L) < 0) goto err; if (mb86a16_write(state, 0x59, AFCEX_H) < 0) goto err; return 0; err: dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error"); return -EREMOTEIO; } static int stlp_set(struct mb86a16_state *state, unsigned char STRAS, unsigned char STRBS) { if (mb86a16_write(state, MB86A16_STRFILTCOEF1, (STRBS << 3) | (STRAS)) < 0) goto err; return 0; err: dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error"); return -EREMOTEIO; } static int Vi_set(struct mb86a16_state *state, unsigned char ETH, unsigned char VIA) { if (mb86a16_write(state, MB86A16_VISET2, 0x04) < 0) goto err; if (mb86a16_write(state, MB86A16_VISET3, 0xf5) < 0) goto err; return 0; err: dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error"); return -EREMOTEIO; } static int initial_set(struct mb86a16_state *state) { if (stlp_set(state, 5, 7)) goto err; udelay(100); if (afcex_data_set(state, 0, 0)) goto err; udelay(100); if (afcofs_data_set(state, 0, 0)) goto err; udelay(100); if (mb86a16_write(state, MB86A16_CRLFILTCOEF1, 0x16) < 0) goto err; if (mb86a16_write(state, 0x2f, 0x21) < 0) goto err; if (mb86a16_write(state, MB86A16_VIMAG, 0x38) < 0) goto err; if (mb86a16_write(state, MB86A16_FAGCS1, 0x00) < 0) goto err; if (mb86a16_write(state, MB86A16_FAGCS2, 0x1c) < 0) goto err; if (mb86a16_write(state, MB86A16_FAGCS3, 0x20) < 0) goto err; if (mb86a16_write(state, MB86A16_FAGCS4, 0x1e) < 0) goto err; if (mb86a16_write(state, MB86A16_FAGCS5, 0x23) < 0) goto err; if (mb86a16_write(state, 0x54, 0xff) < 0) goto err; if (mb86a16_write(state, MB86A16_TSOUT, 0x00) < 0) goto err; return 0; err: dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error"); return -EREMOTEIO; } static int S01T_set(struct mb86a16_state *state, unsigned char s1t, unsigned s0t) { if (mb86a16_write(state, 0x33, (s1t << 3) | s0t) < 0) goto err; return 0; err: dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error"); return -EREMOTEIO; } static int EN_set(struct mb86a16_state *state, int cren, int afcen) { unsigned char val; val = 0x7a | (cren << 7) | (afcen << 2); if (mb86a16_write(state, 0x49, val) < 0) goto err; return 0; err: dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error"); return -EREMOTEIO; } static int AFCEXEN_set(struct mb86a16_state *state, int afcexen, int smrt) { unsigned char AFCA ; if (smrt > 18875) AFCA = 4; else if (smrt > 9375) AFCA = 3; else if (smrt > 2250) AFCA = 2; else AFCA = 1; if (mb86a16_write(state, 0x2a, 0x02 | (afcexen << 5) | (AFCA << 2)) < 0) goto err; return 0; err: dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error"); return -EREMOTEIO; } static int DAGC_data_set(struct mb86a16_state *state, unsigned char DAGCA, unsigned char DAGCW) { if (mb86a16_write(state, 0x2d, (DAGCA << 3) | DAGCW) < 0) goto err; return 0; err: dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error"); return -EREMOTEIO; } static void smrt_info_get(struct mb86a16_state *state, int rate) { if (rate >= 37501) { state->deci = 0; state->csel = 0; state->rsel = 0; } else if (rate >= 30001) { state->deci = 0; state->csel = 0; state->rsel = 1; } else if (rate >= 26251) { state->deci = 0; state->csel = 1; state->rsel = 0; } else if (rate >= 22501) { state->deci = 0; state->csel = 1; state->rsel = 1; } else if (rate >= 18751) { state->deci = 1; state->csel = 0; state->rsel = 0; } else if (rate >= 15001) { state->deci = 1; state->csel = 0; state->rsel = 1; } else if (rate >= 13126) { state->deci = 1; state->csel = 1; state->rsel = 0; } else if (rate >= 11251) { state->deci = 1; state->csel = 1; state->rsel = 1; } else if (rate >= 9376) { state->deci = 2; state->csel = 0; state->rsel = 0; } else if (rate >= 7501) { state->deci = 2; state->csel = 0; state->rsel = 1; } else if (rate >= 6563) { state->deci = 2; state->csel = 1; state->rsel = 0; } else if (rate >= 5626) { state->deci = 2; state->csel = 1; state->rsel = 1; } else if (rate >= 4688) { state->deci = 3; state->csel = 0; state->rsel = 0; } else if (rate >= 3751) { state->deci = 3; state->csel = 0; state->rsel = 1; } else if (rate >= 3282) { state->deci = 3; state->csel = 1; state->rsel = 0; } else if (rate >= 2814) { state->deci = 3; state->csel = 1; state->rsel = 1; } else if (rate >= 2344) { state->deci = 4; state->csel = 0; state->rsel = 0; } else if (rate >= 1876) { state->deci = 4; state->csel = 0; state->rsel = 1; } else if (rate >= 1641) { state->deci = 4; state->csel = 1; state->rsel = 0; } else if (rate >= 1407) { state->deci = 4; state->csel = 1; state->rsel = 1; } else if (rate >= 1172) { state->deci = 5; state->csel = 0; state->rsel = 0; } else if (rate >= 939) { state->deci = 5; state->csel = 0; state->rsel = 1; } else if (rate >= 821) { state->deci = 5; state->csel = 1; state->rsel = 0; } else { state->deci = 5; state->csel = 1; state->rsel = 1; } if (state->csel == 0) state->master_clk = 92000; else state->master_clk = 61333; } static int signal_det(struct mb86a16_state *state, int smrt, unsigned char *SIG) { int ret ; int smrtd ; int wait_sym ; u32 wait_t; unsigned char S[3] ; int i ; if (*SIG > 45) { if (CNTM_set(state, 2, 1, 2) < 0) { dprintk(verbose, MB86A16_ERROR, 1, "CNTM set Error"); return -1; } wait_sym = 40000; } else { if (CNTM_set(state, 3, 1, 2) < 0) { dprintk(verbose, MB86A16_ERROR, 1, "CNTM set Error"); return -1; } wait_sym = 80000; } for (i = 0; i < 3; i++) { if (i == 0) smrtd = smrt * 98 / 100; else if (i == 1) smrtd = smrt; else smrtd = smrt * 102 / 100; smrt_info_get(state, smrtd); smrt_set(state, smrtd); srst(state); wait_t = (wait_sym + 99 * smrtd / 100) / smrtd; if (wait_t == 0) wait_t = 1; msleep_interruptible(10); if (mb86a16_read(state, 0x37, &(S[i])) != 2) { dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error"); return -EREMOTEIO; } } if ((S[1] > S[0] * 112 / 100) && (S[1] > S[2] * 112 / 100)) { ret = 1; } else { ret = 0; } *SIG = S[1]; if (CNTM_set(state, 0, 1, 2) < 0) { dprintk(verbose, MB86A16_ERROR, 1, "CNTM set Error"); return -1; } return ret; } static int rf_val_set(struct mb86a16_state *state, int f, int smrt, unsigned char R) { unsigned char C, F, B; int M; unsigned char rf_val[5]; int ack = -1; if (smrt > 37750) C = 1; else if (smrt > 18875) C = 2; else if (smrt > 5500) C = 3; else C = 4; if (smrt > 30500) F = 3; else if (smrt > 9375) F = 1; else if (smrt > 4625) F = 0; else F = 2; if (f < 1060) B = 0; else if (f < 1175) B = 1; else if (f < 1305) B = 2; else if (f < 1435) B = 3; else if (f < 1570) B = 4; else if (f < 1715) B = 5; else if (f < 1845) B = 6; else if (f < 1980) B = 7; else if (f < 2080) B = 8; else B = 9; M = f * (1 << R) / 2; rf_val[0] = 0x01 | (C << 3) | (F << 1); rf_val[1] = (R << 5) | ((M & 0x1f000) >> 12); rf_val[2] = (M & 0x00ff0) >> 4; rf_val[3] = ((M & 0x0000f) << 4) | B; /* Frequency Set */ if (mb86a16_write(state, 0x21, rf_val[0]) < 0) ack = 0; if (mb86a16_write(state, 0x22, rf_val[1]) < 0) ack = 0; if (mb86a16_write(state, 0x23, rf_val[2]) < 0) ack = 0; if (mb86a16_write(state, 0x24, rf_val[3]) < 0) ack = 0; if (mb86a16_write(state, 0x25, 0x01) < 0) ack = 0; if (ack == 0) { dprintk(verbose, MB86A16_ERROR, 1, "RF Setup - I2C transfer error"); return -EREMOTEIO; } return 0; } static int afcerr_chk(struct mb86a16_state *state) { unsigned char AFCM_L, AFCM_H ; int AFCM ; int afcm, afcerr ; if (mb86a16_read(state, 0x0e, &AFCM_L) != 2) goto err; if (mb86a16_read(state, 0x0f, &AFCM_H) != 2) goto err; AFCM = (AFCM_H << 8) + AFCM_L; if (AFCM > 2048) afcm = AFCM - 4096; else afcm = AFCM; afcerr = afcm * state->master_clk / 8192; return afcerr; err: dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error"); return -EREMOTEIO; } static int dagcm_val_get(struct mb86a16_state *state) { int DAGCM; unsigned char DAGCM_H, DAGCM_L; if (mb86a16_read(state, 0x45, &DAGCM_L) != 2) goto err; if (mb86a16_read(state, 0x46, &DAGCM_H) != 2) goto err; DAGCM = (DAGCM_H << 8) + DAGCM_L; return DAGCM; err: dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error"); return -EREMOTEIO; } static int mb86a16_read_status(struct dvb_frontend *fe, fe_status_t *status) { u8 stat, stat2; struct mb86a16_state *state = fe->demodulator_priv; *status = 0; if (mb86a16_read(state, MB86A16_SIG1, &stat) != 2) goto err; if (mb86a16_read(state, MB86A16_SIG2, &stat2) != 2) goto err; if ((stat > 25) && (stat2 > 25)) *status |= FE_HAS_SIGNAL; if ((stat > 45) && (stat2 > 45)) *status |= FE_HAS_CARRIER; if (mb86a16_read(state, MB86A16_STATUS, &stat) != 2) goto err; if (stat & 0x01) *status |= FE_HAS_SYNC; if (stat & 0x01) *status |= FE_HAS_VITERBI; if (mb86a16_read(state, MB86A16_FRAMESYNC, &stat) != 2) goto err; if ((stat & 0x0f) && (*status & FE_HAS_VITERBI)) *status |= FE_HAS_LOCK; return 0; err: dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error"); return -EREMOTEIO; } static int sync_chk(struct mb86a16_state *state, unsigned char *VIRM) { unsigned char val; int sync; if (mb86a16_read(state, 0x0d, &val) != 2) goto err; dprintk(verbose, MB86A16_INFO, 1, "Status = %02x,", val); sync = val & 0x01; *VIRM = (val & 0x1c) >> 2; return sync; err: dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error"); return -EREMOTEIO; } static int freqerr_chk(struct mb86a16_state *state, int fTP, int smrt, int unit) { unsigned char CRM, AFCML, AFCMH; unsigned char temp1, temp2, temp3; int crm, afcm, AFCM; int crrerr, afcerr; /* kHz */ int frqerr; /* MHz */ int afcen, afcexen = 0; int R, M, fOSC, fOSC_OFS; if (mb86a16_read(state, 0x43, &CRM) != 2) goto err; if (CRM > 127) crm = CRM - 256; else crm = CRM; crrerr = smrt * crm / 256; if (mb86a16_read(state, 0x49, &temp1) != 2) goto err; afcen = (temp1 & 0x04) >> 2; if (afcen == 0) { if (mb86a16_read(state, 0x2a, &temp1) != 2) goto err; afcexen = (temp1 & 0x20) >> 5; } if (afcen == 1) { if (mb86a16_read(state, 0x0e, &AFCML) != 2) goto err; if (mb86a16_read(state, 0x0f, &AFCMH) != 2) goto err; } else if (afcexen == 1) { if (mb86a16_read(state, 0x2b, &AFCML) != 2) goto err; if (mb86a16_read(state, 0x2c, &AFCMH) != 2) goto err; } if ((afcen == 1) || (afcexen == 1)) { smrt_info_get(state, smrt); AFCM = ((AFCMH & 0x01) << 8) + AFCML; if (AFCM > 255) afcm = AFCM - 512; else afcm = AFCM; afcerr = afcm * state->master_clk / 8192; } else afcerr = 0; if (mb86a16_read(state, 0x22, &temp1) != 2) goto err; if (mb86a16_read(state, 0x23, &temp2) != 2) goto err; if (mb86a16_read(state, 0x24, &temp3) != 2) goto err; R = (temp1 & 0xe0) >> 5; M = ((temp1 & 0x1f) << 12) + (temp2 << 4) + (temp3 >> 4); if (R == 0) fOSC = 2 * M; else fOSC = M; fOSC_OFS = fOSC - fTP; if (unit == 0) { /* MHz */ if (crrerr + afcerr + fOSC_OFS * 1000 >= 0) frqerr = (crrerr + afcerr + fOSC_OFS * 1000 + 500) / 1000; else frqerr = (crrerr + afcerr + fOSC_OFS * 1000 - 500) / 1000; } else { /* kHz */ frqerr = crrerr + afcerr + fOSC_OFS * 1000; } return frqerr; err: dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error"); return -EREMOTEIO; } static unsigned char vco_dev_get(struct mb86a16_state *state, int smrt) { unsigned char R; if (smrt > 9375) R = 0; else R = 1; return R; } static void swp_info_get(struct mb86a16_state *state, int fOSC_start, int smrt, int v, int R, int swp_ofs, int *fOSC, int *afcex_freq, unsigned char *AFCEX_L, unsigned char *AFCEX_H) { int AFCEX ; int crnt_swp_freq ; crnt_swp_freq = fOSC_start * 1000 + v * swp_ofs; if (R == 0) *fOSC = (crnt_swp_freq + 1000) / 2000 * 2; else *fOSC = (crnt_swp_freq + 500) / 1000; if (*fOSC >= crnt_swp_freq) *afcex_freq = *fOSC * 1000 - crnt_swp_freq; else *afcex_freq = crnt_swp_freq - *fOSC * 1000; AFCEX = *afcex_freq * 8192 / state->master_clk; *AFCEX_L = AFCEX & 0x00ff; *AFCEX_H = (AFCEX & 0x0f00) >> 8; } static int swp_freq_calcuation(struct mb86a16_state *state, int i, int v, int *V, int vmax, int vmin, int SIGMIN, int fOSC, int afcex_freq, int swp_ofs, unsigned char *SIG1) { int swp_freq ; if ((i % 2 == 1) && (v <= vmax)) { /* positive v (case 1) */ if ((v - 1 == vmin) && (*(V + 30 + v) >= 0) && (*(V + 30 + v - 1) >= 0) && (*(V + 30 + v - 1) > *(V + 30 + v)) && (*(V + 30 + v - 1) > SIGMIN)) { swp_freq = fOSC * 1000 + afcex_freq - swp_ofs; *SIG1 = *(V + 30 + v - 1); } else if ((v == vmax) && (*(V + 30 + v) >= 0) && (*(V + 30 + v - 1) >= 0) && (*(V + 30 + v) > *(V + 30 + v - 1)) && (*(V + 30 + v) > SIGMIN)) { /* (case 2) */ swp_freq = fOSC * 1000 + afcex_freq; *SIG1 = *(V + 30 + v); } else if ((*(V + 30 + v) > 0) && (*(V + 30 + v - 1) > 0) && (*(V + 30 + v - 2) > 0) && (*(V + 30 + v - 3) > 0) && (*(V + 30 + v - 1) > *(V + 30 + v)) && (*(V + 30 + v - 2) > *(V + 30 + v - 3)) && ((*(V + 30 + v - 1) > SIGMIN) || (*(V + 30 + v - 2) > SIGMIN))) { /* (case 3) */ if (*(V + 30 + v - 1) >= *(V + 30 + v - 2)) { swp_freq = fOSC * 1000 + afcex_freq - swp_ofs; *SIG1 = *(V + 30 + v - 1); } else { swp_freq = fOSC * 1000 + afcex_freq - swp_ofs * 2; *SIG1 = *(V + 30 + v - 2); } } else if ((v == vmax) && (*(V + 30 + v) >= 0) && (*(V + 30 + v - 1) >= 0) && (*(V + 30 + v - 2) >= 0) && (*(V + 30 + v) > *(V + 30 + v - 2)) && (*(V + 30 + v - 1) > *(V + 30 + v - 2)) && ((*(V + 30 + v) > SIGMIN) || (*(V + 30 + v - 1) > SIGMIN))) { /* (case 4) */ if (*(V + 30 + v) >= *(V + 30 + v - 1)) { swp_freq = fOSC * 1000 + afcex_freq; *SIG1 = *(V + 30 + v); } else { swp_freq = fOSC * 1000 + afcex_freq - swp_ofs; *SIG1 = *(V + 30 + v - 1); } } else { swp_freq = -1 ; } } else if ((i % 2 == 0) && (v >= vmin)) { /* Negative v (case 1) */ if ((*(V + 30 + v) > 0) && (*(V + 30 + v + 1) > 0) && (*(V + 30 + v + 2) > 0) && (*(V + 30 + v + 1) > *(V + 30 + v)) && (*(V + 30 + v + 1) > *(V + 30 + v + 2)) && (*(V + 30 + v + 1) > SIGMIN)) { swp_freq = fOSC * 1000 + afcex_freq + swp_ofs; *SIG1 = *(V + 30 + v + 1); } else if ((v + 1 == vmax) && (*(V + 30 + v) >= 0) && (*(V + 30 + v + 1) >= 0) && (*(V + 30 + v + 1) > *(V + 30 + v)) && (*(V + 30 + v + 1) > SIGMIN)) { /* (case 2) */ swp_freq = fOSC * 1000 + afcex_freq + swp_ofs; *SIG1 = *(V + 30 + v); } else if ((v == vmin) && (*(V + 30 + v) > 0) && (*(V + 30 + v + 1) > 0) && (*(V + 30 + v + 2) > 0) && (*(V + 30 + v) > *(V + 30 + v + 1)) && (*(V + 30 + v) > *(V + 30 + v + 2)) && (*(V + 30 + v) > SIGMIN)) { /* (case 3) */ swp_freq = fOSC * 1000 + afcex_freq; *SIG1 = *(V + 30 + v); } else if ((*(V + 30 + v) >= 0) && (*(V + 30 + v + 1) >= 0) && (*(V + 30 + v + 2) >= 0) && (*(V + 30 + v + 3) >= 0) && (*(V + 30 + v + 1) > *(V + 30 + v)) && (*(V + 30 + v + 2) > *(V + 30 + v + 3)) && ((*(V + 30 + v + 1) > SIGMIN) || (*(V + 30 + v + 2) > SIGMIN))) { /* (case 4) */ if (*(V + 30 + v + 1) >= *(V + 30 + v + 2)) { swp_freq = fOSC * 1000 + afcex_freq + swp_ofs; *SIG1 = *(V + 30 + v + 1); } else { swp_freq = fOSC * 1000 + afcex_freq + swp_ofs * 2; *SIG1 = *(V + 30 + v + 2); } } else if ((*(V + 30 + v) >= 0) && (*(V + 30 + v + 1) >= 0) && (*(V + 30 + v + 2) >= 0) && (*(V + 30 + v + 3) >= 0) && (*(V + 30 + v) > *(V + 30 + v + 2)) && (*(V + 30 + v + 1) > *(V + 30 + v + 2)) && (*(V + 30 + v) > *(V + 30 + v + 3)) && (*(V + 30 + v + 1) > *(V + 30 + v + 3)) && ((*(V + 30 + v) > SIGMIN) || (*(V + 30 + v + 1) > SIGMIN))) { /* (case 5) */ if (*(V + 30 + v) >= *(V + 30 + v + 1)) { swp_freq = fOSC * 1000 + afcex_freq; *SIG1 = *(V + 30 + v); } else { swp_freq = fOSC * 1000 + afcex_freq + swp_ofs; *SIG1 = *(V + 30 + v + 1); } } else if ((v + 2 == vmin) && (*(V + 30 + v) >= 0) && (*(V + 30 + v + 1) >= 0) && (*(V + 30 + v + 2) >= 0) && (*(V + 30 + v + 1) > *(V + 30 + v)) && (*(V + 30 + v + 2) > *(V + 30 + v)) && ((*(V + 30 + v + 1) > SIGMIN) || (*(V + 30 + v + 2) > SIGMIN))) { /* (case 6) */ if (*(V + 30 + v + 1) >= *(V + 30 + v + 2)) { swp_freq = fOSC * 1000 + afcex_freq + swp_ofs; *SIG1 = *(V + 30 + v + 1); } else { swp_freq = fOSC * 1000 + afcex_freq + swp_ofs * 2; *SIG1 = *(V + 30 + v + 2); } } else if ((vmax == 0) && (vmin == 0) && (*(V + 30 + v) > SIGMIN)) { swp_freq = fOSC * 1000; *SIG1 = *(V + 30 + v); } else swp_freq = -1; } else swp_freq = -1; return swp_freq; } static void swp_info_get2(struct mb86a16_state *state, int smrt, int R, int swp_freq, int *afcex_freq, int *fOSC, unsigned char *AFCEX_L, unsigned char *AFCEX_H) { int AFCEX ; if (R == 0) *fOSC = (swp_freq + 1000) / 2000 * 2; else *fOSC = (swp_freq + 500) / 1000; if (*fOSC >= swp_freq) *afcex_freq = *fOSC * 1000 - swp_freq; else *afcex_freq = swp_freq - *fOSC * 1000; AFCEX = *afcex_freq * 8192 / state->master_clk; *AFCEX_L = AFCEX & 0x00ff; *AFCEX_H = (AFCEX & 0x0f00) >> 8; } static void afcex_info_get(struct mb86a16_state *state, int afcex_freq, unsigned char *AFCEX_L, unsigned char *AFCEX_H) { int AFCEX ; AFCEX = afcex_freq * 8192 / state->master_clk; *AFCEX_L = AFCEX & 0x00ff; *AFCEX_H = (AFCEX & 0x0f00) >> 8; } static int SEQ_set(struct mb86a16_state *state, unsigned char loop) { /* SLOCK0 = 0 */ if (mb86a16_write(state, 0x32, 0x02 | (loop << 2)) < 0) { dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error"); return -EREMOTEIO; } return 0; } static int iq_vt_set(struct mb86a16_state *state, unsigned char IQINV) { /* Viterbi Rate, IQ Settings */ if (mb86a16_write(state, 0x06, 0xdf | (IQINV << 5)) < 0) { dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error"); return -EREMOTEIO; } return 0; } static int FEC_srst(struct mb86a16_state *state) { if (mb86a16_write(state, MB86A16_RESET, 0x02) < 0) { dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error"); return -EREMOTEIO; } return 0; } static int S2T_set(struct mb86a16_state *state, unsigned char S2T) { if (mb86a16_write(state, 0x34, 0x70 | S2T) < 0) { dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error"); return -EREMOTEIO; } return 0; } static int S45T_set(struct mb86a16_state *state, unsigned char S4T, unsigned char S5T) { if (mb86a16_write(state, 0x35, 0x00 | (S5T << 4) | S4T) < 0) { dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error"); return -EREMOTEIO; } return 0; } static int mb86a16_set_fe(struct mb86a16_state *state) { u8 agcval, cnmval; int i, j; int fOSC = 0; int fOSC_start = 0; int wait_t; int fcp; int swp_ofs; int V[60]; u8 SIG1MIN; unsigned char CREN, AFCEN, AFCEXEN; unsigned char SIG1; unsigned char TIMINT1, TIMINT2, TIMEXT; unsigned char S0T, S1T; unsigned char S2T; /* unsigned char S2T, S3T; */ unsigned char S4T, S5T; unsigned char AFCEX_L, AFCEX_H; unsigned char R; unsigned char VIRM; unsigned char ETH, VIA; unsigned char junk; int loop; int ftemp; int v, vmax, vmin; int vmax_his, vmin_his; int swp_freq, prev_swp_freq[20]; int prev_freq_num; int signal_dupl; int afcex_freq; int signal; int afcerr; int temp_freq, delta_freq; int dagcm[4]; int smrt_d; /* int freq_err; */ int n; int ret = -1; int sync; dprintk(verbose, MB86A16_INFO, 1, "freq=%d Mhz, symbrt=%d Ksps", state->frequency, state->srate); fcp = 3000; swp_ofs = state->srate / 4; for (i = 0; i < 60; i++) V[i] = -1; for (i = 0; i < 20; i++) prev_swp_freq[i] = 0; SIG1MIN = 25; for (n = 0; ((n < 3) && (ret == -1)); n++) { SEQ_set(state, 0); iq_vt_set(state, 0); CREN = 0; AFCEN = 0; AFCEXEN = 1; TIMINT1 = 0; TIMINT2 = 1; TIMEXT = 2; S1T = 0; S0T = 0; if (initial_set(state) < 0) { dprintk(verbose, MB86A16_ERROR, 1, "initial set failed"); return -1; } if (DAGC_data_set(state, 3, 2) < 0) { dprintk(verbose, MB86A16_ERROR, 1, "DAGC data set error"); return -1; } if (EN_set(state, CREN, AFCEN) < 0) { dprintk(verbose, MB86A16_ERROR, 1, "EN set error"); return -1; /* (0, 0) */ } if (AFCEXEN_set(state, AFCEXEN, state->srate) < 0) { dprintk(verbose, MB86A16_ERROR, 1, "AFCEXEN set error"); return -1; /* (1, smrt) = (1, symbolrate) */ } if (CNTM_set(state, TIMINT1, TIMINT2, TIMEXT) < 0) { dprintk(verbose, MB86A16_ERROR, 1, "CNTM set error"); return -1; /* (0, 1, 2) */ } if (S01T_set(state, S1T, S0T) < 0) { dprintk(verbose, MB86A16_ERROR, 1, "S01T set error"); return -1; /* (0, 0) */ } smrt_info_get(state, state->srate); if (smrt_set(state, state->srate) < 0) { dprintk(verbose, MB86A16_ERROR, 1, "smrt info get error"); return -1; } R = vco_dev_get(state, state->srate); if (R == 1) fOSC_start = state->frequency; else if (R == 0) { if (state->frequency % 2 == 0) { fOSC_start = state->frequency; } else { fOSC_start = state->frequency + 1; if (fOSC_start > 2150) fOSC_start = state->frequency - 1; } } loop = 1; ftemp = fOSC_start * 1000; vmax = 0 ; while (loop == 1) { ftemp = ftemp + swp_ofs; vmax++; /* Upper bound */ if (ftemp > 2150000) { loop = 0; vmax--; } else { if ((ftemp == 2150000) || (ftemp - state->frequency * 1000 >= fcp + state->srate / 4)) loop = 0; } } loop = 1; ftemp = fOSC_start * 1000; vmin = 0 ; while (loop == 1) { ftemp = ftemp - swp_ofs; vmin--; /* Lower bound */ if (ftemp < 950000) { loop = 0; vmin++; } else { if ((ftemp == 950000) || (state->frequency * 1000 - ftemp >= fcp + state->srate / 4)) loop = 0; } } wait_t = (8000 + state->srate / 2) / state->srate; if (wait_t == 0) wait_t = 1; i = 0; j = 0; prev_freq_num = 0; loop = 1; signal = 0; vmax_his = 0; vmin_his = 0; v = 0; while (loop == 1) { swp_info_get(state, fOSC_start, state->srate, v, R, swp_ofs, &fOSC, &afcex_freq, &AFCEX_L, &AFCEX_H); udelay(100); if (rf_val_set(state, fOSC, state->srate, R) < 0) { dprintk(verbose, MB86A16_ERROR, 1, "rf val set error"); return -1; } udelay(100); if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) { dprintk(verbose, MB86A16_ERROR, 1, "afcex data set error"); return -1; } if (srst(state) < 0) { dprintk(verbose, MB86A16_ERROR, 1, "srst error"); return -1; } msleep_interruptible(wait_t); if (mb86a16_read(state, 0x37, &SIG1) != 2) { dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error"); return -1; } V[30 + v] = SIG1 ; swp_freq = swp_freq_calcuation(state, i, v, V, vmax, vmin, SIG1MIN, fOSC, afcex_freq, swp_ofs, &SIG1); /* changed */ signal_dupl = 0; for (j = 0; j < prev_freq_num; j++) { if ((ABS(prev_swp_freq[j] - swp_freq)) < (swp_ofs * 3 / 2)) { signal_dupl = 1; dprintk(verbose, MB86A16_INFO, 1, "Probably Duplicate Signal, j = %d", j); } } if ((signal_dupl == 0) && (swp_freq > 0) && (ABS(swp_freq - state->frequency * 1000) < fcp + state->srate / 6)) { dprintk(verbose, MB86A16_DEBUG, 1, "------ Signal detect ------ [swp_freq=[%07d, srate=%05d]]", swp_freq, state->srate); prev_swp_freq[prev_freq_num] = swp_freq; prev_freq_num++; swp_info_get2(state, state->srate, R, swp_freq, &afcex_freq, &fOSC, &AFCEX_L, &AFCEX_H); if (rf_val_set(state, fOSC, state->srate, R) < 0) { dprintk(verbose, MB86A16_ERROR, 1, "rf val set error"); return -1; } if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) { dprintk(verbose, MB86A16_ERROR, 1, "afcex data set error"); return -1; } signal = signal_det(state, state->srate, &SIG1); if (signal == 1) { dprintk(verbose, MB86A16_ERROR, 1, "***** Signal Found *****"); loop = 0; } else { dprintk(verbose, MB86A16_ERROR, 1, "!!!!! No signal !!!!!, try again..."); smrt_info_get(state, state->srate); if (smrt_set(state, state->srate) < 0) { dprintk(verbose, MB86A16_ERROR, 1, "smrt set error"); return -1; } } } if (v > vmax) vmax_his = 1 ; if (v < vmin) vmin_his = 1 ; i++; if ((i % 2 == 1) && (vmax_his == 1)) i++; if ((i % 2 == 0) && (vmin_his == 1)) i++; if (i % 2 == 1) v = (i + 1) / 2; else v = -i / 2; if ((vmax_his == 1) && (vmin_his == 1)) loop = 0 ; } if (signal == 1) { dprintk(verbose, MB86A16_INFO, 1, " Start Freq Error Check"); S1T = 7 ; S0T = 1 ; CREN = 0 ; AFCEN = 1 ; AFCEXEN = 0 ; if (S01T_set(state, S1T, S0T) < 0) { dprintk(verbose, MB86A16_ERROR, 1, "S01T set error"); return -1; } smrt_info_get(state, state->srate); if (smrt_set(state, state->srate) < 0) { dprintk(verbose, MB86A16_ERROR, 1, "smrt set error"); return -1; } if (EN_set(state, CREN, AFCEN) < 0) { dprintk(verbose, MB86A16_ERROR, 1, "EN set error"); return -1; } if (AFCEXEN_set(state, AFCEXEN, state->srate) < 0) { dprintk(verbose, MB86A16_ERROR, 1, "AFCEXEN set error"); return -1; } afcex_info_get(state, afcex_freq, &AFCEX_L, &AFCEX_H); if (afcofs_data_set(state, AFCEX_L, AFCEX_H) < 0) { dprintk(verbose, MB86A16_ERROR, 1, "AFCOFS data set error"); return -1; } if (srst(state) < 0) { dprintk(verbose, MB86A16_ERROR, 1, "srst error"); return -1; } /* delay 4~200 */ wait_t = 200000 / state->master_clk + 200000 / state->srate; msleep(wait_t); afcerr = afcerr_chk(state); if (afcerr == -1) return -1; swp_freq = fOSC * 1000 + afcerr ; AFCEXEN = 1 ; if (state->srate >= 1500) smrt_d = state->srate / 3; else smrt_d = state->srate / 2; smrt_info_get(state, smrt_d); if (smrt_set(state, smrt_d) < 0) { dprintk(verbose, MB86A16_ERROR, 1, "smrt set error"); return -1; } if (AFCEXEN_set(state, AFCEXEN, smrt_d) < 0) { dprintk(verbose, MB86A16_ERROR, 1, "AFCEXEN set error"); return -1; } R = vco_dev_get(state, smrt_d); if (DAGC_data_set(state, 2, 0) < 0) { dprintk(verbose, MB86A16_ERROR, 1, "DAGC data set error"); return -1; } for (i = 0; i < 3; i++) { temp_freq = swp_freq + (i - 1) * state->srate / 8; swp_info_get2(state, smrt_d, R, temp_freq, &afcex_freq, &fOSC, &AFCEX_L, &AFCEX_H); if (rf_val_set(state, fOSC, smrt_d, R) < 0) { dprintk(verbose, MB86A16_ERROR, 1, "rf val set error"); return -1; } if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) { dprintk(verbose, MB86A16_ERROR, 1, "afcex data set error"); return -1; } wait_t = 200000 / state->master_clk + 40000 / smrt_d; msleep(wait_t); dagcm[i] = dagcm_val_get(state); } if ((dagcm[0] > dagcm[1]) && (dagcm[0] > dagcm[2]) && (dagcm[0] - dagcm[1] > 2 * (dagcm[2] - dagcm[1]))) { temp_freq = swp_freq - 2 * state->srate / 8; swp_info_get2(state, smrt_d, R, temp_freq, &afcex_freq, &fOSC, &AFCEX_L, &AFCEX_H); if (rf_val_set(state, fOSC, smrt_d, R) < 0) { dprintk(verbose, MB86A16_ERROR, 1, "rf val set error"); return -1; } if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) { dprintk(verbose, MB86A16_ERROR, 1, "afcex data set"); return -1; } wait_t = 200000 / state->master_clk + 40000 / smrt_d; msleep(wait_t); dagcm[3] = dagcm_val_get(state); if (dagcm[3] > dagcm[1]) delta_freq = (dagcm[2] - dagcm[0] + dagcm[1] - dagcm[3]) * state->srate / 300; else delta_freq = 0; } else if ((dagcm[2] > dagcm[1]) && (dagcm[2] > dagcm[0]) && (dagcm[2] - dagcm[1] > 2 * (dagcm[0] - dagcm[1]))) { temp_freq = swp_freq + 2 * state->srate / 8; swp_info_get2(state, smrt_d, R, temp_freq, &afcex_freq, &fOSC, &AFCEX_L, &AFCEX_H); if (rf_val_set(state, fOSC, smrt_d, R) < 0) { dprintk(verbose, MB86A16_ERROR, 1, "rf val set"); return -1; } if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) { dprintk(verbose, MB86A16_ERROR, 1, "afcex data set"); return -1; } wait_t = 200000 / state->master_clk + 40000 / smrt_d; msleep(wait_t); dagcm[3] = dagcm_val_get(state); if (dagcm[3] > dagcm[1]) delta_freq = (dagcm[2] - dagcm[0] + dagcm[3] - dagcm[1]) * state->srate / 300; else delta_freq = 0 ; } else { delta_freq = 0 ; } dprintk(verbose, MB86A16_INFO, 1, "SWEEP Frequency = %d", swp_freq); swp_freq += delta_freq; dprintk(verbose, MB86A16_INFO, 1, "Adjusting .., DELTA Freq = %d, SWEEP Freq=%d", delta_freq, swp_freq); if (ABS(state->frequency * 1000 - swp_freq) > 3800) { dprintk(verbose, MB86A16_INFO, 1, "NO -- SIGNAL !"); } else { S1T = 0; S0T = 3; CREN = 1; AFCEN = 0; AFCEXEN = 1; if (S01T_set(state, S1T, S0T) < 0) { dprintk(verbose, MB86A16_ERROR, 1, "S01T set error"); return -1; } if (DAGC_data_set(state, 0, 0) < 0) { dprintk(verbose, MB86A16_ERROR, 1, "DAGC data set error"); return -1; } R = vco_dev_get(state, state->srate); smrt_info_get(state, state->srate); if (smrt_set(state, state->srate) < 0) { dprintk(verbose, MB86A16_ERROR, 1, "smrt set error"); return -1; } if (EN_set(state, CREN, AFCEN) < 0) { dprintk(verbose, MB86A16_ERROR, 1, "EN set error"); return -1; } if (AFCEXEN_set(state, AFCEXEN, state->srate) < 0) { dprintk(verbose, MB86A16_ERROR, 1, "AFCEXEN set error"); return -1; } swp_info_get2(state, state->srate, R, swp_freq, &afcex_freq, &fOSC, &AFCEX_L, &AFCEX_H); if (rf_val_set(state, fOSC, state->srate, R) < 0) { dprintk(verbose, MB86A16_ERROR, 1, "rf val set error"); return -1; } if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) { dprintk(verbose, MB86A16_ERROR, 1, "afcex data set error"); return -1; } if (srst(state) < 0) { dprintk(verbose, MB86A16_ERROR, 1, "srst error"); return -1; } wait_t = 7 + (10000 + state->srate / 2) / state->srate; if (wait_t == 0) wait_t = 1; msleep_interruptible(wait_t); if (mb86a16_read(state, 0x37, &SIG1) != 2) { dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error"); return -EREMOTEIO; } if (SIG1 > 110) { S2T = 4; S4T = 1; S5T = 6; ETH = 4; VIA = 6; wait_t = 7 + (917504 + state->srate / 2) / state->srate; } else if (SIG1 > 105) { S2T = 4; S4T = 2; S5T = 8; ETH = 7; VIA = 2; wait_t = 7 + (1048576 + state->srate / 2) / state->srate; } else if (SIG1 > 85) { S2T = 5; S4T = 2; S5T = 8; ETH = 7; VIA = 2; wait_t = 7 + (1310720 + state->srate / 2) / state->srate; } else if (SIG1 > 65) { S2T = 6; S4T = 2; S5T = 8; ETH = 7; VIA = 2; wait_t = 7 + (1572864 + state->srate / 2) / state->srate; } else { S2T = 7; S4T = 2; S5T = 8; ETH = 7; VIA = 2; wait_t = 7 + (2097152 + state->srate / 2) / state->srate; } wait_t *= 2; /* FOS */ S2T_set(state, S2T); S45T_set(state, S4T, S5T); Vi_set(state, ETH, VIA); srst(state); msleep_interruptible(wait_t); sync = sync_chk(state, &VIRM); dprintk(verbose, MB86A16_INFO, 1, "-------- Viterbi=[%d] SYNC=[%d] ---------", VIRM, sync); if (VIRM) { if (VIRM == 4) { /* 5/6 */ if (SIG1 > 110) wait_t = (786432 + state->srate / 2) / state->srate; else wait_t = (1572864 + state->srate / 2) / state->srate; if (state->srate < 5000) /* FIXME ! , should be a long wait ! */ msleep_interruptible(wait_t); else msleep_interruptible(wait_t); if (sync_chk(state, &junk) == 0) { iq_vt_set(state, 1); FEC_srst(state); } } /* 1/2, 2/3, 3/4, 7/8 */ if (SIG1 > 110) wait_t = (786432 + state->srate / 2) / state->srate; else wait_t = (1572864 + state->srate / 2) / state->srate; msleep_interruptible(wait_t); SEQ_set(state, 1); } else { dprintk(verbose, MB86A16_INFO, 1, "NO -- SYNC"); SEQ_set(state, 1); ret = -1; } } } else { dprintk(verbose, MB86A16_INFO, 1, "NO -- SIGNAL"); ret = -1; } sync = sync_chk(state, &junk); if (sync) { dprintk(verbose, MB86A16_INFO, 1, "******* SYNC *******"); freqerr_chk(state, state->frequency, state->srate, 1); ret = 0; break; } } mb86a16_read(state, 0x15, &agcval); mb86a16_read(state, 0x26, &cnmval); dprintk(verbose, MB86A16_INFO, 1, "AGC = %02x CNM = %02x", agcval, cnmval); return ret; } static int mb86a16_send_diseqc_msg(struct dvb_frontend *fe, struct dvb_diseqc_master_cmd *cmd) { struct mb86a16_state *state = fe->demodulator_priv; int i; u8 regs; if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA) < 0) goto err; if (mb86a16_write(state, MB86A16_DCCOUT, 0x00) < 0) goto err; if (mb86a16_write(state, MB86A16_TONEOUT2, 0x04) < 0) goto err; regs = 0x18; if (cmd->msg_len > 5 || cmd->msg_len < 4) return -EINVAL; for (i = 0; i < cmd->msg_len; i++) { if (mb86a16_write(state, regs, cmd->msg[i]) < 0) goto err; regs++; } i += 0x90; msleep_interruptible(10); if (mb86a16_write(state, MB86A16_DCC1, i) < 0) goto err; if (mb86a16_write(state, MB86A16_DCCOUT, MB86A16_DCCOUT_DISEN) < 0) goto err; return 0; err: dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error"); return -EREMOTEIO; } static int mb86a16_send_diseqc_burst(struct dvb_frontend *fe, fe_sec_mini_cmd_t burst) { struct mb86a16_state *state = fe->demodulator_priv; switch (burst) { case SEC_MINI_A: if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA | MB86A16_DCC1_TBEN | MB86A16_DCC1_TBO) < 0) goto err; if (mb86a16_write(state, MB86A16_DCCOUT, MB86A16_DCCOUT_DISEN) < 0) goto err; break; case SEC_MINI_B: if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA | MB86A16_DCC1_TBEN) < 0) goto err; if (mb86a16_write(state, MB86A16_DCCOUT, MB86A16_DCCOUT_DISEN) < 0) goto err; break; } return 0; err: dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error"); return -EREMOTEIO; } static int mb86a16_set_tone(struct dvb_frontend *fe, fe_sec_tone_mode_t tone) { struct mb86a16_state *state = fe->demodulator_priv; switch (tone) { case SEC_TONE_ON: if (mb86a16_write(state, MB86A16_TONEOUT2, 0x00) < 0) goto err; if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA | MB86A16_DCC1_CTOE) < 0) goto err; if (mb86a16_write(state, MB86A16_DCCOUT, MB86A16_DCCOUT_DISEN) < 0) goto err; break; case SEC_TONE_OFF: if (mb86a16_write(state, MB86A16_TONEOUT2, 0x04) < 0) goto err; if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA) < 0) goto err; if (mb86a16_write(state, MB86A16_DCCOUT, 0x00) < 0) goto err; break; default: return -EINVAL; } return 0; err: dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error"); return -EREMOTEIO; } static enum dvbfe_search mb86a16_search(struct dvb_frontend *fe) { struct dtv_frontend_properties *p = &fe->dtv_property_cache; struct mb86a16_state *state = fe->demodulator_priv; state->frequency = p->frequency / 1000; state->srate = p->symbol_rate / 1000; if (!mb86a16_set_fe(state)) { dprintk(verbose, MB86A16_ERROR, 1, "Successfully acquired LOCK"); return DVBFE_ALGO_SEARCH_SUCCESS; } dprintk(verbose, MB86A16_ERROR, 1, "Lock acquisition failed!"); return DVBFE_ALGO_SEARCH_FAILED; } static void mb86a16_release(struct dvb_frontend *fe) { struct mb86a16_state *state = fe->demodulator_priv; kfree(state); } static int mb86a16_init(struct dvb_frontend *fe) { return 0; } static int mb86a16_sleep(struct dvb_frontend *fe) { return 0; } static int mb86a16_read_ber(struct dvb_frontend *fe, u32 *ber) { u8 ber_mon, ber_tab, ber_lsb, ber_mid, ber_msb, ber_tim, ber_rst; u32 timer; struct mb86a16_state *state = fe->demodulator_priv; *ber = 0; if (mb86a16_read(state, MB86A16_BERMON, &ber_mon) != 2) goto err; if (mb86a16_read(state, MB86A16_BERTAB, &ber_tab) != 2) goto err; if (mb86a16_read(state, MB86A16_BERLSB, &ber_lsb) != 2) goto err; if (mb86a16_read(state, MB86A16_BERMID, &ber_mid) != 2) goto err; if (mb86a16_read(state, MB86A16_BERMSB, &ber_msb) != 2) goto err; /* BER monitor invalid when BER_EN = 0 */ if (ber_mon & 0x04) { /* coarse, fast calculation */ *ber = ber_tab & 0x1f; dprintk(verbose, MB86A16_DEBUG, 1, "BER coarse=[0x%02x]", *ber); if (ber_mon & 0x01) { /* * BER_SEL = 1, The monitored BER is the estimated * value with a Reed-Solomon decoder error amount at * the deinterleaver output. * monitored BER is expressed as a 20 bit output in total */ ber_rst = ber_mon >> 3; *ber = (((ber_msb << 8) | ber_mid) << 8) | ber_lsb; if (ber_rst == 0) timer = 12500000; if (ber_rst == 1) timer = 25000000; if (ber_rst == 2) timer = 50000000; if (ber_rst == 3) timer = 100000000; *ber /= timer; dprintk(verbose, MB86A16_DEBUG, 1, "BER fine=[0x%02x]", *ber); } else { /* * BER_SEL = 0, The monitored BER is the estimated * value with a Viterbi decoder error amount at the * QPSK demodulator output. * monitored BER is expressed as a 24 bit output in total */ ber_tim = ber_mon >> 1; *ber = (((ber_msb << 8) | ber_mid) << 8) | ber_lsb; if (ber_tim == 0) timer = 16; if (ber_tim == 1) timer = 24; *ber /= 2 ^ timer; dprintk(verbose, MB86A16_DEBUG, 1, "BER fine=[0x%02x]", *ber); } } return 0; err: dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error"); return -EREMOTEIO; } static int mb86a16_read_signal_strength(struct dvb_frontend *fe, u16 *strength) { u8 agcm = 0; struct mb86a16_state *state = fe->demodulator_priv; *strength = 0; if (mb86a16_read(state, MB86A16_AGCM, &agcm) != 2) { dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error"); return -EREMOTEIO; } *strength = ((0xff - agcm) * 100) / 256; dprintk(verbose, MB86A16_DEBUG, 1, "Signal strength=[%d %%]", (u8) *strength); *strength = (0xffff - 0xff) + agcm; return 0; } struct cnr { u8 cn_reg; u8 cn_val; }; static const struct cnr cnr_tab[] = { { 35, 2 }, { 40, 3 }, { 50, 4 }, { 60, 5 }, { 70, 6 }, { 80, 7 }, { 92, 8 }, { 103, 9 }, { 115, 10 }, { 138, 12 }, { 162, 15 }, { 180, 18 }, { 185, 19 }, { 189, 20 }, { 195, 22 }, { 199, 24 }, { 201, 25 }, { 202, 26 }, { 203, 27 }, { 205, 28 }, { 208, 30 } }; static int mb86a16_read_snr(struct dvb_frontend *fe, u16 *snr) { struct mb86a16_state *state = fe->demodulator_priv; int i = 0; int low_tide = 2, high_tide = 30, q_level; u8 cn; *snr = 0; if (mb86a16_read(state, 0x26, &cn) != 2) { dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error"); return -EREMOTEIO; } for (i = 0; i < ARRAY_SIZE(cnr_tab); i++) { if (cn < cnr_tab[i].cn_reg) { *snr = cnr_tab[i].cn_val; break; } } q_level = (*snr * 100) / (high_tide - low_tide); dprintk(verbose, MB86A16_ERROR, 1, "SNR (Quality) = [%d dB], Level=%d %%", *snr, q_level); *snr = (0xffff - 0xff) + *snr; return 0; } static int mb86a16_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks) { u8 dist; struct mb86a16_state *state = fe->demodulator_priv; if (mb86a16_read(state, MB86A16_DISTMON, &dist) != 2) { dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error"); return -EREMOTEIO; } *ucblocks = dist; return 0; } static enum dvbfe_algo mb86a16_frontend_algo(struct dvb_frontend *fe) { return DVBFE_ALGO_CUSTOM; } static struct dvb_frontend_ops mb86a16_ops = { .delsys = { SYS_DVBS }, .info = { .name = "Fujitsu MB86A16 DVB-S", .frequency_min = 950000, .frequency_max = 2150000, .frequency_stepsize = 3000, .frequency_tolerance = 0, .symbol_rate_min = 1000000, .symbol_rate_max = 45000000, .symbol_rate_tolerance = 500, .caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_QPSK | FE_CAN_FEC_AUTO }, .release = mb86a16_release, .get_frontend_algo = mb86a16_frontend_algo, .search = mb86a16_search, .init = mb86a16_init, .sleep = mb86a16_sleep, .read_status = mb86a16_read_status, .read_ber = mb86a16_read_ber, .read_signal_strength = mb86a16_read_signal_strength, .read_snr = mb86a16_read_snr, .read_ucblocks = mb86a16_read_ucblocks, .diseqc_send_master_cmd = mb86a16_send_diseqc_msg, .diseqc_send_burst = mb86a16_send_diseqc_burst, .set_tone = mb86a16_set_tone, }; struct dvb_frontend *mb86a16_attach(const struct mb86a16_config *config, struct i2c_adapter *i2c_adap) { u8 dev_id = 0; struct mb86a16_state *state = NULL; state = kmalloc(sizeof(struct mb86a16_state), GFP_KERNEL); if (state == NULL) goto error; state->config = config; state->i2c_adap = i2c_adap; mb86a16_read(state, 0x7f, &dev_id); if (dev_id != 0xfe) goto error; memcpy(&state->frontend.ops, &mb86a16_ops, sizeof(struct dvb_frontend_ops)); state->frontend.demodulator_priv = state; state->frontend.ops.set_voltage = state->config->set_voltage; return &state->frontend; error: kfree(state); return NULL; } EXPORT_SYMBOL(mb86a16_attach); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Manu Abraham");