/* * Linux-DVB Driver for DiBcom's DiB9000 and demodulator-family. * * Copyright (C) 2005-10 DiBcom (http://www.dibcom.fr/) * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, version 2. */ #include <linux/kernel.h> #include <linux/i2c.h> #include <linux/mutex.h> #include "dvb_math.h" #include "dvb_frontend.h" #include "dib9000.h" #include "dibx000_common.h" static int debug; module_param(debug, int, 0644); MODULE_PARM_DESC(debug, "turn on debugging (default: 0)"); #define dprintk(args...) do { if (debug) { printk(KERN_DEBUG "DiB9000: "); printk(args); printk("\n"); } } while (0) #define MAX_NUMBER_OF_FRONTENDS 6 struct i2c_device { struct i2c_adapter *i2c_adap; u8 i2c_addr; u8 *i2c_read_buffer; u8 *i2c_write_buffer; }; struct dib9000_pid_ctrl { #define DIB9000_PID_FILTER_CTRL 0 #define DIB9000_PID_FILTER 1 u8 cmd; u8 id; u16 pid; u8 onoff; }; struct dib9000_state { struct i2c_device i2c; struct dibx000_i2c_master i2c_master; struct i2c_adapter tuner_adap; struct i2c_adapter component_bus; u16 revision; u8 reg_offs; enum frontend_tune_state tune_state; u32 status; struct dvb_frontend_parametersContext channel_status; u8 fe_id; #define DIB9000_GPIO_DEFAULT_DIRECTIONS 0xffff u16 gpio_dir; #define DIB9000_GPIO_DEFAULT_VALUES 0x0000 u16 gpio_val; #define DIB9000_GPIO_DEFAULT_PWM_POS 0xffff u16 gpio_pwm_pos; union { /* common for all chips */ struct { u8 mobile_mode:1; } host; struct { struct dib9000_fe_memory_map { u16 addr; u16 size; } fe_mm[18]; u8 memcmd; struct mutex mbx_if_lock; /* to protect read/write operations */ struct mutex mbx_lock; /* to protect the whole mailbox handling */ struct mutex mem_lock; /* to protect the memory accesses */ struct mutex mem_mbx_lock; /* to protect the memory-based mailbox */ #define MBX_MAX_WORDS (256 - 200 - 2) #define DIB9000_MSG_CACHE_SIZE 2 u16 message_cache[DIB9000_MSG_CACHE_SIZE][MBX_MAX_WORDS]; u8 fw_is_running; } risc; } platform; union { /* common for all platforms */ struct { struct dib9000_config cfg; } d9; } chip; struct dvb_frontend *fe[MAX_NUMBER_OF_FRONTENDS]; u16 component_bus_speed; /* for the I2C transfer */ struct i2c_msg msg[2]; u8 i2c_write_buffer[255]; u8 i2c_read_buffer[255]; struct mutex demod_lock; u8 get_frontend_internal; struct dib9000_pid_ctrl pid_ctrl[10]; s8 pid_ctrl_index; /* -1: empty list; -2: do not use the list */ }; static const u32 fe_info[44] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; enum dib9000_power_mode { DIB9000_POWER_ALL = 0, DIB9000_POWER_NO, DIB9000_POWER_INTERF_ANALOG_AGC, DIB9000_POWER_COR4_DINTLV_ICIRM_EQUAL_CFROD, DIB9000_POWER_COR4_CRY_ESRAM_MOUT_NUD, DIB9000_POWER_INTERFACE_ONLY, }; enum dib9000_out_messages { OUT_MSG_HBM_ACK, OUT_MSG_HOST_BUF_FAIL, OUT_MSG_REQ_VERSION, OUT_MSG_BRIDGE_I2C_W, OUT_MSG_BRIDGE_I2C_R, OUT_MSG_BRIDGE_APB_W, OUT_MSG_BRIDGE_APB_R, OUT_MSG_SCAN_CHANNEL, OUT_MSG_MONIT_DEMOD, OUT_MSG_CONF_GPIO, OUT_MSG_DEBUG_HELP, OUT_MSG_SUBBAND_SEL, OUT_MSG_ENABLE_TIME_SLICE, OUT_MSG_FE_FW_DL, OUT_MSG_FE_CHANNEL_SEARCH, OUT_MSG_FE_CHANNEL_TUNE, OUT_MSG_FE_SLEEP, OUT_MSG_FE_SYNC, OUT_MSG_CTL_MONIT, OUT_MSG_CONF_SVC, OUT_MSG_SET_HBM, OUT_MSG_INIT_DEMOD, OUT_MSG_ENABLE_DIVERSITY, OUT_MSG_SET_OUTPUT_MODE, OUT_MSG_SET_PRIORITARY_CHANNEL, OUT_MSG_ACK_FRG, OUT_MSG_INIT_PMU, }; enum dib9000_in_messages { IN_MSG_DATA, IN_MSG_FRAME_INFO, IN_MSG_CTL_MONIT, IN_MSG_ACK_FREE_ITEM, IN_MSG_DEBUG_BUF, IN_MSG_MPE_MONITOR, IN_MSG_RAWTS_MONITOR, IN_MSG_END_BRIDGE_I2C_RW, IN_MSG_END_BRIDGE_APB_RW, IN_MSG_VERSION, IN_MSG_END_OF_SCAN, IN_MSG_MONIT_DEMOD, IN_MSG_ERROR, IN_MSG_FE_FW_DL_DONE, IN_MSG_EVENT, IN_MSG_ACK_CHANGE_SVC, IN_MSG_HBM_PROF, }; /* memory_access requests */ #define FE_MM_W_CHANNEL 0 #define FE_MM_W_FE_INFO 1 #define FE_MM_RW_SYNC 2 #define FE_SYNC_CHANNEL 1 #define FE_SYNC_W_GENERIC_MONIT 2 #define FE_SYNC_COMPONENT_ACCESS 3 #define FE_MM_R_CHANNEL_SEARCH_STATE 3 #define FE_MM_R_CHANNEL_UNION_CONTEXT 4 #define FE_MM_R_FE_INFO 5 #define FE_MM_R_FE_MONITOR 6 #define FE_MM_W_CHANNEL_HEAD 7 #define FE_MM_W_CHANNEL_UNION 8 #define FE_MM_W_CHANNEL_CONTEXT 9 #define FE_MM_R_CHANNEL_UNION 10 #define FE_MM_R_CHANNEL_CONTEXT 11 #define FE_MM_R_CHANNEL_TUNE_STATE 12 #define FE_MM_R_GENERIC_MONITORING_SIZE 13 #define FE_MM_W_GENERIC_MONITORING 14 #define FE_MM_R_GENERIC_MONITORING 15 #define FE_MM_W_COMPONENT_ACCESS 16 #define FE_MM_RW_COMPONENT_ACCESS_BUFFER 17 static int dib9000_risc_apb_access_read(struct dib9000_state *state, u32 address, u16 attribute, const u8 * tx, u32 txlen, u8 * b, u32 len); static int dib9000_risc_apb_access_write(struct dib9000_state *state, u32 address, u16 attribute, const u8 * b, u32 len); static u16 to_fw_output_mode(u16 mode) { switch (mode) { case OUTMODE_HIGH_Z: return 0; case OUTMODE_MPEG2_PAR_GATED_CLK: return 4; case OUTMODE_MPEG2_PAR_CONT_CLK: return 8; case OUTMODE_MPEG2_SERIAL: return 16; case OUTMODE_DIVERSITY: return 128; case OUTMODE_MPEG2_FIFO: return 2; case OUTMODE_ANALOG_ADC: return 1; default: return 0; } } static u16 dib9000_read16_attr(struct dib9000_state *state, u16 reg, u8 * b, u32 len, u16 attribute) { u32 chunk_size = 126; u32 l; int ret; if (state->platform.risc.fw_is_running && (reg < 1024)) return dib9000_risc_apb_access_read(state, reg, attribute, NULL, 0, b, len); memset(state->msg, 0, 2 * sizeof(struct i2c_msg)); state->msg[0].addr = state->i2c.i2c_addr >> 1; state->msg[0].flags = 0; state->msg[0].buf = state->i2c_write_buffer; state->msg[0].len = 2; state->msg[1].addr = state->i2c.i2c_addr >> 1; state->msg[1].flags = I2C_M_RD; state->msg[1].buf = b; state->msg[1].len = len; state->i2c_write_buffer[0] = reg >> 8; state->i2c_write_buffer[1] = reg & 0xff; if (attribute & DATA_BUS_ACCESS_MODE_8BIT) state->i2c_write_buffer[0] |= (1 << 5); if (attribute & DATA_BUS_ACCESS_MODE_NO_ADDRESS_INCREMENT) state->i2c_write_buffer[0] |= (1 << 4); do { l = len < chunk_size ? len : chunk_size; state->msg[1].len = l; state->msg[1].buf = b; ret = i2c_transfer(state->i2c.i2c_adap, state->msg, 2) != 2 ? -EREMOTEIO : 0; if (ret != 0) { dprintk("i2c read error on %d", reg); return -EREMOTEIO; } b += l; len -= l; if (!(attribute & DATA_BUS_ACCESS_MODE_NO_ADDRESS_INCREMENT)) reg += l / 2; } while ((ret == 0) && len); return 0; } static u16 dib9000_i2c_read16(struct i2c_device *i2c, u16 reg) { struct i2c_msg msg[2] = { {.addr = i2c->i2c_addr >> 1, .flags = 0, .buf = i2c->i2c_write_buffer, .len = 2}, {.addr = i2c->i2c_addr >> 1, .flags = I2C_M_RD, .buf = i2c->i2c_read_buffer, .len = 2}, }; i2c->i2c_write_buffer[0] = reg >> 8; i2c->i2c_write_buffer[1] = reg & 0xff; if (i2c_transfer(i2c->i2c_adap, msg, 2) != 2) { dprintk("read register %x error", reg); return 0; } return (i2c->i2c_read_buffer[0] << 8) | i2c->i2c_read_buffer[1]; } static inline u16 dib9000_read_word(struct dib9000_state *state, u16 reg) { if (dib9000_read16_attr(state, reg, state->i2c_read_buffer, 2, 0) != 0) return 0; return (state->i2c_read_buffer[0] << 8) | state->i2c_read_buffer[1]; } static inline u16 dib9000_read_word_attr(struct dib9000_state *state, u16 reg, u16 attribute) { if (dib9000_read16_attr(state, reg, state->i2c_read_buffer, 2, attribute) != 0) return 0; return (state->i2c_read_buffer[0] << 8) | state->i2c_read_buffer[1]; } #define dib9000_read16_noinc_attr(state, reg, b, len, attribute) dib9000_read16_attr(state, reg, b, len, (attribute) | DATA_BUS_ACCESS_MODE_NO_ADDRESS_INCREMENT) static u16 dib9000_write16_attr(struct dib9000_state *state, u16 reg, const u8 * buf, u32 len, u16 attribute) { u32 chunk_size = 126; u32 l; int ret; if (state->platform.risc.fw_is_running && (reg < 1024)) { if (dib9000_risc_apb_access_write (state, reg, DATA_BUS_ACCESS_MODE_16BIT | DATA_BUS_ACCESS_MODE_NO_ADDRESS_INCREMENT | attribute, buf, len) != 0) return -EINVAL; return 0; } memset(&state->msg[0], 0, sizeof(struct i2c_msg)); state->msg[0].addr = state->i2c.i2c_addr >> 1; state->msg[0].flags = 0; state->msg[0].buf = state->i2c_write_buffer; state->msg[0].len = len + 2; state->i2c_write_buffer[0] = (reg >> 8) & 0xff; state->i2c_write_buffer[1] = (reg) & 0xff; if (attribute & DATA_BUS_ACCESS_MODE_8BIT) state->i2c_write_buffer[0] |= (1 << 5); if (attribute & DATA_BUS_ACCESS_MODE_NO_ADDRESS_INCREMENT) state->i2c_write_buffer[0] |= (1 << 4); do { l = len < chunk_size ? len : chunk_size; state->msg[0].len = l + 2; memcpy(&state->i2c_write_buffer[2], buf, l); ret = i2c_transfer(state->i2c.i2c_adap, state->msg, 1) != 1 ? -EREMOTEIO : 0; buf += l; len -= l; if (!(attribute & DATA_BUS_ACCESS_MODE_NO_ADDRESS_INCREMENT)) reg += l / 2; } while ((ret == 0) && len); return ret; } static int dib9000_i2c_write16(struct i2c_device *i2c, u16 reg, u16 val) { struct i2c_msg msg = { .addr = i2c->i2c_addr >> 1, .flags = 0, .buf = i2c->i2c_write_buffer, .len = 4 }; i2c->i2c_write_buffer[0] = (reg >> 8) & 0xff; i2c->i2c_write_buffer[1] = reg & 0xff; i2c->i2c_write_buffer[2] = (val >> 8) & 0xff; i2c->i2c_write_buffer[3] = val & 0xff; return i2c_transfer(i2c->i2c_adap, &msg, 1) != 1 ? -EREMOTEIO : 0; } static inline int dib9000_write_word(struct dib9000_state *state, u16 reg, u16 val) { u8 b[2] = { val >> 8, val & 0xff }; return dib9000_write16_attr(state, reg, b, 2, 0); } static inline int dib9000_write_word_attr(struct dib9000_state *state, u16 reg, u16 val, u16 attribute) { u8 b[2] = { val >> 8, val & 0xff }; return dib9000_write16_attr(state, reg, b, 2, attribute); } #define dib9000_write(state, reg, buf, len) dib9000_write16_attr(state, reg, buf, len, 0) #define dib9000_write16_noinc(state, reg, buf, len) dib9000_write16_attr(state, reg, buf, len, DATA_BUS_ACCESS_MODE_NO_ADDRESS_INCREMENT) #define dib9000_write16_noinc_attr(state, reg, buf, len, attribute) dib9000_write16_attr(state, reg, buf, len, DATA_BUS_ACCESS_MODE_NO_ADDRESS_INCREMENT | (attribute)) #define dib9000_mbx_send(state, id, data, len) dib9000_mbx_send_attr(state, id, data, len, 0) #define dib9000_mbx_get_message(state, id, msg, len) dib9000_mbx_get_message_attr(state, id, msg, len, 0) #define MAC_IRQ (1 << 1) #define IRQ_POL_MSK (1 << 4) #define dib9000_risc_mem_read_chunks(state, b, len) dib9000_read16_attr(state, 1063, b, len, DATA_BUS_ACCESS_MODE_8BIT | DATA_BUS_ACCESS_MODE_NO_ADDRESS_INCREMENT) #define dib9000_risc_mem_write_chunks(state, buf, len) dib9000_write16_attr(state, 1063, buf, len, DATA_BUS_ACCESS_MODE_8BIT | DATA_BUS_ACCESS_MODE_NO_ADDRESS_INCREMENT) static void dib9000_risc_mem_setup_cmd(struct dib9000_state *state, u32 addr, u32 len, u8 reading) { u8 b[14] = { 0 }; /* dprintk("%d memcmd: %d %d %d\n", state->fe_id, addr, addr+len, len); */ /* b[0] = 0 << 7; */ b[1] = 1; /* b[2] = 0; */ /* b[3] = 0; */ b[4] = (u8) (addr >> 8); b[5] = (u8) (addr & 0xff); /* b[10] = 0; */ /* b[11] = 0; */ b[12] = (u8) (addr >> 8); b[13] = (u8) (addr & 0xff); addr += len; /* b[6] = 0; */ /* b[7] = 0; */ b[8] = (u8) (addr >> 8); b[9] = (u8) (addr & 0xff); dib9000_write(state, 1056, b, 14); if (reading) dib9000_write_word(state, 1056, (1 << 15) | 1); state->platform.risc.memcmd = -1; /* if it was called directly reset it - to force a future setup-call to set it */ } static void dib9000_risc_mem_setup(struct dib9000_state *state, u8 cmd) { struct dib9000_fe_memory_map *m = &state->platform.risc.fe_mm[cmd & 0x7f]; /* decide whether we need to "refresh" the memory controller */ if (state->platform.risc.memcmd == cmd && /* same command */ !(cmd & 0x80 && m->size < 67)) /* and we do not want to read something with less than 67 bytes looping - working around a bug in the memory controller */ return; dib9000_risc_mem_setup_cmd(state, m->addr, m->size, cmd & 0x80); state->platform.risc.memcmd = cmd; } static int dib9000_risc_mem_read(struct dib9000_state *state, u8 cmd, u8 * b, u16 len) { if (!state->platform.risc.fw_is_running) return -EIO; if (mutex_lock_interruptible(&state->platform.risc.mem_lock) < 0) { dprintk("could not get the lock"); return -EINTR; } dib9000_risc_mem_setup(state, cmd | 0x80); dib9000_risc_mem_read_chunks(state, b, len); mutex_unlock(&state->platform.risc.mem_lock); return 0; } static int dib9000_risc_mem_write(struct dib9000_state *state, u8 cmd, const u8 * b) { struct dib9000_fe_memory_map *m = &state->platform.risc.fe_mm[cmd]; if (!state->platform.risc.fw_is_running) return -EIO; if (mutex_lock_interruptible(&state->platform.risc.mem_lock) < 0) { dprintk("could not get the lock"); return -EINTR; } dib9000_risc_mem_setup(state, cmd); dib9000_risc_mem_write_chunks(state, b, m->size); mutex_unlock(&state->platform.risc.mem_lock); return 0; } static int dib9000_firmware_download(struct dib9000_state *state, u8 risc_id, u16 key, const u8 * code, u32 len) { u16 offs; if (risc_id == 1) offs = 16; else offs = 0; /* config crtl reg */ dib9000_write_word(state, 1024 + offs, 0x000f); dib9000_write_word(state, 1025 + offs, 0); dib9000_write_word(state, 1031 + offs, key); dprintk("going to download %dB of microcode", len); if (dib9000_write16_noinc(state, 1026 + offs, (u8 *) code, (u16) len) != 0) { dprintk("error while downloading microcode for RISC %c", 'A' + risc_id); return -EIO; } dprintk("Microcode for RISC %c loaded", 'A' + risc_id); return 0; } static int dib9000_mbx_host_init(struct dib9000_state *state, u8 risc_id) { u16 mbox_offs; u16 reset_reg; u16 tries = 1000; if (risc_id == 1) mbox_offs = 16; else mbox_offs = 0; /* Reset mailbox */ dib9000_write_word(state, 1027 + mbox_offs, 0x8000); /* Read reset status */ do { reset_reg = dib9000_read_word(state, 1027 + mbox_offs); msleep(100); } while ((reset_reg & 0x8000) && --tries); if (reset_reg & 0x8000) { dprintk("MBX: init ERROR, no response from RISC %c", 'A' + risc_id); return -EIO; } dprintk("MBX: initialized"); return 0; } #define MAX_MAILBOX_TRY 100 static int dib9000_mbx_send_attr(struct dib9000_state *state, u8 id, u16 * data, u8 len, u16 attr) { u8 *d, b[2]; u16 tmp; u16 size; u32 i; int ret = 0; if (!state->platform.risc.fw_is_running) return -EINVAL; if (mutex_lock_interruptible(&state->platform.risc.mbx_if_lock) < 0) { dprintk("could not get the lock"); return -EINTR; } tmp = MAX_MAILBOX_TRY; do { size = dib9000_read_word_attr(state, 1043, attr) & 0xff; if ((size + len + 1) > MBX_MAX_WORDS && --tmp) { dprintk("MBX: RISC mbx full, retrying"); msleep(100); } else break; } while (1); /*dprintk( "MBX: size: %d", size); */ if (tmp == 0) { ret = -EINVAL; goto out; } #ifdef DUMP_MSG dprintk("--> %02x %d ", id, len + 1); for (i = 0; i < len; i++) dprintk("%04x ", data[i]); dprintk("\n"); #endif /* byte-order conversion - works on big (where it is not necessary) or little endian */ d = (u8 *) data; for (i = 0; i < len; i++) { tmp = data[i]; *d++ = tmp >> 8; *d++ = tmp & 0xff; } /* write msg */ b[0] = id; b[1] = len + 1; if (dib9000_write16_noinc_attr(state, 1045, b, 2, attr) != 0 || dib9000_write16_noinc_attr(state, 1045, (u8 *) data, len * 2, attr) != 0) { ret = -EIO; goto out; } /* update register nb_mes_in_RX */ ret = (u8) dib9000_write_word_attr(state, 1043, 1 << 14, attr); out: mutex_unlock(&state->platform.risc.mbx_if_lock); return ret; } static u8 dib9000_mbx_read(struct dib9000_state *state, u16 * data, u8 risc_id, u16 attr) { #ifdef DUMP_MSG u16 *d = data; #endif u16 tmp, i; u8 size; u8 mc_base; if (!state->platform.risc.fw_is_running) return 0; if (mutex_lock_interruptible(&state->platform.risc.mbx_if_lock) < 0) { dprintk("could not get the lock"); return 0; } if (risc_id == 1) mc_base = 16; else mc_base = 0; /* Length and type in the first word */ *data = dib9000_read_word_attr(state, 1029 + mc_base, attr); size = *data & 0xff; if (size <= MBX_MAX_WORDS) { data++; size--; /* Initial word already read */ dib9000_read16_noinc_attr(state, 1029 + mc_base, (u8 *) data, size * 2, attr); /* to word conversion */ for (i = 0; i < size; i++) { tmp = *data; *data = (tmp >> 8) | (tmp << 8); data++; } #ifdef DUMP_MSG dprintk("<-- "); for (i = 0; i < size + 1; i++) dprintk("%04x ", d[i]); dprintk("\n"); #endif } else { dprintk("MBX: message is too big for message cache (%d), flushing message", size); size--; /* Initial word already read */ while (size--) dib9000_read16_noinc_attr(state, 1029 + mc_base, (u8 *) data, 2, attr); } /* Update register nb_mes_in_TX */ dib9000_write_word_attr(state, 1028 + mc_base, 1 << 14, attr); mutex_unlock(&state->platform.risc.mbx_if_lock); return size + 1; } static int dib9000_risc_debug_buf(struct dib9000_state *state, u16 * data, u8 size) { u32 ts = data[1] << 16 | data[0]; char *b = (char *)&data[2]; b[2 * (size - 2) - 1] = '\0'; /* Bullet proof the buffer */ if (*b == '~') { b++; dprintk("%s", b); } else dprintk("RISC%d: %d.%04d %s", state->fe_id, ts / 10000, ts % 10000, *b ? b : "<empty>"); return 1; } static int dib9000_mbx_fetch_to_cache(struct dib9000_state *state, u16 attr) { int i; u8 size; u16 *block; /* find a free slot */ for (i = 0; i < DIB9000_MSG_CACHE_SIZE; i++) { block = state->platform.risc.message_cache[i]; if (*block == 0) { size = dib9000_mbx_read(state, block, 1, attr); /* dprintk( "MBX: fetched %04x message to cache", *block); */ switch (*block >> 8) { case IN_MSG_DEBUG_BUF: dib9000_risc_debug_buf(state, block + 1, size); /* debug-messages are going to be printed right away */ *block = 0; /* free the block */ break; #if 0 case IN_MSG_DATA: /* FE-TRACE */ dib9000_risc_data_process(state, block + 1, size); *block = 0; break; #endif default: break; } return 1; } } dprintk("MBX: no free cache-slot found for new message..."); return -1; } static u8 dib9000_mbx_count(struct dib9000_state *state, u8 risc_id, u16 attr) { if (risc_id == 0) return (u8) (dib9000_read_word_attr(state, 1028, attr) >> 10) & 0x1f; /* 5 bit field */ else return (u8) (dib9000_read_word_attr(state, 1044, attr) >> 8) & 0x7f; /* 7 bit field */ } static int dib9000_mbx_process(struct dib9000_state *state, u16 attr) { int ret = 0; if (!state->platform.risc.fw_is_running) return -1; if (mutex_lock_interruptible(&state->platform.risc.mbx_lock) < 0) { dprintk("could not get the lock"); return -1; } if (dib9000_mbx_count(state, 1, attr)) /* 1=RiscB */ ret = dib9000_mbx_fetch_to_cache(state, attr); dib9000_read_word_attr(state, 1229, attr); /* Clear the IRQ */ /* if (tmp) */ /* dprintk( "cleared IRQ: %x", tmp); */ mutex_unlock(&state->platform.risc.mbx_lock); return ret; } static int dib9000_mbx_get_message_attr(struct dib9000_state *state, u16 id, u16 * msg, u8 * size, u16 attr) { u8 i; u16 *block; u16 timeout = 30; *msg = 0; do { /* dib9000_mbx_get_from_cache(); */ for (i = 0; i < DIB9000_MSG_CACHE_SIZE; i++) { block = state->platform.risc.message_cache[i]; if ((*block >> 8) == id) { *size = (*block & 0xff) - 1; memcpy(msg, block + 1, (*size) * 2); *block = 0; /* free the block */ i = 0; /* signal that we found a message */ break; } } if (i == 0) break; if (dib9000_mbx_process(state, attr) == -1) /* try to fetch one message - if any */ return -1; } while (--timeout); if (timeout == 0) { dprintk("waiting for message %d timed out", id); return -1; } return i == 0; } static int dib9000_risc_check_version(struct dib9000_state *state) { u8 r[4]; u8 size; u16 fw_version = 0; if (dib9000_mbx_send(state, OUT_MSG_REQ_VERSION, &fw_version, 1) != 0) return -EIO; if (dib9000_mbx_get_message(state, IN_MSG_VERSION, (u16 *) r, &size) < 0) return -EIO; fw_version = (r[0] << 8) | r[1]; dprintk("RISC: ver: %d.%02d (IC: %d)", fw_version >> 10, fw_version & 0x3ff, (r[2] << 8) | r[3]); if ((fw_version >> 10) != 7) return -EINVAL; switch (fw_version & 0x3ff) { case 11: case 12: case 14: case 15: case 16: case 17: break; default: dprintk("RISC: invalid firmware version"); return -EINVAL; } dprintk("RISC: valid firmware version"); return 0; } static int dib9000_fw_boot(struct dib9000_state *state, const u8 * codeA, u32 lenA, const u8 * codeB, u32 lenB) { /* Reconfig pool mac ram */ dib9000_write_word(state, 1225, 0x02); /* A: 8k C, 4 k D - B: 32k C 6 k D - IRAM 96k */ dib9000_write_word(state, 1226, 0x05); /* Toggles IP crypto to Host APB interface. */ dib9000_write_word(state, 1542, 1); /* Set jump and no jump in the dma box */ dib9000_write_word(state, 1074, 0); dib9000_write_word(state, 1075, 0); /* Set MAC as APB Master. */ dib9000_write_word(state, 1237, 0); /* Reset the RISCs */ if (codeA != NULL) dib9000_write_word(state, 1024, 2); else dib9000_write_word(state, 1024, 15); if (codeB != NULL) dib9000_write_word(state, 1040, 2); if (codeA != NULL) dib9000_firmware_download(state, 0, 0x1234, codeA, lenA); if (codeB != NULL) dib9000_firmware_download(state, 1, 0x1234, codeB, lenB); /* Run the RISCs */ if (codeA != NULL) dib9000_write_word(state, 1024, 0); if (codeB != NULL) dib9000_write_word(state, 1040, 0); if (codeA != NULL) if (dib9000_mbx_host_init(state, 0) != 0) return -EIO; if (codeB != NULL) if (dib9000_mbx_host_init(state, 1) != 0) return -EIO; msleep(100); state->platform.risc.fw_is_running = 1; if (dib9000_risc_check_version(state) != 0) return -EINVAL; state->platform.risc.memcmd = 0xff; return 0; } static u16 dib9000_identify(struct i2c_device *client) { u16 value; value = dib9000_i2c_read16(client, 896); if (value != 0x01b3) { dprintk("wrong Vendor ID (0x%x)", value); return 0; } value = dib9000_i2c_read16(client, 897); if (value != 0x4000 && value != 0x4001 && value != 0x4002 && value != 0x4003 && value != 0x4004 && value != 0x4005) { dprintk("wrong Device ID (0x%x)", value); return 0; } /* protect this driver to be used with 7000PC */ if (value == 0x4000 && dib9000_i2c_read16(client, 769) == 0x4000) { dprintk("this driver does not work with DiB7000PC"); return 0; } switch (value) { case 0x4000: dprintk("found DiB7000MA/PA/MB/PB"); break; case 0x4001: dprintk("found DiB7000HC"); break; case 0x4002: dprintk("found DiB7000MC"); break; case 0x4003: dprintk("found DiB9000A"); break; case 0x4004: dprintk("found DiB9000H"); break; case 0x4005: dprintk("found DiB9000M"); break; } return value; } static void dib9000_set_power_mode(struct dib9000_state *state, enum dib9000_power_mode mode) { /* by default everything is going to be powered off */ u16 reg_903 = 0x3fff, reg_904 = 0xffff, reg_905 = 0xffff, reg_906; u8 offset; if (state->revision == 0x4003 || state->revision == 0x4004 || state->revision == 0x4005) offset = 1; else offset = 0; reg_906 = dib9000_read_word(state, 906 + offset) | 0x3; /* keep settings for RISC */ /* now, depending on the requested mode, we power on */ switch (mode) { /* power up everything in the demod */ case DIB9000_POWER_ALL: reg_903 = 0x0000; reg_904 = 0x0000; reg_905 = 0x0000; reg_906 = 0x0000; break; /* just leave power on the control-interfaces: GPIO and (I2C or SDIO or SRAM) */ case DIB9000_POWER_INTERFACE_ONLY: /* TODO power up either SDIO or I2C or SRAM */ reg_905 &= ~((1 << 7) | (1 << 6) | (1 << 5) | (1 << 2)); break; case DIB9000_POWER_INTERF_ANALOG_AGC: reg_903 &= ~((1 << 15) | (1 << 14) | (1 << 11) | (1 << 10)); reg_905 &= ~((1 << 7) | (1 << 6) | (1 << 5) | (1 << 4) | (1 << 2)); reg_906 &= ~((1 << 0)); break; case DIB9000_POWER_COR4_DINTLV_ICIRM_EQUAL_CFROD: reg_903 = 0x0000; reg_904 = 0x801f; reg_905 = 0x0000; reg_906 &= ~((1 << 0)); break; case DIB9000_POWER_COR4_CRY_ESRAM_MOUT_NUD: reg_903 = 0x0000; reg_904 = 0x8000; reg_905 = 0x010b; reg_906 &= ~((1 << 0)); break; default: case DIB9000_POWER_NO: break; } /* always power down unused parts */ if (!state->platform.host.mobile_mode) reg_904 |= (1 << 7) | (1 << 6) | (1 << 4) | (1 << 2) | (1 << 1); /* P_sdio_select_clk = 0 on MC and after */ if (state->revision != 0x4000) reg_906 <<= 1; dib9000_write_word(state, 903 + offset, reg_903); dib9000_write_word(state, 904 + offset, reg_904); dib9000_write_word(state, 905 + offset, reg_905); dib9000_write_word(state, 906 + offset, reg_906); } static int dib9000_fw_reset(struct dvb_frontend *fe) { struct dib9000_state *state = fe->demodulator_priv; dib9000_write_word(state, 1817, 0x0003); dib9000_write_word(state, 1227, 1); dib9000_write_word(state, 1227, 0); switch ((state->revision = dib9000_identify(&state->i2c))) { case 0x4003: case 0x4004: case 0x4005: state->reg_offs = 1; break; default: return -EINVAL; } /* reset the i2c-master to use the host interface */ dibx000_reset_i2c_master(&state->i2c_master); dib9000_set_power_mode(state, DIB9000_POWER_ALL); /* unforce divstr regardless whether i2c enumeration was done or not */ dib9000_write_word(state, 1794, dib9000_read_word(state, 1794) & ~(1 << 1)); dib9000_write_word(state, 1796, 0); dib9000_write_word(state, 1805, 0x805); /* restart all parts */ dib9000_write_word(state, 898, 0xffff); dib9000_write_word(state, 899, 0xffff); dib9000_write_word(state, 900, 0x0001); dib9000_write_word(state, 901, 0xff19); dib9000_write_word(state, 902, 0x003c); dib9000_write_word(state, 898, 0); dib9000_write_word(state, 899, 0); dib9000_write_word(state, 900, 0); dib9000_write_word(state, 901, 0); dib9000_write_word(state, 902, 0); dib9000_write_word(state, 911, state->chip.d9.cfg.if_drives); dib9000_set_power_mode(state, DIB9000_POWER_INTERFACE_ONLY); return 0; } static int dib9000_risc_apb_access_read(struct dib9000_state *state, u32 address, u16 attribute, const u8 * tx, u32 txlen, u8 * b, u32 len) { u16 mb[10]; u8 i, s; if (address >= 1024 || !state->platform.risc.fw_is_running) return -EINVAL; /* dprintk( "APB access thru rd fw %d %x", address, attribute); */ mb[0] = (u16) address; mb[1] = len / 2; dib9000_mbx_send_attr(state, OUT_MSG_BRIDGE_APB_R, mb, 2, attribute); switch (dib9000_mbx_get_message_attr(state, IN_MSG_END_BRIDGE_APB_RW, mb, &s, attribute)) { case 1: s--; for (i = 0; i < s; i++) { b[i * 2] = (mb[i + 1] >> 8) & 0xff; b[i * 2 + 1] = (mb[i + 1]) & 0xff; } return 0; default: return -EIO; } return -EIO; } static int dib9000_risc_apb_access_write(struct dib9000_state *state, u32 address, u16 attribute, const u8 * b, u32 len) { u16 mb[10]; u8 s, i; if (address >= 1024 || !state->platform.risc.fw_is_running) return -EINVAL; if (len > 18) return -EINVAL; /* dprintk( "APB access thru wr fw %d %x", address, attribute); */ mb[0] = (u16)address; for (i = 0; i + 1 < len; i += 2) mb[1 + i / 2] = b[i] << 8 | b[i + 1]; if (len & 1) mb[1 + len / 2] = b[len - 1] << 8; dib9000_mbx_send_attr(state, OUT_MSG_BRIDGE_APB_W, mb, (3 + len) / 2, attribute); return dib9000_mbx_get_message_attr(state, IN_MSG_END_BRIDGE_APB_RW, mb, &s, attribute) == 1 ? 0 : -EINVAL; } static int dib9000_fw_memmbx_sync(struct dib9000_state *state, u8 i) { u8 index_loop = 10; if (!state->platform.risc.fw_is_running) return 0; dib9000_risc_mem_write(state, FE_MM_RW_SYNC, &i); do { dib9000_risc_mem_read(state, FE_MM_RW_SYNC, state->i2c_read_buffer, 1); } while (state->i2c_read_buffer[0] && index_loop--); if (index_loop > 0) return 0; return -EIO; } static int dib9000_fw_init(struct dib9000_state *state) { struct dibGPIOFunction *f; u16 b[40] = { 0 }; u8 i; u8 size; if (dib9000_fw_boot(state, NULL, 0, state->chip.d9.cfg.microcode_B_fe_buffer, state->chip.d9.cfg.microcode_B_fe_size) != 0) return -EIO; /* initialize the firmware */ for (i = 0; i < ARRAY_SIZE(state->chip.d9.cfg.gpio_function); i++) { f = &state->chip.d9.cfg.gpio_function[i]; if (f->mask) { switch (f->function) { case BOARD_GPIO_FUNCTION_COMPONENT_ON: b[0] = (u16) f->mask; b[1] = (u16) f->direction; b[2] = (u16) f->value; break; case BOARD_GPIO_FUNCTION_COMPONENT_OFF: b[3] = (u16) f->mask; b[4] = (u16) f->direction; b[5] = (u16) f->value; break; } } } if (dib9000_mbx_send(state, OUT_MSG_CONF_GPIO, b, 15) != 0) return -EIO; /* subband */ b[0] = state->chip.d9.cfg.subband.size; /* type == 0 -> GPIO - PWM not yet supported */ for (i = 0; i < state->chip.d9.cfg.subband.size; i++) { b[1 + i * 4] = state->chip.d9.cfg.subband.subband[i].f_mhz; b[2 + i * 4] = (u16) state->chip.d9.cfg.subband.subband[i].gpio.mask; b[3 + i * 4] = (u16) state->chip.d9.cfg.subband.subband[i].gpio.direction; b[4 + i * 4] = (u16) state->chip.d9.cfg.subband.subband[i].gpio.value; } b[1 + i * 4] = 0; /* fe_id */ if (dib9000_mbx_send(state, OUT_MSG_SUBBAND_SEL, b, 2 + 4 * i) != 0) return -EIO; /* 0 - id, 1 - no_of_frontends */ b[0] = (0 << 8) | 1; /* 0 = i2c-address demod, 0 = tuner */ b[1] = (0 << 8) | (0); b[2] = (u16) (((state->chip.d9.cfg.xtal_clock_khz * 1000) >> 16) & 0xffff); b[3] = (u16) (((state->chip.d9.cfg.xtal_clock_khz * 1000)) & 0xffff); b[4] = (u16) ((state->chip.d9.cfg.vcxo_timer >> 16) & 0xffff); b[5] = (u16) ((state->chip.d9.cfg.vcxo_timer) & 0xffff); b[6] = (u16) ((state->chip.d9.cfg.timing_frequency >> 16) & 0xffff); b[7] = (u16) ((state->chip.d9.cfg.timing_frequency) & 0xffff); b[29] = state->chip.d9.cfg.if_drives; if (dib9000_mbx_send(state, OUT_MSG_INIT_DEMOD, b, ARRAY_SIZE(b)) != 0) return -EIO; if (dib9000_mbx_send(state, OUT_MSG_FE_FW_DL, NULL, 0) != 0) return -EIO; if (dib9000_mbx_get_message(state, IN_MSG_FE_FW_DL_DONE, b, &size) < 0) return -EIO; if (size > ARRAY_SIZE(b)) { dprintk("error : firmware returned %dbytes needed but the used buffer has only %dbytes\n Firmware init ABORTED", size, (int)ARRAY_SIZE(b)); return -EINVAL; } for (i = 0; i < size; i += 2) { state->platform.risc.fe_mm[i / 2].addr = b[i + 0]; state->platform.risc.fe_mm[i / 2].size = b[i + 1]; } return 0; } static void dib9000_fw_set_channel_head(struct dib9000_state *state) { u8 b[9]; u32 freq = state->fe[0]->dtv_property_cache.frequency / 1000; if (state->fe_id % 2) freq += 101; b[0] = (u8) ((freq >> 0) & 0xff); b[1] = (u8) ((freq >> 8) & 0xff); b[2] = (u8) ((freq >> 16) & 0xff); b[3] = (u8) ((freq >> 24) & 0xff); b[4] = (u8) ((state->fe[0]->dtv_property_cache.bandwidth_hz / 1000 >> 0) & 0xff); b[5] = (u8) ((state->fe[0]->dtv_property_cache.bandwidth_hz / 1000 >> 8) & 0xff); b[6] = (u8) ((state->fe[0]->dtv_property_cache.bandwidth_hz / 1000 >> 16) & 0xff); b[7] = (u8) ((state->fe[0]->dtv_property_cache.bandwidth_hz / 1000 >> 24) & 0xff); b[8] = 0x80; /* do not wait for CELL ID when doing autosearch */ if (state->fe[0]->dtv_property_cache.delivery_system == SYS_DVBT) b[8] |= 1; dib9000_risc_mem_write(state, FE_MM_W_CHANNEL_HEAD, b); } static int dib9000_fw_get_channel(struct dvb_frontend *fe) { struct dib9000_state *state = fe->demodulator_priv; struct dibDVBTChannel { s8 spectrum_inversion; s8 nfft; s8 guard; s8 constellation; s8 hrch; s8 alpha; s8 code_rate_hp; s8 code_rate_lp; s8 select_hp; s8 intlv_native; }; struct dibDVBTChannel *ch; int ret = 0; if (mutex_lock_interruptible(&state->platform.risc.mem_mbx_lock) < 0) { dprintk("could not get the lock"); return -EINTR; } if (dib9000_fw_memmbx_sync(state, FE_SYNC_CHANNEL) < 0) { ret = -EIO; goto error; } dib9000_risc_mem_read(state, FE_MM_R_CHANNEL_UNION, state->i2c_read_buffer, sizeof(struct dibDVBTChannel)); ch = (struct dibDVBTChannel *)state->i2c_read_buffer; switch (ch->spectrum_inversion & 0x7) { case 1: state->fe[0]->dtv_property_cache.inversion = INVERSION_ON; break; case 0: state->fe[0]->dtv_property_cache.inversion = INVERSION_OFF; break; default: case -1: state->fe[0]->dtv_property_cache.inversion = INVERSION_AUTO; break; } switch (ch->nfft) { case 0: state->fe[0]->dtv_property_cache.transmission_mode = TRANSMISSION_MODE_2K; break; case 2: state->fe[0]->dtv_property_cache.transmission_mode = TRANSMISSION_MODE_4K; break; case 1: state->fe[0]->dtv_property_cache.transmission_mode = TRANSMISSION_MODE_8K; break; default: case -1: state->fe[0]->dtv_property_cache.transmission_mode = TRANSMISSION_MODE_AUTO; break; } switch (ch->guard) { case 0: state->fe[0]->dtv_property_cache.guard_interval = GUARD_INTERVAL_1_32; break; case 1: state->fe[0]->dtv_property_cache.guard_interval = GUARD_INTERVAL_1_16; break; case 2: state->fe[0]->dtv_property_cache.guard_interval = GUARD_INTERVAL_1_8; break; case 3: state->fe[0]->dtv_property_cache.guard_interval = GUARD_INTERVAL_1_4; break; default: case -1: state->fe[0]->dtv_property_cache.guard_interval = GUARD_INTERVAL_AUTO; break; } switch (ch->constellation) { case 2: state->fe[0]->dtv_property_cache.modulation = QAM_64; break; case 1: state->fe[0]->dtv_property_cache.modulation = QAM_16; break; case 0: state->fe[0]->dtv_property_cache.modulation = QPSK; break; default: case -1: state->fe[0]->dtv_property_cache.modulation = QAM_AUTO; break; } switch (ch->hrch) { case 0: state->fe[0]->dtv_property_cache.hierarchy = HIERARCHY_NONE; break; case 1: state->fe[0]->dtv_property_cache.hierarchy = HIERARCHY_1; break; default: case -1: state->fe[0]->dtv_property_cache.hierarchy = HIERARCHY_AUTO; break; } switch (ch->code_rate_hp) { case 1: state->fe[0]->dtv_property_cache.code_rate_HP = FEC_1_2; break; case 2: state->fe[0]->dtv_property_cache.code_rate_HP = FEC_2_3; break; case 3: state->fe[0]->dtv_property_cache.code_rate_HP = FEC_3_4; break; case 5: state->fe[0]->dtv_property_cache.code_rate_HP = FEC_5_6; break; case 7: state->fe[0]->dtv_property_cache.code_rate_HP = FEC_7_8; break; default: case -1: state->fe[0]->dtv_property_cache.code_rate_HP = FEC_AUTO; break; } switch (ch->code_rate_lp) { case 1: state->fe[0]->dtv_property_cache.code_rate_LP = FEC_1_2; break; case 2: state->fe[0]->dtv_property_cache.code_rate_LP = FEC_2_3; break; case 3: state->fe[0]->dtv_property_cache.code_rate_LP = FEC_3_4; break; case 5: state->fe[0]->dtv_property_cache.code_rate_LP = FEC_5_6; break; case 7: state->fe[0]->dtv_property_cache.code_rate_LP = FEC_7_8; break; default: case -1: state->fe[0]->dtv_property_cache.code_rate_LP = FEC_AUTO; break; } error: mutex_unlock(&state->platform.risc.mem_mbx_lock); return ret; } static int dib9000_fw_set_channel_union(struct dvb_frontend *fe) { struct dib9000_state *state = fe->demodulator_priv; struct dibDVBTChannel { s8 spectrum_inversion; s8 nfft; s8 guard; s8 constellation; s8 hrch; s8 alpha; s8 code_rate_hp; s8 code_rate_lp; s8 select_hp; s8 intlv_native; }; struct dibDVBTChannel ch; switch (state->fe[0]->dtv_property_cache.inversion) { case INVERSION_ON: ch.spectrum_inversion = 1; break; case INVERSION_OFF: ch.spectrum_inversion = 0; break; default: case INVERSION_AUTO: ch.spectrum_inversion = -1; break; } switch (state->fe[0]->dtv_property_cache.transmission_mode) { case TRANSMISSION_MODE_2K: ch.nfft = 0; break; case TRANSMISSION_MODE_4K: ch.nfft = 2; break; case TRANSMISSION_MODE_8K: ch.nfft = 1; break; default: case TRANSMISSION_MODE_AUTO: ch.nfft = 1; break; } switch (state->fe[0]->dtv_property_cache.guard_interval) { case GUARD_INTERVAL_1_32: ch.guard = 0; break; case GUARD_INTERVAL_1_16: ch.guard = 1; break; case GUARD_INTERVAL_1_8: ch.guard = 2; break; case GUARD_INTERVAL_1_4: ch.guard = 3; break; default: case GUARD_INTERVAL_AUTO: ch.guard = -1; break; } switch (state->fe[0]->dtv_property_cache.modulation) { case QAM_64: ch.constellation = 2; break; case QAM_16: ch.constellation = 1; break; case QPSK: ch.constellation = 0; break; default: case QAM_AUTO: ch.constellation = -1; break; } switch (state->fe[0]->dtv_property_cache.hierarchy) { case HIERARCHY_NONE: ch.hrch = 0; break; case HIERARCHY_1: case HIERARCHY_2: case HIERARCHY_4: ch.hrch = 1; break; default: case HIERARCHY_AUTO: ch.hrch = -1; break; } ch.alpha = 1; switch (state->fe[0]->dtv_property_cache.code_rate_HP) { case FEC_1_2: ch.code_rate_hp = 1; break; case FEC_2_3: ch.code_rate_hp = 2; break; case FEC_3_4: ch.code_rate_hp = 3; break; case FEC_5_6: ch.code_rate_hp = 5; break; case FEC_7_8: ch.code_rate_hp = 7; break; default: case FEC_AUTO: ch.code_rate_hp = -1; break; } switch (state->fe[0]->dtv_property_cache.code_rate_LP) { case FEC_1_2: ch.code_rate_lp = 1; break; case FEC_2_3: ch.code_rate_lp = 2; break; case FEC_3_4: ch.code_rate_lp = 3; break; case FEC_5_6: ch.code_rate_lp = 5; break; case FEC_7_8: ch.code_rate_lp = 7; break; default: case FEC_AUTO: ch.code_rate_lp = -1; break; } ch.select_hp = 1; ch.intlv_native = 1; dib9000_risc_mem_write(state, FE_MM_W_CHANNEL_UNION, (u8 *) &ch); return 0; } static int dib9000_fw_tune(struct dvb_frontend *fe) { struct dib9000_state *state = fe->demodulator_priv; int ret = 10, search = state->channel_status.status == CHANNEL_STATUS_PARAMETERS_UNKNOWN; s8 i; switch (state->tune_state) { case CT_DEMOD_START: dib9000_fw_set_channel_head(state); /* write the channel context - a channel is initialized to 0, so it is OK */ dib9000_risc_mem_write(state, FE_MM_W_CHANNEL_CONTEXT, (u8 *) fe_info); dib9000_risc_mem_write(state, FE_MM_W_FE_INFO, (u8 *) fe_info); if (search) dib9000_mbx_send(state, OUT_MSG_FE_CHANNEL_SEARCH, NULL, 0); else { dib9000_fw_set_channel_union(fe); dib9000_mbx_send(state, OUT_MSG_FE_CHANNEL_TUNE, NULL, 0); } state->tune_state = CT_DEMOD_STEP_1; break; case CT_DEMOD_STEP_1: if (search) dib9000_risc_mem_read(state, FE_MM_R_CHANNEL_SEARCH_STATE, state->i2c_read_buffer, 1); else dib9000_risc_mem_read(state, FE_MM_R_CHANNEL_TUNE_STATE, state->i2c_read_buffer, 1); i = (s8)state->i2c_read_buffer[0]; switch (i) { /* something happened */ case 0: break; case -2: /* tps locks are "slower" than MPEG locks -> even in autosearch data is OK here */ if (search) state->status = FE_STATUS_DEMOD_SUCCESS; else { state->tune_state = CT_DEMOD_STOP; state->status = FE_STATUS_LOCKED; } break; default: state->status = FE_STATUS_TUNE_FAILED; state->tune_state = CT_DEMOD_STOP; break; } break; default: ret = FE_CALLBACK_TIME_NEVER; break; } return ret; } static int dib9000_fw_set_diversity_in(struct dvb_frontend *fe, int onoff) { struct dib9000_state *state = fe->demodulator_priv; u16 mode = (u16) onoff; return dib9000_mbx_send(state, OUT_MSG_ENABLE_DIVERSITY, &mode, 1); } static int dib9000_fw_set_output_mode(struct dvb_frontend *fe, int mode) { struct dib9000_state *state = fe->demodulator_priv; u16 outreg, smo_mode; dprintk("setting output mode for demod %p to %d", fe, mode); switch (mode) { case OUTMODE_MPEG2_PAR_GATED_CLK: outreg = (1 << 10); /* 0x0400 */ break; case OUTMODE_MPEG2_PAR_CONT_CLK: outreg = (1 << 10) | (1 << 6); /* 0x0440 */ break; case OUTMODE_MPEG2_SERIAL: outreg = (1 << 10) | (2 << 6) | (0 << 1); /* 0x0482 */ break; case OUTMODE_DIVERSITY: outreg = (1 << 10) | (4 << 6); /* 0x0500 */ break; case OUTMODE_MPEG2_FIFO: outreg = (1 << 10) | (5 << 6); break; case OUTMODE_HIGH_Z: outreg = 0; break; default: dprintk("Unhandled output_mode passed to be set for demod %p", &state->fe[0]); return -EINVAL; } dib9000_write_word(state, 1795, outreg); switch (mode) { case OUTMODE_MPEG2_PAR_GATED_CLK: case OUTMODE_MPEG2_PAR_CONT_CLK: case OUTMODE_MPEG2_SERIAL: case OUTMODE_MPEG2_FIFO: smo_mode = (dib9000_read_word(state, 295) & 0x0010) | (1 << 1); if (state->chip.d9.cfg.output_mpeg2_in_188_bytes) smo_mode |= (1 << 5); dib9000_write_word(state, 295, smo_mode); break; } outreg = to_fw_output_mode(mode); return dib9000_mbx_send(state, OUT_MSG_SET_OUTPUT_MODE, &outreg, 1); } static int dib9000_tuner_xfer(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num) { struct dib9000_state *state = i2c_get_adapdata(i2c_adap); u16 i, len, t, index_msg; for (index_msg = 0; index_msg < num; index_msg++) { if (msg[index_msg].flags & I2C_M_RD) { /* read */ len = msg[index_msg].len; if (len > 16) len = 16; if (dib9000_read_word(state, 790) != 0) dprintk("TunerITF: read busy"); dib9000_write_word(state, 784, (u16) (msg[index_msg].addr)); dib9000_write_word(state, 787, (len / 2) - 1); dib9000_write_word(state, 786, 1); /* start read */ i = 1000; while (dib9000_read_word(state, 790) != (len / 2) && i) i--; if (i == 0) dprintk("TunerITF: read failed"); for (i = 0; i < len; i += 2) { t = dib9000_read_word(state, 785); msg[index_msg].buf[i] = (t >> 8) & 0xff; msg[index_msg].buf[i + 1] = (t) & 0xff; } if (dib9000_read_word(state, 790) != 0) dprintk("TunerITF: read more data than expected"); } else { i = 1000; while (dib9000_read_word(state, 789) && i) i--; if (i == 0) dprintk("TunerITF: write busy"); len = msg[index_msg].len; if (len > 16) len = 16; for (i = 0; i < len; i += 2) dib9000_write_word(state, 785, (msg[index_msg].buf[i] << 8) | msg[index_msg].buf[i + 1]); dib9000_write_word(state, 784, (u16) msg[index_msg].addr); dib9000_write_word(state, 787, (len / 2) - 1); dib9000_write_word(state, 786, 0); /* start write */ i = 1000; while (dib9000_read_word(state, 791) > 0 && i) i--; if (i == 0) dprintk("TunerITF: write failed"); } } return num; } int dib9000_fw_set_component_bus_speed(struct dvb_frontend *fe, u16 speed) { struct dib9000_state *state = fe->demodulator_priv; state->component_bus_speed = speed; return 0; } EXPORT_SYMBOL(dib9000_fw_set_component_bus_speed); static int dib9000_fw_component_bus_xfer(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num) { struct dib9000_state *state = i2c_get_adapdata(i2c_adap); u8 type = 0; /* I2C */ u8 port = DIBX000_I2C_INTERFACE_GPIO_3_4; u16 scl = state->component_bus_speed; /* SCL frequency */ struct dib9000_fe_memory_map *m = &state->platform.risc.fe_mm[FE_MM_RW_COMPONENT_ACCESS_BUFFER]; u8 p[13] = { 0 }; p[0] = type; p[1] = port; p[2] = msg[0].addr << 1; p[3] = (u8) scl & 0xff; /* scl */ p[4] = (u8) (scl >> 8); p[7] = 0; p[8] = 0; p[9] = (u8) (msg[0].len); p[10] = (u8) (msg[0].len >> 8); if ((num > 1) && (msg[1].flags & I2C_M_RD)) { p[11] = (u8) (msg[1].len); p[12] = (u8) (msg[1].len >> 8); } else { p[11] = 0; p[12] = 0; } if (mutex_lock_interruptible(&state->platform.risc.mem_mbx_lock) < 0) { dprintk("could not get the lock"); return 0; } dib9000_risc_mem_write(state, FE_MM_W_COMPONENT_ACCESS, p); { /* write-part */ dib9000_risc_mem_setup_cmd(state, m->addr, msg[0].len, 0); dib9000_risc_mem_write_chunks(state, msg[0].buf, msg[0].len); } /* do the transaction */ if (dib9000_fw_memmbx_sync(state, FE_SYNC_COMPONENT_ACCESS) < 0) { mutex_unlock(&state->platform.risc.mem_mbx_lock); return 0; } /* read back any possible result */ if ((num > 1) && (msg[1].flags & I2C_M_RD)) dib9000_risc_mem_read(state, FE_MM_RW_COMPONENT_ACCESS_BUFFER, msg[1].buf, msg[1].len); mutex_unlock(&state->platform.risc.mem_mbx_lock); return num; } static u32 dib9000_i2c_func(struct i2c_adapter *adapter) { return I2C_FUNC_I2C; } static struct i2c_algorithm dib9000_tuner_algo = { .master_xfer = dib9000_tuner_xfer, .functionality = dib9000_i2c_func, }; static struct i2c_algorithm dib9000_component_bus_algo = { .master_xfer = dib9000_fw_component_bus_xfer, .functionality = dib9000_i2c_func, }; struct i2c_adapter *dib9000_get_tuner_interface(struct dvb_frontend *fe) { struct dib9000_state *st = fe->demodulator_priv; return &st->tuner_adap; } EXPORT_SYMBOL(dib9000_get_tuner_interface); struct i2c_adapter *dib9000_get_component_bus_interface(struct dvb_frontend *fe) { struct dib9000_state *st = fe->demodulator_priv; return &st->component_bus; } EXPORT_SYMBOL(dib9000_get_component_bus_interface); struct i2c_adapter *dib9000_get_i2c_master(struct dvb_frontend *fe, enum dibx000_i2c_interface intf, int gating) { struct dib9000_state *st = fe->demodulator_priv; return dibx000_get_i2c_adapter(&st->i2c_master, intf, gating); } EXPORT_SYMBOL(dib9000_get_i2c_master); int dib9000_set_i2c_adapter(struct dvb_frontend *fe, struct i2c_adapter *i2c) { struct dib9000_state *st = fe->demodulator_priv; st->i2c.i2c_adap = i2c; return 0; } EXPORT_SYMBOL(dib9000_set_i2c_adapter); static int dib9000_cfg_gpio(struct dib9000_state *st, u8 num, u8 dir, u8 val) { st->gpio_dir = dib9000_read_word(st, 773); st->gpio_dir &= ~(1 << num); /* reset the direction bit */ st->gpio_dir |= (dir & 0x1) << num; /* set the new direction */ dib9000_write_word(st, 773, st->gpio_dir); st->gpio_val = dib9000_read_word(st, 774); st->gpio_val &= ~(1 << num); /* reset the direction bit */ st->gpio_val |= (val & 0x01) << num; /* set the new value */ dib9000_write_word(st, 774, st->gpio_val); dprintk("gpio dir: %04x: gpio val: %04x", st->gpio_dir, st->gpio_val); return 0; } int dib9000_set_gpio(struct dvb_frontend *fe, u8 num, u8 dir, u8 val) { struct dib9000_state *state = fe->demodulator_priv; return dib9000_cfg_gpio(state, num, dir, val); } EXPORT_SYMBOL(dib9000_set_gpio); int dib9000_fw_pid_filter_ctrl(struct dvb_frontend *fe, u8 onoff) { struct dib9000_state *state = fe->demodulator_priv; u16 val; int ret; if ((state->pid_ctrl_index != -2) && (state->pid_ctrl_index < 9)) { /* postpone the pid filtering cmd */ dprintk("pid filter cmd postpone"); state->pid_ctrl_index++; state->pid_ctrl[state->pid_ctrl_index].cmd = DIB9000_PID_FILTER_CTRL; state->pid_ctrl[state->pid_ctrl_index].onoff = onoff; return 0; } if (mutex_lock_interruptible(&state->demod_lock) < 0) { dprintk("could not get the lock"); return -EINTR; } val = dib9000_read_word(state, 294 + 1) & 0xffef; val |= (onoff & 0x1) << 4; dprintk("PID filter enabled %d", onoff); ret = dib9000_write_word(state, 294 + 1, val); mutex_unlock(&state->demod_lock); return ret; } EXPORT_SYMBOL(dib9000_fw_pid_filter_ctrl); int dib9000_fw_pid_filter(struct dvb_frontend *fe, u8 id, u16 pid, u8 onoff) { struct dib9000_state *state = fe->demodulator_priv; int ret; if (state->pid_ctrl_index != -2) { /* postpone the pid filtering cmd */ dprintk("pid filter postpone"); if (state->pid_ctrl_index < 9) { state->pid_ctrl_index++; state->pid_ctrl[state->pid_ctrl_index].cmd = DIB9000_PID_FILTER; state->pid_ctrl[state->pid_ctrl_index].id = id; state->pid_ctrl[state->pid_ctrl_index].pid = pid; state->pid_ctrl[state->pid_ctrl_index].onoff = onoff; } else dprintk("can not add any more pid ctrl cmd"); return 0; } if (mutex_lock_interruptible(&state->demod_lock) < 0) { dprintk("could not get the lock"); return -EINTR; } dprintk("Index %x, PID %d, OnOff %d", id, pid, onoff); ret = dib9000_write_word(state, 300 + 1 + id, onoff ? (1 << 13) | pid : 0); mutex_unlock(&state->demod_lock); return ret; } EXPORT_SYMBOL(dib9000_fw_pid_filter); int dib9000_firmware_post_pll_init(struct dvb_frontend *fe) { struct dib9000_state *state = fe->demodulator_priv; return dib9000_fw_init(state); } EXPORT_SYMBOL(dib9000_firmware_post_pll_init); static void dib9000_release(struct dvb_frontend *demod) { struct dib9000_state *st = demod->demodulator_priv; u8 index_frontend; for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (st->fe[index_frontend] != NULL); index_frontend++) dvb_frontend_detach(st->fe[index_frontend]); dibx000_exit_i2c_master(&st->i2c_master); i2c_del_adapter(&st->tuner_adap); i2c_del_adapter(&st->component_bus); kfree(st->fe[0]); kfree(st); } static int dib9000_wakeup(struct dvb_frontend *fe) { return 0; } static int dib9000_sleep(struct dvb_frontend *fe) { struct dib9000_state *state = fe->demodulator_priv; u8 index_frontend; int ret = 0; if (mutex_lock_interruptible(&state->demod_lock) < 0) { dprintk("could not get the lock"); return -EINTR; } for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { ret = state->fe[index_frontend]->ops.sleep(state->fe[index_frontend]); if (ret < 0) goto error; } ret = dib9000_mbx_send(state, OUT_MSG_FE_SLEEP, NULL, 0); error: mutex_unlock(&state->demod_lock); return ret; } static int dib9000_fe_get_tune_settings(struct dvb_frontend *fe, struct dvb_frontend_tune_settings *tune) { tune->min_delay_ms = 1000; return 0; } static int dib9000_get_frontend(struct dvb_frontend *fe) { struct dib9000_state *state = fe->demodulator_priv; u8 index_frontend, sub_index_frontend; fe_status_t stat; int ret = 0; if (state->get_frontend_internal == 0) { if (mutex_lock_interruptible(&state->demod_lock) < 0) { dprintk("could not get the lock"); return -EINTR; } } for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { state->fe[index_frontend]->ops.read_status(state->fe[index_frontend], &stat); if (stat & FE_HAS_SYNC) { dprintk("TPS lock on the slave%i", index_frontend); /* synchronize the cache with the other frontends */ state->fe[index_frontend]->ops.get_frontend(state->fe[index_frontend]); for (sub_index_frontend = 0; (sub_index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[sub_index_frontend] != NULL); sub_index_frontend++) { if (sub_index_frontend != index_frontend) { state->fe[sub_index_frontend]->dtv_property_cache.modulation = state->fe[index_frontend]->dtv_property_cache.modulation; state->fe[sub_index_frontend]->dtv_property_cache.inversion = state->fe[index_frontend]->dtv_property_cache.inversion; state->fe[sub_index_frontend]->dtv_property_cache.transmission_mode = state->fe[index_frontend]->dtv_property_cache.transmission_mode; state->fe[sub_index_frontend]->dtv_property_cache.guard_interval = state->fe[index_frontend]->dtv_property_cache.guard_interval; state->fe[sub_index_frontend]->dtv_property_cache.hierarchy = state->fe[index_frontend]->dtv_property_cache.hierarchy; state->fe[sub_index_frontend]->dtv_property_cache.code_rate_HP = state->fe[index_frontend]->dtv_property_cache.code_rate_HP; state->fe[sub_index_frontend]->dtv_property_cache.code_rate_LP = state->fe[index_frontend]->dtv_property_cache.code_rate_LP; state->fe[sub_index_frontend]->dtv_property_cache.rolloff = state->fe[index_frontend]->dtv_property_cache.rolloff; } } ret = 0; goto return_value; } } /* get the channel from master chip */ ret = dib9000_fw_get_channel(fe); if (ret != 0) goto return_value; /* synchronize the cache with the other frontends */ for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { state->fe[index_frontend]->dtv_property_cache.inversion = fe->dtv_property_cache.inversion; state->fe[index_frontend]->dtv_property_cache.transmission_mode = fe->dtv_property_cache.transmission_mode; state->fe[index_frontend]->dtv_property_cache.guard_interval = fe->dtv_property_cache.guard_interval; state->fe[index_frontend]->dtv_property_cache.modulation = fe->dtv_property_cache.modulation; state->fe[index_frontend]->dtv_property_cache.hierarchy = fe->dtv_property_cache.hierarchy; state->fe[index_frontend]->dtv_property_cache.code_rate_HP = fe->dtv_property_cache.code_rate_HP; state->fe[index_frontend]->dtv_property_cache.code_rate_LP = fe->dtv_property_cache.code_rate_LP; state->fe[index_frontend]->dtv_property_cache.rolloff = fe->dtv_property_cache.rolloff; } ret = 0; return_value: if (state->get_frontend_internal == 0) mutex_unlock(&state->demod_lock); return ret; } static int dib9000_set_tune_state(struct dvb_frontend *fe, enum frontend_tune_state tune_state) { struct dib9000_state *state = fe->demodulator_priv; state->tune_state = tune_state; if (tune_state == CT_DEMOD_START) state->status = FE_STATUS_TUNE_PENDING; return 0; } static u32 dib9000_get_status(struct dvb_frontend *fe) { struct dib9000_state *state = fe->demodulator_priv; return state->status; } static int dib9000_set_channel_status(struct dvb_frontend *fe, struct dvb_frontend_parametersContext *channel_status) { struct dib9000_state *state = fe->demodulator_priv; memcpy(&state->channel_status, channel_status, sizeof(struct dvb_frontend_parametersContext)); return 0; } static int dib9000_set_frontend(struct dvb_frontend *fe) { struct dib9000_state *state = fe->demodulator_priv; int sleep_time, sleep_time_slave; u32 frontend_status; u8 nbr_pending, exit_condition, index_frontend, index_frontend_success; struct dvb_frontend_parametersContext channel_status; /* check that the correct parameters are set */ if (state->fe[0]->dtv_property_cache.frequency == 0) { dprintk("dib9000: must specify frequency "); return 0; } if (state->fe[0]->dtv_property_cache.bandwidth_hz == 0) { dprintk("dib9000: must specify bandwidth "); return 0; } state->pid_ctrl_index = -1; /* postpone the pid filtering cmd */ if (mutex_lock_interruptible(&state->demod_lock) < 0) { dprintk("could not get the lock"); return 0; } fe->dtv_property_cache.delivery_system = SYS_DVBT; /* set the master status */ if (state->fe[0]->dtv_property_cache.transmission_mode == TRANSMISSION_MODE_AUTO || state->fe[0]->dtv_property_cache.guard_interval == GUARD_INTERVAL_AUTO || state->fe[0]->dtv_property_cache.modulation == QAM_AUTO || state->fe[0]->dtv_property_cache.code_rate_HP == FEC_AUTO) { /* no channel specified, autosearch the channel */ state->channel_status.status = CHANNEL_STATUS_PARAMETERS_UNKNOWN; } else state->channel_status.status = CHANNEL_STATUS_PARAMETERS_SET; /* set mode and status for the different frontends */ for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { dib9000_fw_set_diversity_in(state->fe[index_frontend], 1); /* synchronization of the cache */ memcpy(&state->fe[index_frontend]->dtv_property_cache, &fe->dtv_property_cache, sizeof(struct dtv_frontend_properties)); state->fe[index_frontend]->dtv_property_cache.delivery_system = SYS_DVBT; dib9000_fw_set_output_mode(state->fe[index_frontend], OUTMODE_HIGH_Z); dib9000_set_channel_status(state->fe[index_frontend], &state->channel_status); dib9000_set_tune_state(state->fe[index_frontend], CT_DEMOD_START); } /* actual tune */ exit_condition = 0; /* 0: tune pending; 1: tune failed; 2:tune success */ index_frontend_success = 0; do { sleep_time = dib9000_fw_tune(state->fe[0]); for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { sleep_time_slave = dib9000_fw_tune(state->fe[index_frontend]); if (sleep_time == FE_CALLBACK_TIME_NEVER) sleep_time = sleep_time_slave; else if ((sleep_time_slave != FE_CALLBACK_TIME_NEVER) && (sleep_time_slave > sleep_time)) sleep_time = sleep_time_slave; } if (sleep_time != FE_CALLBACK_TIME_NEVER) msleep(sleep_time / 10); else break; nbr_pending = 0; exit_condition = 0; index_frontend_success = 0; for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { frontend_status = -dib9000_get_status(state->fe[index_frontend]); if (frontend_status > -FE_STATUS_TUNE_PENDING) { exit_condition = 2; /* tune success */ index_frontend_success = index_frontend; break; } if (frontend_status == -FE_STATUS_TUNE_PENDING) nbr_pending++; /* some frontends are still tuning */ } if ((exit_condition != 2) && (nbr_pending == 0)) exit_condition = 1; /* if all tune are done and no success, exit: tune failed */ } while (exit_condition == 0); /* check the tune result */ if (exit_condition == 1) { /* tune failed */ dprintk("tune failed"); mutex_unlock(&state->demod_lock); /* tune failed; put all the pid filtering cmd to junk */ state->pid_ctrl_index = -1; return 0; } dprintk("tune success on frontend%i", index_frontend_success); /* synchronize all the channel cache */ state->get_frontend_internal = 1; dib9000_get_frontend(state->fe[0]); state->get_frontend_internal = 0; /* retune the other frontends with the found channel */ channel_status.status = CHANNEL_STATUS_PARAMETERS_SET; for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { /* only retune the frontends which was not tuned success */ if (index_frontend != index_frontend_success) { dib9000_set_channel_status(state->fe[index_frontend], &channel_status); dib9000_set_tune_state(state->fe[index_frontend], CT_DEMOD_START); } } do { sleep_time = FE_CALLBACK_TIME_NEVER; for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { if (index_frontend != index_frontend_success) { sleep_time_slave = dib9000_fw_tune(state->fe[index_frontend]); if (sleep_time == FE_CALLBACK_TIME_NEVER) sleep_time = sleep_time_slave; else if ((sleep_time_slave != FE_CALLBACK_TIME_NEVER) && (sleep_time_slave > sleep_time)) sleep_time = sleep_time_slave; } } if (sleep_time != FE_CALLBACK_TIME_NEVER) msleep(sleep_time / 10); else break; nbr_pending = 0; for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { if (index_frontend != index_frontend_success) { frontend_status = -dib9000_get_status(state->fe[index_frontend]); if ((index_frontend != index_frontend_success) && (frontend_status == -FE_STATUS_TUNE_PENDING)) nbr_pending++; /* some frontends are still tuning */ } } } while (nbr_pending != 0); /* set the output mode */ dib9000_fw_set_output_mode(state->fe[0], state->chip.d9.cfg.output_mode); for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) dib9000_fw_set_output_mode(state->fe[index_frontend], OUTMODE_DIVERSITY); /* turn off the diversity for the last frontend */ dib9000_fw_set_diversity_in(state->fe[index_frontend - 1], 0); mutex_unlock(&state->demod_lock); if (state->pid_ctrl_index >= 0) { u8 index_pid_filter_cmd; u8 pid_ctrl_index = state->pid_ctrl_index; state->pid_ctrl_index = -2; for (index_pid_filter_cmd = 0; index_pid_filter_cmd <= pid_ctrl_index; index_pid_filter_cmd++) { if (state->pid_ctrl[index_pid_filter_cmd].cmd == DIB9000_PID_FILTER_CTRL) dib9000_fw_pid_filter_ctrl(state->fe[0], state->pid_ctrl[index_pid_filter_cmd].onoff); else if (state->pid_ctrl[index_pid_filter_cmd].cmd == DIB9000_PID_FILTER) dib9000_fw_pid_filter(state->fe[0], state->pid_ctrl[index_pid_filter_cmd].id, state->pid_ctrl[index_pid_filter_cmd].pid, state->pid_ctrl[index_pid_filter_cmd].onoff); } } /* do not postpone any more the pid filtering */ state->pid_ctrl_index = -2; return 0; } static u16 dib9000_read_lock(struct dvb_frontend *fe) { struct dib9000_state *state = fe->demodulator_priv; return dib9000_read_word(state, 535); } static int dib9000_read_status(struct dvb_frontend *fe, fe_status_t * stat) { struct dib9000_state *state = fe->demodulator_priv; u8 index_frontend; u16 lock = 0, lock_slave = 0; if (mutex_lock_interruptible(&state->demod_lock) < 0) { dprintk("could not get the lock"); return -EINTR; } for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) lock_slave |= dib9000_read_lock(state->fe[index_frontend]); lock = dib9000_read_word(state, 535); *stat = 0; if ((lock & 0x8000) || (lock_slave & 0x8000)) *stat |= FE_HAS_SIGNAL; if ((lock & 0x3000) || (lock_slave & 0x3000)) *stat |= FE_HAS_CARRIER; if ((lock & 0x0100) || (lock_slave & 0x0100)) *stat |= FE_HAS_VITERBI; if (((lock & 0x0038) == 0x38) || ((lock_slave & 0x0038) == 0x38)) *stat |= FE_HAS_SYNC; if ((lock & 0x0008) || (lock_slave & 0x0008)) *stat |= FE_HAS_LOCK; mutex_unlock(&state->demod_lock); return 0; } static int dib9000_read_ber(struct dvb_frontend *fe, u32 * ber) { struct dib9000_state *state = fe->demodulator_priv; u16 *c; int ret = 0; if (mutex_lock_interruptible(&state->demod_lock) < 0) { dprintk("could not get the lock"); return -EINTR; } if (mutex_lock_interruptible(&state->platform.risc.mem_mbx_lock) < 0) { dprintk("could not get the lock"); ret = -EINTR; goto error; } if (dib9000_fw_memmbx_sync(state, FE_SYNC_CHANNEL) < 0) { mutex_unlock(&state->platform.risc.mem_mbx_lock); ret = -EIO; goto error; } dib9000_risc_mem_read(state, FE_MM_R_FE_MONITOR, state->i2c_read_buffer, 16 * 2); mutex_unlock(&state->platform.risc.mem_mbx_lock); c = (u16 *)state->i2c_read_buffer; *ber = c[10] << 16 | c[11]; error: mutex_unlock(&state->demod_lock); return ret; } static int dib9000_read_signal_strength(struct dvb_frontend *fe, u16 * strength) { struct dib9000_state *state = fe->demodulator_priv; u8 index_frontend; u16 *c = (u16 *)state->i2c_read_buffer; u16 val; int ret = 0; if (mutex_lock_interruptible(&state->demod_lock) < 0) { dprintk("could not get the lock"); return -EINTR; } *strength = 0; for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { state->fe[index_frontend]->ops.read_signal_strength(state->fe[index_frontend], &val); if (val > 65535 - *strength) *strength = 65535; else *strength += val; } if (mutex_lock_interruptible(&state->platform.risc.mem_mbx_lock) < 0) { dprintk("could not get the lock"); ret = -EINTR; goto error; } if (dib9000_fw_memmbx_sync(state, FE_SYNC_CHANNEL) < 0) { mutex_unlock(&state->platform.risc.mem_mbx_lock); ret = -EIO; goto error; } dib9000_risc_mem_read(state, FE_MM_R_FE_MONITOR, (u8 *) c, 16 * 2); mutex_unlock(&state->platform.risc.mem_mbx_lock); val = 65535 - c[4]; if (val > 65535 - *strength) *strength = 65535; else *strength += val; error: mutex_unlock(&state->demod_lock); return ret; } static u32 dib9000_get_snr(struct dvb_frontend *fe) { struct dib9000_state *state = fe->demodulator_priv; u16 *c = (u16 *)state->i2c_read_buffer; u32 n, s, exp; u16 val; if (mutex_lock_interruptible(&state->platform.risc.mem_mbx_lock) < 0) { dprintk("could not get the lock"); return 0; } if (dib9000_fw_memmbx_sync(state, FE_SYNC_CHANNEL) < 0) { mutex_unlock(&state->platform.risc.mem_mbx_lock); return 0; } dib9000_risc_mem_read(state, FE_MM_R_FE_MONITOR, (u8 *) c, 16 * 2); mutex_unlock(&state->platform.risc.mem_mbx_lock); val = c[7]; n = (val >> 4) & 0xff; exp = ((val & 0xf) << 2); val = c[8]; exp += ((val >> 14) & 0x3); if ((exp & 0x20) != 0) exp -= 0x40; n <<= exp + 16; s = (val >> 6) & 0xFF; exp = (val & 0x3F); if ((exp & 0x20) != 0) exp -= 0x40; s <<= exp + 16; if (n > 0) { u32 t = (s / n) << 16; return t + ((s << 16) - n * t) / n; } return 0xffffffff; } static int dib9000_read_snr(struct dvb_frontend *fe, u16 * snr) { struct dib9000_state *state = fe->demodulator_priv; u8 index_frontend; u32 snr_master; if (mutex_lock_interruptible(&state->demod_lock) < 0) { dprintk("could not get the lock"); return -EINTR; } snr_master = dib9000_get_snr(fe); for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) snr_master += dib9000_get_snr(state->fe[index_frontend]); if ((snr_master >> 16) != 0) { snr_master = 10 * intlog10(snr_master >> 16); *snr = snr_master / ((1 << 24) / 10); } else *snr = 0; mutex_unlock(&state->demod_lock); return 0; } static int dib9000_read_unc_blocks(struct dvb_frontend *fe, u32 * unc) { struct dib9000_state *state = fe->demodulator_priv; u16 *c = (u16 *)state->i2c_read_buffer; int ret = 0; if (mutex_lock_interruptible(&state->demod_lock) < 0) { dprintk("could not get the lock"); return -EINTR; } if (mutex_lock_interruptible(&state->platform.risc.mem_mbx_lock) < 0) { dprintk("could not get the lock"); ret = -EINTR; goto error; } if (dib9000_fw_memmbx_sync(state, FE_SYNC_CHANNEL) < 0) { mutex_unlock(&state->platform.risc.mem_mbx_lock); ret = -EIO; goto error; } dib9000_risc_mem_read(state, FE_MM_R_FE_MONITOR, (u8 *) c, 16 * 2); mutex_unlock(&state->platform.risc.mem_mbx_lock); *unc = c[12]; error: mutex_unlock(&state->demod_lock); return ret; } int dib9000_i2c_enumeration(struct i2c_adapter *i2c, int no_of_demods, u8 default_addr, u8 first_addr) { int k = 0, ret = 0; u8 new_addr = 0; struct i2c_device client = {.i2c_adap = i2c }; client.i2c_write_buffer = kzalloc(4 * sizeof(u8), GFP_KERNEL); if (!client.i2c_write_buffer) { dprintk("%s: not enough memory", __func__); return -ENOMEM; } client.i2c_read_buffer = kzalloc(4 * sizeof(u8), GFP_KERNEL); if (!client.i2c_read_buffer) { dprintk("%s: not enough memory", __func__); ret = -ENOMEM; goto error_memory; } client.i2c_addr = default_addr + 16; dib9000_i2c_write16(&client, 1796, 0x0); for (k = no_of_demods - 1; k >= 0; k--) { /* designated i2c address */ new_addr = first_addr + (k << 1); client.i2c_addr = default_addr; dib9000_i2c_write16(&client, 1817, 3); dib9000_i2c_write16(&client, 1796, 0); dib9000_i2c_write16(&client, 1227, 1); dib9000_i2c_write16(&client, 1227, 0); client.i2c_addr = new_addr; dib9000_i2c_write16(&client, 1817, 3); dib9000_i2c_write16(&client, 1796, 0); dib9000_i2c_write16(&client, 1227, 1); dib9000_i2c_write16(&client, 1227, 0); if (dib9000_identify(&client) == 0) { client.i2c_addr = default_addr; if (dib9000_identify(&client) == 0) { dprintk("DiB9000 #%d: not identified", k); ret = -EIO; goto error; } } dib9000_i2c_write16(&client, 1795, (1 << 10) | (4 << 6)); dib9000_i2c_write16(&client, 1794, (new_addr << 2) | 2); dprintk("IC %d initialized (to i2c_address 0x%x)", k, new_addr); } for (k = 0; k < no_of_demods; k++) { new_addr = first_addr | (k << 1); client.i2c_addr = new_addr; dib9000_i2c_write16(&client, 1794, (new_addr << 2)); dib9000_i2c_write16(&client, 1795, 0); } error: kfree(client.i2c_read_buffer); error_memory: kfree(client.i2c_write_buffer); return ret; } EXPORT_SYMBOL(dib9000_i2c_enumeration); int dib9000_set_slave_frontend(struct dvb_frontend *fe, struct dvb_frontend *fe_slave) { struct dib9000_state *state = fe->demodulator_priv; u8 index_frontend = 1; while ((index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL)) index_frontend++; if (index_frontend < MAX_NUMBER_OF_FRONTENDS) { dprintk("set slave fe %p to index %i", fe_slave, index_frontend); state->fe[index_frontend] = fe_slave; return 0; } dprintk("too many slave frontend"); return -ENOMEM; } EXPORT_SYMBOL(dib9000_set_slave_frontend); int dib9000_remove_slave_frontend(struct dvb_frontend *fe) { struct dib9000_state *state = fe->demodulator_priv; u8 index_frontend = 1; while ((index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL)) index_frontend++; if (index_frontend != 1) { dprintk("remove slave fe %p (index %i)", state->fe[index_frontend - 1], index_frontend - 1); state->fe[index_frontend] = NULL; return 0; } dprintk("no frontend to be removed"); return -ENODEV; } EXPORT_SYMBOL(dib9000_remove_slave_frontend); struct dvb_frontend *dib9000_get_slave_frontend(struct dvb_frontend *fe, int slave_index) { struct dib9000_state *state = fe->demodulator_priv; if (slave_index >= MAX_NUMBER_OF_FRONTENDS) return NULL; return state->fe[slave_index]; } EXPORT_SYMBOL(dib9000_get_slave_frontend); static struct dvb_frontend_ops dib9000_ops; struct dvb_frontend *dib9000_attach(struct i2c_adapter *i2c_adap, u8 i2c_addr, const struct dib9000_config *cfg) { struct dvb_frontend *fe; struct dib9000_state *st; st = kzalloc(sizeof(struct dib9000_state), GFP_KERNEL); if (st == NULL) return NULL; fe = kzalloc(sizeof(struct dvb_frontend), GFP_KERNEL); if (fe == NULL) { kfree(st); return NULL; } memcpy(&st->chip.d9.cfg, cfg, sizeof(struct dib9000_config)); st->i2c.i2c_adap = i2c_adap; st->i2c.i2c_addr = i2c_addr; st->i2c.i2c_write_buffer = st->i2c_write_buffer; st->i2c.i2c_read_buffer = st->i2c_read_buffer; st->gpio_dir = DIB9000_GPIO_DEFAULT_DIRECTIONS; st->gpio_val = DIB9000_GPIO_DEFAULT_VALUES; st->gpio_pwm_pos = DIB9000_GPIO_DEFAULT_PWM_POS; mutex_init(&st->platform.risc.mbx_if_lock); mutex_init(&st->platform.risc.mbx_lock); mutex_init(&st->platform.risc.mem_lock); mutex_init(&st->platform.risc.mem_mbx_lock); mutex_init(&st->demod_lock); st->get_frontend_internal = 0; st->pid_ctrl_index = -2; st->fe[0] = fe; fe->demodulator_priv = st; memcpy(&st->fe[0]->ops, &dib9000_ops, sizeof(struct dvb_frontend_ops)); /* Ensure the output mode remains at the previous default if it's * not specifically set by the caller. */ if ((st->chip.d9.cfg.output_mode != OUTMODE_MPEG2_SERIAL) && (st->chip.d9.cfg.output_mode != OUTMODE_MPEG2_PAR_GATED_CLK)) st->chip.d9.cfg.output_mode = OUTMODE_MPEG2_FIFO; if (dib9000_identify(&st->i2c) == 0) goto error; dibx000_init_i2c_master(&st->i2c_master, DIB7000MC, st->i2c.i2c_adap, st->i2c.i2c_addr); st->tuner_adap.dev.parent = i2c_adap->dev.parent; strncpy(st->tuner_adap.name, "DIB9000_FW TUNER ACCESS", sizeof(st->tuner_adap.name)); st->tuner_adap.algo = &dib9000_tuner_algo; st->tuner_adap.algo_data = NULL; i2c_set_adapdata(&st->tuner_adap, st); if (i2c_add_adapter(&st->tuner_adap) < 0) goto error; st->component_bus.dev.parent = i2c_adap->dev.parent; strncpy(st->component_bus.name, "DIB9000_FW COMPONENT BUS ACCESS", sizeof(st->component_bus.name)); st->component_bus.algo = &dib9000_component_bus_algo; st->component_bus.algo_data = NULL; st->component_bus_speed = 340; i2c_set_adapdata(&st->component_bus, st); if (i2c_add_adapter(&st->component_bus) < 0) goto component_bus_add_error; dib9000_fw_reset(fe); return fe; component_bus_add_error: i2c_del_adapter(&st->tuner_adap); error: kfree(st); return NULL; } EXPORT_SYMBOL(dib9000_attach); static struct dvb_frontend_ops dib9000_ops = { .delsys = { SYS_DVBT }, .info = { .name = "DiBcom 9000", .frequency_min = 44250000, .frequency_max = 867250000, .frequency_stepsize = 62500, .caps = FE_CAN_INVERSION_AUTO | FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO | FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO | FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO | FE_CAN_RECOVER | FE_CAN_HIERARCHY_AUTO, }, .release = dib9000_release, .init = dib9000_wakeup, .sleep = dib9000_sleep, .set_frontend = dib9000_set_frontend, .get_tune_settings = dib9000_fe_get_tune_settings, .get_frontend = dib9000_get_frontend, .read_status = dib9000_read_status, .read_ber = dib9000_read_ber, .read_signal_strength = dib9000_read_signal_strength, .read_snr = dib9000_read_snr, .read_ucblocks = dib9000_read_unc_blocks, }; MODULE_AUTHOR("Patrick Boettcher <pboettcher@dibcom.fr>"); MODULE_AUTHOR("Olivier Grenie <ogrenie@dibcom.fr>"); MODULE_DESCRIPTION("Driver for the DiBcom 9000 COFDM demodulator"); MODULE_LICENSE("GPL");