/* * IBM eServer eHCA Infiniband device driver for Linux on POWER * * internal queue handling * * Authors: Waleri Fomin <fomin@de.ibm.com> * Reinhard Ernst <rernst@de.ibm.com> * Christoph Raisch <raisch@de.ibm.com> * * Copyright (c) 2005 IBM Corporation * * This source code is distributed under a dual license of GPL v2.0 and OpenIB * BSD. * * OpenIB BSD License * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials * provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include <linux/slab.h> #include "ehca_tools.h" #include "ipz_pt_fn.h" #include "ehca_classes.h" #define PAGES_PER_KPAGE (PAGE_SIZE >> EHCA_PAGESHIFT) struct kmem_cache *small_qp_cache; void *ipz_qpageit_get_inc(struct ipz_queue *queue) { void *ret = ipz_qeit_get(queue); queue->current_q_offset += queue->pagesize; if (queue->current_q_offset > queue->queue_length) { queue->current_q_offset -= queue->pagesize; ret = NULL; } if (((u64)ret) % queue->pagesize) { ehca_gen_err("ERROR!! not at PAGE-Boundary"); return NULL; } return ret; } void *ipz_qeit_eq_get_inc(struct ipz_queue *queue) { void *ret = ipz_qeit_get(queue); u64 last_entry_in_q = queue->queue_length - queue->qe_size; queue->current_q_offset += queue->qe_size; if (queue->current_q_offset > last_entry_in_q) { queue->current_q_offset = 0; queue->toggle_state = (~queue->toggle_state) & 1; } return ret; } int ipz_queue_abs_to_offset(struct ipz_queue *queue, u64 addr, u64 *q_offset) { int i; for (i = 0; i < queue->queue_length / queue->pagesize; i++) { u64 page = __pa(queue->queue_pages[i]); if (addr >= page && addr < page + queue->pagesize) { *q_offset = addr - page + i * queue->pagesize; return 0; } } return -EINVAL; } #if PAGE_SHIFT < EHCA_PAGESHIFT #error Kernel pages must be at least as large than eHCA pages (4K) ! #endif /* * allocate pages for queue: * outer loop allocates whole kernel pages (page aligned) and * inner loop divides a kernel page into smaller hca queue pages */ static int alloc_queue_pages(struct ipz_queue *queue, const u32 nr_of_pages) { int k, f = 0; u8 *kpage; while (f < nr_of_pages) { kpage = (u8 *)get_zeroed_page(GFP_KERNEL); if (!kpage) goto out; for (k = 0; k < PAGES_PER_KPAGE && f < nr_of_pages; k++) { queue->queue_pages[f] = (struct ipz_page *)kpage; kpage += EHCA_PAGESIZE; f++; } } return 1; out: for (f = 0; f < nr_of_pages && queue->queue_pages[f]; f += PAGES_PER_KPAGE) free_page((unsigned long)(queue->queue_pages)[f]); return 0; } static int alloc_small_queue_page(struct ipz_queue *queue, struct ehca_pd *pd) { int order = ilog2(queue->pagesize) - 9; struct ipz_small_queue_page *page; unsigned long bit; mutex_lock(&pd->lock); if (!list_empty(&pd->free[order])) page = list_entry(pd->free[order].next, struct ipz_small_queue_page, list); else { page = kmem_cache_zalloc(small_qp_cache, GFP_KERNEL); if (!page) goto out; page->page = get_zeroed_page(GFP_KERNEL); if (!page->page) { kmem_cache_free(small_qp_cache, page); goto out; } list_add(&page->list, &pd->free[order]); } bit = find_first_zero_bit(page->bitmap, IPZ_SPAGE_PER_KPAGE >> order); __set_bit(bit, page->bitmap); page->fill++; if (page->fill == IPZ_SPAGE_PER_KPAGE >> order) list_move(&page->list, &pd->full[order]); mutex_unlock(&pd->lock); queue->queue_pages[0] = (void *)(page->page | (bit << (order + 9))); queue->small_page = page; queue->offset = bit << (order + 9); return 1; out: ehca_err(pd->ib_pd.device, "failed to allocate small queue page"); mutex_unlock(&pd->lock); return 0; } static void free_small_queue_page(struct ipz_queue *queue, struct ehca_pd *pd) { int order = ilog2(queue->pagesize) - 9; struct ipz_small_queue_page *page = queue->small_page; unsigned long bit; int free_page = 0; bit = ((unsigned long)queue->queue_pages[0] & ~PAGE_MASK) >> (order + 9); mutex_lock(&pd->lock); __clear_bit(bit, page->bitmap); page->fill--; if (page->fill == 0) { list_del(&page->list); free_page = 1; } if (page->fill == (IPZ_SPAGE_PER_KPAGE >> order) - 1) /* the page was full until we freed the chunk */ list_move_tail(&page->list, &pd->free[order]); mutex_unlock(&pd->lock); if (free_page) { free_page(page->page); kmem_cache_free(small_qp_cache, page); } } int ipz_queue_ctor(struct ehca_pd *pd, struct ipz_queue *queue, const u32 nr_of_pages, const u32 pagesize, const u32 qe_size, const u32 nr_of_sg, int is_small) { if (pagesize > PAGE_SIZE) { ehca_gen_err("FATAL ERROR: pagesize=%x " "is greater than kernel page size", pagesize); return 0; } /* init queue fields */ queue->queue_length = nr_of_pages * pagesize; queue->pagesize = pagesize; queue->qe_size = qe_size; queue->act_nr_of_sg = nr_of_sg; queue->current_q_offset = 0; queue->toggle_state = 1; queue->small_page = NULL; /* allocate queue page pointers */ queue->queue_pages = kzalloc(nr_of_pages * sizeof(void *), GFP_KERNEL | __GFP_NOWARN); if (!queue->queue_pages) { queue->queue_pages = vzalloc(nr_of_pages * sizeof(void *)); if (!queue->queue_pages) { ehca_gen_err("Couldn't allocate queue page list"); return 0; } } /* allocate actual queue pages */ if (is_small) { if (!alloc_small_queue_page(queue, pd)) goto ipz_queue_ctor_exit0; } else if (!alloc_queue_pages(queue, nr_of_pages)) goto ipz_queue_ctor_exit0; return 1; ipz_queue_ctor_exit0: ehca_gen_err("Couldn't alloc pages queue=%p " "nr_of_pages=%x", queue, nr_of_pages); if (is_vmalloc_addr(queue->queue_pages)) vfree(queue->queue_pages); else kfree(queue->queue_pages); return 0; } int ipz_queue_dtor(struct ehca_pd *pd, struct ipz_queue *queue) { int i, nr_pages; if (!queue || !queue->queue_pages) { ehca_gen_dbg("queue or queue_pages is NULL"); return 0; } if (queue->small_page) free_small_queue_page(queue, pd); else { nr_pages = queue->queue_length / queue->pagesize; for (i = 0; i < nr_pages; i += PAGES_PER_KPAGE) free_page((unsigned long)queue->queue_pages[i]); } if (is_vmalloc_addr(queue->queue_pages)) vfree(queue->queue_pages); else kfree(queue->queue_pages); return 1; } int ehca_init_small_qp_cache(void) { small_qp_cache = kmem_cache_create("ehca_cache_small_qp", sizeof(struct ipz_small_queue_page), 0, SLAB_HWCACHE_ALIGN, NULL); if (!small_qp_cache) return -ENOMEM; return 0; } void ehca_cleanup_small_qp_cache(void) { kmem_cache_destroy(small_qp_cache); }