/* * ltr501.c - Support for Lite-On LTR501 ambient light and proximity sensor * * Copyright 2014 Peter Meerwald <pmeerw@pmeerw.net> * * This file is subject to the terms and conditions of version 2 of * the GNU General Public License. See the file COPYING in the main * directory of this archive for more details. * * 7-bit I2C slave address 0x23 * * TODO: interrupt, threshold, measurement rate, IR LED characteristics */ #include <linux/module.h> #include <linux/i2c.h> #include <linux/err.h> #include <linux/delay.h> #include <linux/iio/iio.h> #include <linux/iio/sysfs.h> #include <linux/iio/trigger_consumer.h> #include <linux/iio/buffer.h> #include <linux/iio/triggered_buffer.h> #define LTR501_DRV_NAME "ltr501" #define LTR501_ALS_CONTR 0x80 /* ALS operation mode, SW reset */ #define LTR501_PS_CONTR 0x81 /* PS operation mode */ #define LTR501_PART_ID 0x86 #define LTR501_MANUFAC_ID 0x87 #define LTR501_ALS_DATA1 0x88 /* 16-bit, little endian */ #define LTR501_ALS_DATA0 0x8a /* 16-bit, little endian */ #define LTR501_ALS_PS_STATUS 0x8c #define LTR501_PS_DATA 0x8d /* 16-bit, little endian */ #define LTR501_ALS_CONTR_SW_RESET BIT(2) #define LTR501_CONTR_PS_GAIN_MASK (BIT(3) | BIT(2)) #define LTR501_CONTR_PS_GAIN_SHIFT 2 #define LTR501_CONTR_ALS_GAIN_MASK BIT(3) #define LTR501_CONTR_ACTIVE BIT(1) #define LTR501_STATUS_ALS_RDY BIT(2) #define LTR501_STATUS_PS_RDY BIT(0) #define LTR501_PS_DATA_MASK 0x7ff struct ltr501_data { struct i2c_client *client; struct mutex lock_als, lock_ps; u8 als_contr, ps_contr; }; static int ltr501_drdy(struct ltr501_data *data, u8 drdy_mask) { int tries = 100; int ret; while (tries--) { ret = i2c_smbus_read_byte_data(data->client, LTR501_ALS_PS_STATUS); if (ret < 0) return ret; if ((ret & drdy_mask) == drdy_mask) return 0; msleep(25); } dev_err(&data->client->dev, "ltr501_drdy() failed, data not ready\n"); return -EIO; } static int ltr501_read_als(struct ltr501_data *data, __le16 buf[2]) { int ret = ltr501_drdy(data, LTR501_STATUS_ALS_RDY); if (ret < 0) return ret; /* always read both ALS channels in given order */ return i2c_smbus_read_i2c_block_data(data->client, LTR501_ALS_DATA1, 2 * sizeof(__le16), (u8 *) buf); } static int ltr501_read_ps(struct ltr501_data *data) { int ret = ltr501_drdy(data, LTR501_STATUS_PS_RDY); if (ret < 0) return ret; return i2c_smbus_read_word_data(data->client, LTR501_PS_DATA); } #define LTR501_INTENSITY_CHANNEL(_idx, _addr, _mod, _shared) { \ .type = IIO_INTENSITY, \ .modified = 1, \ .address = (_addr), \ .channel2 = (_mod), \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ .info_mask_shared_by_type = (_shared), \ .scan_index = (_idx), \ .scan_type = { \ .sign = 'u', \ .realbits = 16, \ .storagebits = 16, \ .endianness = IIO_CPU, \ } \ } static const struct iio_chan_spec ltr501_channels[] = { LTR501_INTENSITY_CHANNEL(0, LTR501_ALS_DATA0, IIO_MOD_LIGHT_BOTH, 0), LTR501_INTENSITY_CHANNEL(1, LTR501_ALS_DATA1, IIO_MOD_LIGHT_IR, BIT(IIO_CHAN_INFO_SCALE)), { .type = IIO_PROXIMITY, .address = LTR501_PS_DATA, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE), .scan_index = 2, .scan_type = { .sign = 'u', .realbits = 11, .storagebits = 16, .endianness = IIO_CPU, }, }, IIO_CHAN_SOFT_TIMESTAMP(3), }; static const int ltr501_ps_gain[4][2] = { {1, 0}, {0, 250000}, {0, 125000}, {0, 62500} }; static int ltr501_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct ltr501_data *data = iio_priv(indio_dev); __le16 buf[2]; int ret, i; switch (mask) { case IIO_CHAN_INFO_RAW: if (iio_buffer_enabled(indio_dev)) return -EBUSY; switch (chan->type) { case IIO_INTENSITY: mutex_lock(&data->lock_als); ret = ltr501_read_als(data, buf); mutex_unlock(&data->lock_als); if (ret < 0) return ret; *val = le16_to_cpu(chan->address == LTR501_ALS_DATA1 ? buf[0] : buf[1]); return IIO_VAL_INT; case IIO_PROXIMITY: mutex_lock(&data->lock_ps); ret = ltr501_read_ps(data); mutex_unlock(&data->lock_ps); if (ret < 0) return ret; *val = ret & LTR501_PS_DATA_MASK; return IIO_VAL_INT; default: return -EINVAL; } case IIO_CHAN_INFO_SCALE: switch (chan->type) { case IIO_INTENSITY: if (data->als_contr & LTR501_CONTR_ALS_GAIN_MASK) { *val = 0; *val2 = 5000; return IIO_VAL_INT_PLUS_MICRO; } else { *val = 1; *val2 = 0; return IIO_VAL_INT; } case IIO_PROXIMITY: i = (data->ps_contr & LTR501_CONTR_PS_GAIN_MASK) >> LTR501_CONTR_PS_GAIN_SHIFT; *val = ltr501_ps_gain[i][0]; *val2 = ltr501_ps_gain[i][1]; return IIO_VAL_INT_PLUS_MICRO; default: return -EINVAL; } } return -EINVAL; } static int ltr501_get_ps_gain_index(int val, int val2) { int i; for (i = 0; i < ARRAY_SIZE(ltr501_ps_gain); i++) if (val == ltr501_ps_gain[i][0] && val2 == ltr501_ps_gain[i][1]) return i; return -1; } static int ltr501_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct ltr501_data *data = iio_priv(indio_dev); int i; if (iio_buffer_enabled(indio_dev)) return -EBUSY; switch (mask) { case IIO_CHAN_INFO_SCALE: switch (chan->type) { case IIO_INTENSITY: if (val == 0 && val2 == 5000) data->als_contr |= LTR501_CONTR_ALS_GAIN_MASK; else if (val == 1 && val2 == 0) data->als_contr &= ~LTR501_CONTR_ALS_GAIN_MASK; else return -EINVAL; return i2c_smbus_write_byte_data(data->client, LTR501_ALS_CONTR, data->als_contr); case IIO_PROXIMITY: i = ltr501_get_ps_gain_index(val, val2); if (i < 0) return -EINVAL; data->ps_contr &= ~LTR501_CONTR_PS_GAIN_MASK; data->ps_contr |= i << LTR501_CONTR_PS_GAIN_SHIFT; return i2c_smbus_write_byte_data(data->client, LTR501_PS_CONTR, data->ps_contr); default: return -EINVAL; } } return -EINVAL; } static IIO_CONST_ATTR(in_proximity_scale_available, "1 0.25 0.125 0.0625"); static IIO_CONST_ATTR(in_intensity_scale_available, "1 0.005"); static struct attribute *ltr501_attributes[] = { &iio_const_attr_in_proximity_scale_available.dev_attr.attr, &iio_const_attr_in_intensity_scale_available.dev_attr.attr, NULL }; static const struct attribute_group ltr501_attribute_group = { .attrs = ltr501_attributes, }; static const struct iio_info ltr501_info = { .read_raw = ltr501_read_raw, .write_raw = ltr501_write_raw, .attrs = <r501_attribute_group, .driver_module = THIS_MODULE, }; static int ltr501_write_contr(struct i2c_client *client, u8 als_val, u8 ps_val) { int ret = i2c_smbus_write_byte_data(client, LTR501_ALS_CONTR, als_val); if (ret < 0) return ret; return i2c_smbus_write_byte_data(client, LTR501_PS_CONTR, ps_val); } static irqreturn_t ltr501_trigger_handler(int irq, void *p) { struct iio_poll_func *pf = p; struct iio_dev *indio_dev = pf->indio_dev; struct ltr501_data *data = iio_priv(indio_dev); u16 buf[8]; __le16 als_buf[2]; u8 mask = 0; int j = 0; int ret; memset(buf, 0, sizeof(buf)); /* figure out which data needs to be ready */ if (test_bit(0, indio_dev->active_scan_mask) || test_bit(1, indio_dev->active_scan_mask)) mask |= LTR501_STATUS_ALS_RDY; if (test_bit(2, indio_dev->active_scan_mask)) mask |= LTR501_STATUS_PS_RDY; ret = ltr501_drdy(data, mask); if (ret < 0) goto done; if (mask & LTR501_STATUS_ALS_RDY) { ret = i2c_smbus_read_i2c_block_data(data->client, LTR501_ALS_DATA1, sizeof(als_buf), (u8 *) als_buf); if (ret < 0) return ret; if (test_bit(0, indio_dev->active_scan_mask)) buf[j++] = le16_to_cpu(als_buf[1]); if (test_bit(1, indio_dev->active_scan_mask)) buf[j++] = le16_to_cpu(als_buf[0]); } if (mask & LTR501_STATUS_PS_RDY) { ret = i2c_smbus_read_word_data(data->client, LTR501_PS_DATA); if (ret < 0) goto done; buf[j++] = ret & LTR501_PS_DATA_MASK; } iio_push_to_buffers_with_timestamp(indio_dev, buf, iio_get_time_ns()); done: iio_trigger_notify_done(indio_dev->trig); return IRQ_HANDLED; } static int ltr501_init(struct ltr501_data *data) { int ret; ret = i2c_smbus_read_byte_data(data->client, LTR501_ALS_CONTR); if (ret < 0) return ret; data->als_contr = ret | LTR501_CONTR_ACTIVE; ret = i2c_smbus_read_byte_data(data->client, LTR501_PS_CONTR); if (ret < 0) return ret; data->ps_contr = ret | LTR501_CONTR_ACTIVE; return ltr501_write_contr(data->client, data->als_contr, data->ps_contr); } static int ltr501_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct ltr501_data *data; struct iio_dev *indio_dev; int ret; indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data)); if (!indio_dev) return -ENOMEM; data = iio_priv(indio_dev); i2c_set_clientdata(client, indio_dev); data->client = client; mutex_init(&data->lock_als); mutex_init(&data->lock_ps); ret = i2c_smbus_read_byte_data(data->client, LTR501_PART_ID); if (ret < 0) return ret; if ((ret >> 4) != 0x8) return -ENODEV; indio_dev->dev.parent = &client->dev; indio_dev->info = <r501_info; indio_dev->channels = ltr501_channels; indio_dev->num_channels = ARRAY_SIZE(ltr501_channels); indio_dev->name = LTR501_DRV_NAME; indio_dev->modes = INDIO_DIRECT_MODE; ret = ltr501_init(data); if (ret < 0) return ret; ret = iio_triggered_buffer_setup(indio_dev, NULL, ltr501_trigger_handler, NULL); if (ret) return ret; ret = iio_device_register(indio_dev); if (ret) goto error_unreg_buffer; return 0; error_unreg_buffer: iio_triggered_buffer_cleanup(indio_dev); return ret; } static int ltr501_powerdown(struct ltr501_data *data) { return ltr501_write_contr(data->client, data->als_contr & ~LTR501_CONTR_ACTIVE, data->ps_contr & ~LTR501_CONTR_ACTIVE); } static int ltr501_remove(struct i2c_client *client) { struct iio_dev *indio_dev = i2c_get_clientdata(client); iio_device_unregister(indio_dev); iio_triggered_buffer_cleanup(indio_dev); ltr501_powerdown(iio_priv(indio_dev)); return 0; } #ifdef CONFIG_PM_SLEEP static int ltr501_suspend(struct device *dev) { struct ltr501_data *data = iio_priv(i2c_get_clientdata( to_i2c_client(dev))); return ltr501_powerdown(data); } static int ltr501_resume(struct device *dev) { struct ltr501_data *data = iio_priv(i2c_get_clientdata( to_i2c_client(dev))); return ltr501_write_contr(data->client, data->als_contr, data->ps_contr); } #endif static SIMPLE_DEV_PM_OPS(ltr501_pm_ops, ltr501_suspend, ltr501_resume); static const struct i2c_device_id ltr501_id[] = { { "ltr501", 0 }, { } }; MODULE_DEVICE_TABLE(i2c, ltr501_id); static struct i2c_driver ltr501_driver = { .driver = { .name = LTR501_DRV_NAME, .pm = <r501_pm_ops, .owner = THIS_MODULE, }, .probe = ltr501_probe, .remove = ltr501_remove, .id_table = ltr501_id, }; module_i2c_driver(ltr501_driver); MODULE_AUTHOR("Peter Meerwald <pmeerw@pmeerw.net>"); MODULE_DESCRIPTION("Lite-On LTR501 ambient light and proximity sensor driver"); MODULE_LICENSE("GPL");