/* * Copyright (c) 2014 MundoReader S.L. * Author: Heiko Stuebner <heiko@sntech.de> * * based on clk/samsung/clk-cpu.c * Copyright (c) 2014 Samsung Electronics Co., Ltd. * Author: Thomas Abraham <thomas.ab@samsung.com> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * A CPU clock is defined as a clock supplied to a CPU or a group of CPUs. * The CPU clock is typically derived from a hierarchy of clock * blocks which includes mux and divider blocks. There are a number of other * auxiliary clocks supplied to the CPU domain such as the debug blocks and AXI * clock for CPU domain. The rates of these auxiliary clocks are related to the * CPU clock rate and this relation is usually specified in the hardware manual * of the SoC or supplied after the SoC characterization. * * The below implementation of the CPU clock allows the rate changes of the CPU * clock and the corresponding rate changes of the auxillary clocks of the CPU * domain. The platform clock driver provides a clock register configuration * for each configurable rate which is then used to program the clock hardware * registers to acheive a fast co-oridinated rate change for all the CPU domain * clocks. * * On a rate change request for the CPU clock, the rate change is propagated * upto the PLL supplying the clock to the CPU domain clock blocks. While the * CPU domain PLL is reconfigured, the CPU domain clocks are driven using an * alternate clock source. If required, the alternate clock source is divided * down in order to keep the output clock rate within the previous OPP limits. */ #include <linux/of.h> #include <linux/slab.h> #include <linux/io.h> #include <linux/clk-provider.h> #include "clk.h" /** * struct rockchip_cpuclk: information about clock supplied to a CPU core. * @hw: handle between ccf and cpu clock. * @alt_parent: alternate parent clock to use when switching the speed * of the primary parent clock. * @reg_base: base register for cpu-clock values. * @clk_nb: clock notifier registered for changes in clock speed of the * primary parent clock. * @rate_count: number of rates in the rate_table * @rate_table: pll-rates and their associated dividers * @reg_data: cpu-specific register settings * @lock: clock lock */ struct rockchip_cpuclk { struct clk_hw hw; struct clk_mux cpu_mux; const struct clk_ops *cpu_mux_ops; struct clk *alt_parent; void __iomem *reg_base; struct notifier_block clk_nb; unsigned int rate_count; struct rockchip_cpuclk_rate_table *rate_table; const struct rockchip_cpuclk_reg_data *reg_data; spinlock_t *lock; }; #define to_rockchip_cpuclk_hw(hw) container_of(hw, struct rockchip_cpuclk, hw) #define to_rockchip_cpuclk_nb(nb) \ container_of(nb, struct rockchip_cpuclk, clk_nb) static const struct rockchip_cpuclk_rate_table *rockchip_get_cpuclk_settings( struct rockchip_cpuclk *cpuclk, unsigned long rate) { const struct rockchip_cpuclk_rate_table *rate_table = cpuclk->rate_table; int i; for (i = 0; i < cpuclk->rate_count; i++) { if (rate == rate_table[i].prate) return &rate_table[i]; } return NULL; } static unsigned long rockchip_cpuclk_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct rockchip_cpuclk *cpuclk = to_rockchip_cpuclk_hw(hw); const struct rockchip_cpuclk_reg_data *reg_data = cpuclk->reg_data; u32 clksel0 = readl_relaxed(cpuclk->reg_base + reg_data->core_reg); clksel0 >>= reg_data->div_core_shift; clksel0 &= reg_data->div_core_mask; return parent_rate / (clksel0 + 1); } static const struct clk_ops rockchip_cpuclk_ops = { .recalc_rate = rockchip_cpuclk_recalc_rate, }; static void rockchip_cpuclk_set_dividers(struct rockchip_cpuclk *cpuclk, const struct rockchip_cpuclk_rate_table *rate) { int i; /* alternate parent is active now. set the dividers */ for (i = 0; i < ARRAY_SIZE(rate->divs); i++) { const struct rockchip_cpuclk_clksel *clksel = &rate->divs[i]; if (!clksel->reg) continue; pr_debug("%s: setting reg 0x%x to 0x%x\n", __func__, clksel->reg, clksel->val); writel(clksel->val , cpuclk->reg_base + clksel->reg); } } static int rockchip_cpuclk_pre_rate_change(struct rockchip_cpuclk *cpuclk, struct clk_notifier_data *ndata) { const struct rockchip_cpuclk_reg_data *reg_data = cpuclk->reg_data; unsigned long alt_prate, alt_div; alt_prate = clk_get_rate(cpuclk->alt_parent); spin_lock(cpuclk->lock); /* * If the old parent clock speed is less than the clock speed * of the alternate parent, then it should be ensured that at no point * the armclk speed is more than the old_rate until the dividers are * set. */ if (alt_prate > ndata->old_rate) { /* calculate dividers */ alt_div = DIV_ROUND_UP(alt_prate, ndata->old_rate) - 1; if (alt_div > reg_data->div_core_mask) { pr_warn("%s: limiting alt-divider %lu to %d\n", __func__, alt_div, reg_data->div_core_mask); alt_div = reg_data->div_core_mask; } /* * Change parents and add dividers in a single transaction. * * NOTE: we do this in a single transaction so we're never * dividing the primary parent by the extra dividers that were * needed for the alt. */ pr_debug("%s: setting div %lu as alt-rate %lu > old-rate %lu\n", __func__, alt_div, alt_prate, ndata->old_rate); writel(HIWORD_UPDATE(alt_div, reg_data->div_core_mask, reg_data->div_core_shift) | HIWORD_UPDATE(1, 1, reg_data->mux_core_shift), cpuclk->reg_base + reg_data->core_reg); } else { /* select alternate parent */ writel(HIWORD_UPDATE(1, 1, reg_data->mux_core_shift), cpuclk->reg_base + reg_data->core_reg); } spin_unlock(cpuclk->lock); return 0; } static int rockchip_cpuclk_post_rate_change(struct rockchip_cpuclk *cpuclk, struct clk_notifier_data *ndata) { const struct rockchip_cpuclk_reg_data *reg_data = cpuclk->reg_data; const struct rockchip_cpuclk_rate_table *rate; rate = rockchip_get_cpuclk_settings(cpuclk, ndata->new_rate); if (!rate) { pr_err("%s: Invalid rate : %lu for cpuclk\n", __func__, ndata->new_rate); return -EINVAL; } spin_lock(cpuclk->lock); if (ndata->old_rate < ndata->new_rate) rockchip_cpuclk_set_dividers(cpuclk, rate); /* * post-rate change event, re-mux to primary parent and remove dividers. * * NOTE: we do this in a single transaction so we're never dividing the * primary parent by the extra dividers that were needed for the alt. */ writel(HIWORD_UPDATE(0, reg_data->div_core_mask, reg_data->div_core_shift) | HIWORD_UPDATE(0, 1, reg_data->mux_core_shift), cpuclk->reg_base + reg_data->core_reg); if (ndata->old_rate > ndata->new_rate) rockchip_cpuclk_set_dividers(cpuclk, rate); spin_unlock(cpuclk->lock); return 0; } /* * This clock notifier is called when the frequency of the parent clock * of cpuclk is to be changed. This notifier handles the setting up all * the divider clocks, remux to temporary parent and handling the safe * frequency levels when using temporary parent. */ static int rockchip_cpuclk_notifier_cb(struct notifier_block *nb, unsigned long event, void *data) { struct clk_notifier_data *ndata = data; struct rockchip_cpuclk *cpuclk = to_rockchip_cpuclk_nb(nb); int ret = 0; pr_debug("%s: event %lu, old_rate %lu, new_rate: %lu\n", __func__, event, ndata->old_rate, ndata->new_rate); if (event == PRE_RATE_CHANGE) ret = rockchip_cpuclk_pre_rate_change(cpuclk, ndata); else if (event == POST_RATE_CHANGE) ret = rockchip_cpuclk_post_rate_change(cpuclk, ndata); return notifier_from_errno(ret); } struct clk *rockchip_clk_register_cpuclk(const char *name, const char **parent_names, u8 num_parents, const struct rockchip_cpuclk_reg_data *reg_data, const struct rockchip_cpuclk_rate_table *rates, int nrates, void __iomem *reg_base, spinlock_t *lock) { struct rockchip_cpuclk *cpuclk; struct clk_init_data init; struct clk *clk, *cclk; int ret; if (num_parents != 2) { pr_err("%s: needs two parent clocks\n", __func__); return ERR_PTR(-EINVAL); } cpuclk = kzalloc(sizeof(*cpuclk), GFP_KERNEL); if (!cpuclk) return ERR_PTR(-ENOMEM); init.name = name; init.parent_names = &parent_names[0]; init.num_parents = 1; init.ops = &rockchip_cpuclk_ops; /* only allow rate changes when we have a rate table */ init.flags = (nrates > 0) ? CLK_SET_RATE_PARENT : 0; /* disallow automatic parent changes by ccf */ init.flags |= CLK_SET_RATE_NO_REPARENT; init.flags |= CLK_GET_RATE_NOCACHE; cpuclk->reg_base = reg_base; cpuclk->lock = lock; cpuclk->reg_data = reg_data; cpuclk->clk_nb.notifier_call = rockchip_cpuclk_notifier_cb; cpuclk->hw.init = &init; cpuclk->alt_parent = __clk_lookup(parent_names[1]); if (!cpuclk->alt_parent) { pr_err("%s: could not lookup alternate parent\n", __func__); ret = -EINVAL; goto free_cpuclk; } ret = clk_prepare_enable(cpuclk->alt_parent); if (ret) { pr_err("%s: could not enable alternate parent\n", __func__); goto free_cpuclk; } clk = __clk_lookup(parent_names[0]); if (!clk) { pr_err("%s: could not lookup parent clock %s\n", __func__, parent_names[0]); ret = -EINVAL; goto free_cpuclk; } ret = clk_notifier_register(clk, &cpuclk->clk_nb); if (ret) { pr_err("%s: failed to register clock notifier for %s\n", __func__, name); goto free_cpuclk; } if (nrates > 0) { cpuclk->rate_count = nrates; cpuclk->rate_table = kmemdup(rates, sizeof(*rates) * nrates, GFP_KERNEL); if (!cpuclk->rate_table) { pr_err("%s: could not allocate memory for cpuclk rates\n", __func__); ret = -ENOMEM; goto unregister_notifier; } } cclk = clk_register(NULL, &cpuclk->hw); if (IS_ERR(clk)) { pr_err("%s: could not register cpuclk %s\n", __func__, name); ret = PTR_ERR(clk); goto free_rate_table; } return cclk; free_rate_table: kfree(cpuclk->rate_table); unregister_notifier: clk_notifier_unregister(clk, &cpuclk->clk_nb); free_cpuclk: kfree(cpuclk); return ERR_PTR(ret); }