/* * NVM Express device driver * Copyright (c) 2011-2014, Intel Corporation. * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. */ /* * Refer to the SCSI-NVMe Translation spec for details on how * each command is translated. */ #include <linux/nvme.h> #include <linux/bio.h> #include <linux/bitops.h> #include <linux/blkdev.h> #include <linux/compat.h> #include <linux/delay.h> #include <linux/errno.h> #include <linux/fs.h> #include <linux/genhd.h> #include <linux/idr.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/kdev_t.h> #include <linux/kthread.h> #include <linux/kernel.h> #include <linux/mm.h> #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/pci.h> #include <linux/poison.h> #include <linux/sched.h> #include <linux/slab.h> #include <linux/types.h> #include <scsi/sg.h> #include <scsi/scsi.h> static int sg_version_num = 30534; /* 2 digits for each component */ #define SNTI_TRANSLATION_SUCCESS 0 #define SNTI_INTERNAL_ERROR 1 /* VPD Page Codes */ #define VPD_SUPPORTED_PAGES 0x00 #define VPD_SERIAL_NUMBER 0x80 #define VPD_DEVICE_IDENTIFIERS 0x83 #define VPD_EXTENDED_INQUIRY 0x86 #define VPD_BLOCK_DEV_CHARACTERISTICS 0xB1 /* CDB offsets */ #define REPORT_LUNS_CDB_ALLOC_LENGTH_OFFSET 6 #define REPORT_LUNS_SR_OFFSET 2 #define READ_CAP_16_CDB_ALLOC_LENGTH_OFFSET 10 #define REQUEST_SENSE_CDB_ALLOC_LENGTH_OFFSET 4 #define REQUEST_SENSE_DESC_OFFSET 1 #define REQUEST_SENSE_DESC_MASK 0x01 #define DESCRIPTOR_FORMAT_SENSE_DATA_TYPE 1 #define INQUIRY_EVPD_BYTE_OFFSET 1 #define INQUIRY_PAGE_CODE_BYTE_OFFSET 2 #define INQUIRY_EVPD_BIT_MASK 1 #define INQUIRY_CDB_ALLOCATION_LENGTH_OFFSET 3 #define START_STOP_UNIT_CDB_IMMED_OFFSET 1 #define START_STOP_UNIT_CDB_IMMED_MASK 0x1 #define START_STOP_UNIT_CDB_POWER_COND_MOD_OFFSET 3 #define START_STOP_UNIT_CDB_POWER_COND_MOD_MASK 0xF #define START_STOP_UNIT_CDB_POWER_COND_OFFSET 4 #define START_STOP_UNIT_CDB_POWER_COND_MASK 0xF0 #define START_STOP_UNIT_CDB_NO_FLUSH_OFFSET 4 #define START_STOP_UNIT_CDB_NO_FLUSH_MASK 0x4 #define START_STOP_UNIT_CDB_START_OFFSET 4 #define START_STOP_UNIT_CDB_START_MASK 0x1 #define WRITE_BUFFER_CDB_MODE_OFFSET 1 #define WRITE_BUFFER_CDB_MODE_MASK 0x1F #define WRITE_BUFFER_CDB_BUFFER_ID_OFFSET 2 #define WRITE_BUFFER_CDB_BUFFER_OFFSET_OFFSET 3 #define WRITE_BUFFER_CDB_PARM_LIST_LENGTH_OFFSET 6 #define FORMAT_UNIT_CDB_FORMAT_PROT_INFO_OFFSET 1 #define FORMAT_UNIT_CDB_FORMAT_PROT_INFO_MASK 0xC0 #define FORMAT_UNIT_CDB_FORMAT_PROT_INFO_SHIFT 6 #define FORMAT_UNIT_CDB_LONG_LIST_OFFSET 1 #define FORMAT_UNIT_CDB_LONG_LIST_MASK 0x20 #define FORMAT_UNIT_CDB_FORMAT_DATA_OFFSET 1 #define FORMAT_UNIT_CDB_FORMAT_DATA_MASK 0x10 #define FORMAT_UNIT_SHORT_PARM_LIST_LEN 4 #define FORMAT_UNIT_LONG_PARM_LIST_LEN 8 #define FORMAT_UNIT_PROT_INT_OFFSET 3 #define FORMAT_UNIT_PROT_FIELD_USAGE_OFFSET 0 #define FORMAT_UNIT_PROT_FIELD_USAGE_MASK 0x07 #define UNMAP_CDB_PARAM_LIST_LENGTH_OFFSET 7 /* Misc. defines */ #define NIBBLE_SHIFT 4 #define FIXED_SENSE_DATA 0x70 #define DESC_FORMAT_SENSE_DATA 0x72 #define FIXED_SENSE_DATA_ADD_LENGTH 10 #define LUN_ENTRY_SIZE 8 #define LUN_DATA_HEADER_SIZE 8 #define ALL_LUNS_RETURNED 0x02 #define ALL_WELL_KNOWN_LUNS_RETURNED 0x01 #define RESTRICTED_LUNS_RETURNED 0x00 #define NVME_POWER_STATE_START_VALID 0x00 #define NVME_POWER_STATE_ACTIVE 0x01 #define NVME_POWER_STATE_IDLE 0x02 #define NVME_POWER_STATE_STANDBY 0x03 #define NVME_POWER_STATE_LU_CONTROL 0x07 #define POWER_STATE_0 0 #define POWER_STATE_1 1 #define POWER_STATE_2 2 #define POWER_STATE_3 3 #define DOWNLOAD_SAVE_ACTIVATE 0x05 #define DOWNLOAD_SAVE_DEFER_ACTIVATE 0x0E #define ACTIVATE_DEFERRED_MICROCODE 0x0F #define FORMAT_UNIT_IMMED_MASK 0x2 #define FORMAT_UNIT_IMMED_OFFSET 1 #define KELVIN_TEMP_FACTOR 273 #define FIXED_FMT_SENSE_DATA_SIZE 18 #define DESC_FMT_SENSE_DATA_SIZE 8 /* SCSI/NVMe defines and bit masks */ #define INQ_STANDARD_INQUIRY_PAGE 0x00 #define INQ_SUPPORTED_VPD_PAGES_PAGE 0x00 #define INQ_UNIT_SERIAL_NUMBER_PAGE 0x80 #define INQ_DEVICE_IDENTIFICATION_PAGE 0x83 #define INQ_EXTENDED_INQUIRY_DATA_PAGE 0x86 #define INQ_BDEV_CHARACTERISTICS_PAGE 0xB1 #define INQ_SERIAL_NUMBER_LENGTH 0x14 #define INQ_NUM_SUPPORTED_VPD_PAGES 5 #define VERSION_SPC_4 0x06 #define ACA_UNSUPPORTED 0 #define STANDARD_INQUIRY_LENGTH 36 #define ADDITIONAL_STD_INQ_LENGTH 31 #define EXTENDED_INQUIRY_DATA_PAGE_LENGTH 0x3C #define RESERVED_FIELD 0 /* SCSI READ/WRITE Defines */ #define IO_CDB_WP_MASK 0xE0 #define IO_CDB_WP_SHIFT 5 #define IO_CDB_FUA_MASK 0x8 #define IO_6_CDB_LBA_OFFSET 0 #define IO_6_CDB_LBA_MASK 0x001FFFFF #define IO_6_CDB_TX_LEN_OFFSET 4 #define IO_6_DEFAULT_TX_LEN 256 #define IO_10_CDB_LBA_OFFSET 2 #define IO_10_CDB_TX_LEN_OFFSET 7 #define IO_10_CDB_WP_OFFSET 1 #define IO_10_CDB_FUA_OFFSET 1 #define IO_12_CDB_LBA_OFFSET 2 #define IO_12_CDB_TX_LEN_OFFSET 6 #define IO_12_CDB_WP_OFFSET 1 #define IO_12_CDB_FUA_OFFSET 1 #define IO_16_CDB_FUA_OFFSET 1 #define IO_16_CDB_WP_OFFSET 1 #define IO_16_CDB_LBA_OFFSET 2 #define IO_16_CDB_TX_LEN_OFFSET 10 /* Mode Sense/Select defines */ #define MODE_PAGE_INFO_EXCEP 0x1C #define MODE_PAGE_CACHING 0x08 #define MODE_PAGE_CONTROL 0x0A #define MODE_PAGE_POWER_CONDITION 0x1A #define MODE_PAGE_RETURN_ALL 0x3F #define MODE_PAGE_BLK_DES_LEN 0x08 #define MODE_PAGE_LLBAA_BLK_DES_LEN 0x10 #define MODE_PAGE_CACHING_LEN 0x14 #define MODE_PAGE_CONTROL_LEN 0x0C #define MODE_PAGE_POW_CND_LEN 0x28 #define MODE_PAGE_INF_EXC_LEN 0x0C #define MODE_PAGE_ALL_LEN 0x54 #define MODE_SENSE6_MPH_SIZE 4 #define MODE_SENSE6_ALLOC_LEN_OFFSET 4 #define MODE_SENSE_PAGE_CONTROL_OFFSET 2 #define MODE_SENSE_PAGE_CONTROL_MASK 0xC0 #define MODE_SENSE_PAGE_CODE_OFFSET 2 #define MODE_SENSE_PAGE_CODE_MASK 0x3F #define MODE_SENSE_LLBAA_OFFSET 1 #define MODE_SENSE_LLBAA_MASK 0x10 #define MODE_SENSE_LLBAA_SHIFT 4 #define MODE_SENSE_DBD_OFFSET 1 #define MODE_SENSE_DBD_MASK 8 #define MODE_SENSE_DBD_SHIFT 3 #define MODE_SENSE10_MPH_SIZE 8 #define MODE_SENSE10_ALLOC_LEN_OFFSET 7 #define MODE_SELECT_CDB_PAGE_FORMAT_OFFSET 1 #define MODE_SELECT_CDB_SAVE_PAGES_OFFSET 1 #define MODE_SELECT_6_CDB_PARAM_LIST_LENGTH_OFFSET 4 #define MODE_SELECT_10_CDB_PARAM_LIST_LENGTH_OFFSET 7 #define MODE_SELECT_CDB_PAGE_FORMAT_MASK 0x10 #define MODE_SELECT_CDB_SAVE_PAGES_MASK 0x1 #define MODE_SELECT_6_BD_OFFSET 3 #define MODE_SELECT_10_BD_OFFSET 6 #define MODE_SELECT_10_LLBAA_OFFSET 4 #define MODE_SELECT_10_LLBAA_MASK 1 #define MODE_SELECT_6_MPH_SIZE 4 #define MODE_SELECT_10_MPH_SIZE 8 #define CACHING_MODE_PAGE_WCE_MASK 0x04 #define MODE_SENSE_BLK_DESC_ENABLED 0 #define MODE_SENSE_BLK_DESC_COUNT 1 #define MODE_SELECT_PAGE_CODE_MASK 0x3F #define SHORT_DESC_BLOCK 8 #define LONG_DESC_BLOCK 16 #define MODE_PAGE_POW_CND_LEN_FIELD 0x26 #define MODE_PAGE_INF_EXC_LEN_FIELD 0x0A #define MODE_PAGE_CACHING_LEN_FIELD 0x12 #define MODE_PAGE_CONTROL_LEN_FIELD 0x0A #define MODE_SENSE_PC_CURRENT_VALUES 0 /* Log Sense defines */ #define LOG_PAGE_SUPPORTED_LOG_PAGES_PAGE 0x00 #define LOG_PAGE_SUPPORTED_LOG_PAGES_LENGTH 0x07 #define LOG_PAGE_INFORMATIONAL_EXCEPTIONS_PAGE 0x2F #define LOG_PAGE_TEMPERATURE_PAGE 0x0D #define LOG_SENSE_CDB_SP_OFFSET 1 #define LOG_SENSE_CDB_SP_NOT_ENABLED 0 #define LOG_SENSE_CDB_PC_OFFSET 2 #define LOG_SENSE_CDB_PC_MASK 0xC0 #define LOG_SENSE_CDB_PC_SHIFT 6 #define LOG_SENSE_CDB_PC_CUMULATIVE_VALUES 1 #define LOG_SENSE_CDB_PAGE_CODE_MASK 0x3F #define LOG_SENSE_CDB_ALLOC_LENGTH_OFFSET 7 #define REMAINING_INFO_EXCP_PAGE_LENGTH 0x8 #define LOG_INFO_EXCP_PAGE_LENGTH 0xC #define REMAINING_TEMP_PAGE_LENGTH 0xC #define LOG_TEMP_PAGE_LENGTH 0x10 #define LOG_TEMP_UNKNOWN 0xFF #define SUPPORTED_LOG_PAGES_PAGE_LENGTH 0x3 /* Read Capacity defines */ #define READ_CAP_10_RESP_SIZE 8 #define READ_CAP_16_RESP_SIZE 32 /* NVMe Namespace and Command Defines */ #define BYTES_TO_DWORDS 4 #define NVME_MAX_FIRMWARE_SLOT 7 /* Report LUNs defines */ #define REPORT_LUNS_FIRST_LUN_OFFSET 8 /* SCSI ADDITIONAL SENSE Codes */ #define SCSI_ASC_NO_SENSE 0x00 #define SCSI_ASC_PERIPHERAL_DEV_WRITE_FAULT 0x03 #define SCSI_ASC_LUN_NOT_READY 0x04 #define SCSI_ASC_WARNING 0x0B #define SCSI_ASC_LOG_BLOCK_GUARD_CHECK_FAILED 0x10 #define SCSI_ASC_LOG_BLOCK_APPTAG_CHECK_FAILED 0x10 #define SCSI_ASC_LOG_BLOCK_REFTAG_CHECK_FAILED 0x10 #define SCSI_ASC_UNRECOVERED_READ_ERROR 0x11 #define SCSI_ASC_MISCOMPARE_DURING_VERIFY 0x1D #define SCSI_ASC_ACCESS_DENIED_INVALID_LUN_ID 0x20 #define SCSI_ASC_ILLEGAL_COMMAND 0x20 #define SCSI_ASC_ILLEGAL_BLOCK 0x21 #define SCSI_ASC_INVALID_CDB 0x24 #define SCSI_ASC_INVALID_LUN 0x25 #define SCSI_ASC_INVALID_PARAMETER 0x26 #define SCSI_ASC_FORMAT_COMMAND_FAILED 0x31 #define SCSI_ASC_INTERNAL_TARGET_FAILURE 0x44 /* SCSI ADDITIONAL SENSE Code Qualifiers */ #define SCSI_ASCQ_CAUSE_NOT_REPORTABLE 0x00 #define SCSI_ASCQ_FORMAT_COMMAND_FAILED 0x01 #define SCSI_ASCQ_LOG_BLOCK_GUARD_CHECK_FAILED 0x01 #define SCSI_ASCQ_LOG_BLOCK_APPTAG_CHECK_FAILED 0x02 #define SCSI_ASCQ_LOG_BLOCK_REFTAG_CHECK_FAILED 0x03 #define SCSI_ASCQ_FORMAT_IN_PROGRESS 0x04 #define SCSI_ASCQ_POWER_LOSS_EXPECTED 0x08 #define SCSI_ASCQ_INVALID_LUN_ID 0x09 /** * DEVICE_SPECIFIC_PARAMETER in mode parameter header (see sbc2r16) to * enable DPOFUA support type 0x10 value. */ #define DEVICE_SPECIFIC_PARAMETER 0 #define VPD_ID_DESCRIPTOR_LENGTH sizeof(VPD_IDENTIFICATION_DESCRIPTOR) /* MACROs to extract information from CDBs */ #define GET_OPCODE(cdb) cdb[0] #define GET_U8_FROM_CDB(cdb, index) (cdb[index] << 0) #define GET_U16_FROM_CDB(cdb, index) ((cdb[index] << 8) | (cdb[index + 1] << 0)) #define GET_U24_FROM_CDB(cdb, index) ((cdb[index] << 16) | \ (cdb[index + 1] << 8) | \ (cdb[index + 2] << 0)) #define GET_U32_FROM_CDB(cdb, index) ((cdb[index] << 24) | \ (cdb[index + 1] << 16) | \ (cdb[index + 2] << 8) | \ (cdb[index + 3] << 0)) #define GET_U64_FROM_CDB(cdb, index) ((((u64)cdb[index]) << 56) | \ (((u64)cdb[index + 1]) << 48) | \ (((u64)cdb[index + 2]) << 40) | \ (((u64)cdb[index + 3]) << 32) | \ (((u64)cdb[index + 4]) << 24) | \ (((u64)cdb[index + 5]) << 16) | \ (((u64)cdb[index + 6]) << 8) | \ (((u64)cdb[index + 7]) << 0)) /* Inquiry Helper Macros */ #define GET_INQ_EVPD_BIT(cdb) \ ((GET_U8_FROM_CDB(cdb, INQUIRY_EVPD_BYTE_OFFSET) & \ INQUIRY_EVPD_BIT_MASK) ? 1 : 0) #define GET_INQ_PAGE_CODE(cdb) \ (GET_U8_FROM_CDB(cdb, INQUIRY_PAGE_CODE_BYTE_OFFSET)) #define GET_INQ_ALLOC_LENGTH(cdb) \ (GET_U16_FROM_CDB(cdb, INQUIRY_CDB_ALLOCATION_LENGTH_OFFSET)) /* Report LUNs Helper Macros */ #define GET_REPORT_LUNS_ALLOC_LENGTH(cdb) \ (GET_U32_FROM_CDB(cdb, REPORT_LUNS_CDB_ALLOC_LENGTH_OFFSET)) /* Read Capacity Helper Macros */ #define GET_READ_CAP_16_ALLOC_LENGTH(cdb) \ (GET_U32_FROM_CDB(cdb, READ_CAP_16_CDB_ALLOC_LENGTH_OFFSET)) #define IS_READ_CAP_16(cdb) \ ((cdb[0] == SERVICE_ACTION_IN && cdb[1] == SAI_READ_CAPACITY_16) ? 1 : 0) /* Request Sense Helper Macros */ #define GET_REQUEST_SENSE_ALLOC_LENGTH(cdb) \ (GET_U8_FROM_CDB(cdb, REQUEST_SENSE_CDB_ALLOC_LENGTH_OFFSET)) /* Mode Sense Helper Macros */ #define GET_MODE_SENSE_DBD(cdb) \ ((GET_U8_FROM_CDB(cdb, MODE_SENSE_DBD_OFFSET) & MODE_SENSE_DBD_MASK) >> \ MODE_SENSE_DBD_SHIFT) #define GET_MODE_SENSE_LLBAA(cdb) \ ((GET_U8_FROM_CDB(cdb, MODE_SENSE_LLBAA_OFFSET) & \ MODE_SENSE_LLBAA_MASK) >> MODE_SENSE_LLBAA_SHIFT) #define GET_MODE_SENSE_MPH_SIZE(cdb10) \ (cdb10 ? MODE_SENSE10_MPH_SIZE : MODE_SENSE6_MPH_SIZE) /* Struct to gather data that needs to be extracted from a SCSI CDB. Not conforming to any particular CDB variant, but compatible with all. */ struct nvme_trans_io_cdb { u8 fua; u8 prot_info; u64 lba; u32 xfer_len; }; /* Internal Helper Functions */ /* Copy data to userspace memory */ static int nvme_trans_copy_to_user(struct sg_io_hdr *hdr, void *from, unsigned long n) { int res = SNTI_TRANSLATION_SUCCESS; unsigned long not_copied; int i; void *index = from; size_t remaining = n; size_t xfer_len; if (hdr->iovec_count > 0) { struct sg_iovec sgl; for (i = 0; i < hdr->iovec_count; i++) { not_copied = copy_from_user(&sgl, hdr->dxferp + i * sizeof(struct sg_iovec), sizeof(struct sg_iovec)); if (not_copied) return -EFAULT; xfer_len = min(remaining, sgl.iov_len); not_copied = copy_to_user(sgl.iov_base, index, xfer_len); if (not_copied) { res = -EFAULT; break; } index += xfer_len; remaining -= xfer_len; if (remaining == 0) break; } return res; } not_copied = copy_to_user(hdr->dxferp, from, n); if (not_copied) res = -EFAULT; return res; } /* Copy data from userspace memory */ static int nvme_trans_copy_from_user(struct sg_io_hdr *hdr, void *to, unsigned long n) { int res = SNTI_TRANSLATION_SUCCESS; unsigned long not_copied; int i; void *index = to; size_t remaining = n; size_t xfer_len; if (hdr->iovec_count > 0) { struct sg_iovec sgl; for (i = 0; i < hdr->iovec_count; i++) { not_copied = copy_from_user(&sgl, hdr->dxferp + i * sizeof(struct sg_iovec), sizeof(struct sg_iovec)); if (not_copied) return -EFAULT; xfer_len = min(remaining, sgl.iov_len); not_copied = copy_from_user(index, sgl.iov_base, xfer_len); if (not_copied) { res = -EFAULT; break; } index += xfer_len; remaining -= xfer_len; if (remaining == 0) break; } return res; } not_copied = copy_from_user(to, hdr->dxferp, n); if (not_copied) res = -EFAULT; return res; } /* Status/Sense Buffer Writeback */ static int nvme_trans_completion(struct sg_io_hdr *hdr, u8 status, u8 sense_key, u8 asc, u8 ascq) { int res = SNTI_TRANSLATION_SUCCESS; u8 xfer_len; u8 resp[DESC_FMT_SENSE_DATA_SIZE]; if (scsi_status_is_good(status)) { hdr->status = SAM_STAT_GOOD; hdr->masked_status = GOOD; hdr->host_status = DID_OK; hdr->driver_status = DRIVER_OK; hdr->sb_len_wr = 0; } else { hdr->status = status; hdr->masked_status = status >> 1; hdr->host_status = DID_OK; hdr->driver_status = DRIVER_OK; memset(resp, 0, DESC_FMT_SENSE_DATA_SIZE); resp[0] = DESC_FORMAT_SENSE_DATA; resp[1] = sense_key; resp[2] = asc; resp[3] = ascq; xfer_len = min_t(u8, hdr->mx_sb_len, DESC_FMT_SENSE_DATA_SIZE); hdr->sb_len_wr = xfer_len; if (copy_to_user(hdr->sbp, resp, xfer_len) > 0) res = -EFAULT; } return res; } static int nvme_trans_status_code(struct sg_io_hdr *hdr, int nvme_sc) { u8 status, sense_key, asc, ascq; int res = SNTI_TRANSLATION_SUCCESS; /* For non-nvme (Linux) errors, simply return the error code */ if (nvme_sc < 0) return nvme_sc; /* Mask DNR, More, and reserved fields */ nvme_sc &= 0x7FF; switch (nvme_sc) { /* Generic Command Status */ case NVME_SC_SUCCESS: status = SAM_STAT_GOOD; sense_key = NO_SENSE; asc = SCSI_ASC_NO_SENSE; ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE; break; case NVME_SC_INVALID_OPCODE: status = SAM_STAT_CHECK_CONDITION; sense_key = ILLEGAL_REQUEST; asc = SCSI_ASC_ILLEGAL_COMMAND; ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE; break; case NVME_SC_INVALID_FIELD: status = SAM_STAT_CHECK_CONDITION; sense_key = ILLEGAL_REQUEST; asc = SCSI_ASC_INVALID_CDB; ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE; break; case NVME_SC_DATA_XFER_ERROR: status = SAM_STAT_CHECK_CONDITION; sense_key = MEDIUM_ERROR; asc = SCSI_ASC_NO_SENSE; ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE; break; case NVME_SC_POWER_LOSS: status = SAM_STAT_TASK_ABORTED; sense_key = ABORTED_COMMAND; asc = SCSI_ASC_WARNING; ascq = SCSI_ASCQ_POWER_LOSS_EXPECTED; break; case NVME_SC_INTERNAL: status = SAM_STAT_CHECK_CONDITION; sense_key = HARDWARE_ERROR; asc = SCSI_ASC_INTERNAL_TARGET_FAILURE; ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE; break; case NVME_SC_ABORT_REQ: status = SAM_STAT_TASK_ABORTED; sense_key = ABORTED_COMMAND; asc = SCSI_ASC_NO_SENSE; ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE; break; case NVME_SC_ABORT_QUEUE: status = SAM_STAT_TASK_ABORTED; sense_key = ABORTED_COMMAND; asc = SCSI_ASC_NO_SENSE; ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE; break; case NVME_SC_FUSED_FAIL: status = SAM_STAT_TASK_ABORTED; sense_key = ABORTED_COMMAND; asc = SCSI_ASC_NO_SENSE; ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE; break; case NVME_SC_FUSED_MISSING: status = SAM_STAT_TASK_ABORTED; sense_key = ABORTED_COMMAND; asc = SCSI_ASC_NO_SENSE; ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE; break; case NVME_SC_INVALID_NS: status = SAM_STAT_CHECK_CONDITION; sense_key = ILLEGAL_REQUEST; asc = SCSI_ASC_ACCESS_DENIED_INVALID_LUN_ID; ascq = SCSI_ASCQ_INVALID_LUN_ID; break; case NVME_SC_LBA_RANGE: status = SAM_STAT_CHECK_CONDITION; sense_key = ILLEGAL_REQUEST; asc = SCSI_ASC_ILLEGAL_BLOCK; ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE; break; case NVME_SC_CAP_EXCEEDED: status = SAM_STAT_CHECK_CONDITION; sense_key = MEDIUM_ERROR; asc = SCSI_ASC_NO_SENSE; ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE; break; case NVME_SC_NS_NOT_READY: status = SAM_STAT_CHECK_CONDITION; sense_key = NOT_READY; asc = SCSI_ASC_LUN_NOT_READY; ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE; break; /* Command Specific Status */ case NVME_SC_INVALID_FORMAT: status = SAM_STAT_CHECK_CONDITION; sense_key = ILLEGAL_REQUEST; asc = SCSI_ASC_FORMAT_COMMAND_FAILED; ascq = SCSI_ASCQ_FORMAT_COMMAND_FAILED; break; case NVME_SC_BAD_ATTRIBUTES: status = SAM_STAT_CHECK_CONDITION; sense_key = ILLEGAL_REQUEST; asc = SCSI_ASC_INVALID_CDB; ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE; break; /* Media Errors */ case NVME_SC_WRITE_FAULT: status = SAM_STAT_CHECK_CONDITION; sense_key = MEDIUM_ERROR; asc = SCSI_ASC_PERIPHERAL_DEV_WRITE_FAULT; ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE; break; case NVME_SC_READ_ERROR: status = SAM_STAT_CHECK_CONDITION; sense_key = MEDIUM_ERROR; asc = SCSI_ASC_UNRECOVERED_READ_ERROR; ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE; break; case NVME_SC_GUARD_CHECK: status = SAM_STAT_CHECK_CONDITION; sense_key = MEDIUM_ERROR; asc = SCSI_ASC_LOG_BLOCK_GUARD_CHECK_FAILED; ascq = SCSI_ASCQ_LOG_BLOCK_GUARD_CHECK_FAILED; break; case NVME_SC_APPTAG_CHECK: status = SAM_STAT_CHECK_CONDITION; sense_key = MEDIUM_ERROR; asc = SCSI_ASC_LOG_BLOCK_APPTAG_CHECK_FAILED; ascq = SCSI_ASCQ_LOG_BLOCK_APPTAG_CHECK_FAILED; break; case NVME_SC_REFTAG_CHECK: status = SAM_STAT_CHECK_CONDITION; sense_key = MEDIUM_ERROR; asc = SCSI_ASC_LOG_BLOCK_REFTAG_CHECK_FAILED; ascq = SCSI_ASCQ_LOG_BLOCK_REFTAG_CHECK_FAILED; break; case NVME_SC_COMPARE_FAILED: status = SAM_STAT_CHECK_CONDITION; sense_key = MISCOMPARE; asc = SCSI_ASC_MISCOMPARE_DURING_VERIFY; ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE; break; case NVME_SC_ACCESS_DENIED: status = SAM_STAT_CHECK_CONDITION; sense_key = ILLEGAL_REQUEST; asc = SCSI_ASC_ACCESS_DENIED_INVALID_LUN_ID; ascq = SCSI_ASCQ_INVALID_LUN_ID; break; /* Unspecified/Default */ case NVME_SC_CMDID_CONFLICT: case NVME_SC_CMD_SEQ_ERROR: case NVME_SC_CQ_INVALID: case NVME_SC_QID_INVALID: case NVME_SC_QUEUE_SIZE: case NVME_SC_ABORT_LIMIT: case NVME_SC_ABORT_MISSING: case NVME_SC_ASYNC_LIMIT: case NVME_SC_FIRMWARE_SLOT: case NVME_SC_FIRMWARE_IMAGE: case NVME_SC_INVALID_VECTOR: case NVME_SC_INVALID_LOG_PAGE: default: status = SAM_STAT_CHECK_CONDITION; sense_key = ILLEGAL_REQUEST; asc = SCSI_ASC_NO_SENSE; ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE; break; } res = nvme_trans_completion(hdr, status, sense_key, asc, ascq); return res; } /* INQUIRY Helper Functions */ static int nvme_trans_standard_inquiry_page(struct nvme_ns *ns, struct sg_io_hdr *hdr, u8 *inq_response, int alloc_len) { struct nvme_dev *dev = ns->dev; dma_addr_t dma_addr; void *mem; struct nvme_id_ns *id_ns; int res = SNTI_TRANSLATION_SUCCESS; int nvme_sc; int xfer_len; u8 resp_data_format = 0x02; u8 protect; u8 cmdque = 0x01 << 1; u8 fw_offset = sizeof(dev->firmware_rev); mem = dma_alloc_coherent(&dev->pci_dev->dev, sizeof(struct nvme_id_ns), &dma_addr, GFP_KERNEL); if (mem == NULL) { res = -ENOMEM; goto out_dma; } /* nvme ns identify - use DPS value for PROTECT field */ nvme_sc = nvme_identify(dev, ns->ns_id, 0, dma_addr); res = nvme_trans_status_code(hdr, nvme_sc); /* * If nvme_sc was -ve, res will be -ve here. * If nvme_sc was +ve, the status would bace been translated, and res * can only be 0 or -ve. * - If 0 && nvme_sc > 0, then go into next if where res gets nvme_sc * - If -ve, return because its a Linux error. */ if (res) goto out_free; if (nvme_sc) { res = nvme_sc; goto out_free; } id_ns = mem; (id_ns->dps) ? (protect = 0x01) : (protect = 0); memset(inq_response, 0, STANDARD_INQUIRY_LENGTH); inq_response[2] = VERSION_SPC_4; inq_response[3] = resp_data_format; /*normaca=0 | hisup=0 */ inq_response[4] = ADDITIONAL_STD_INQ_LENGTH; inq_response[5] = protect; /* sccs=0 | acc=0 | tpgs=0 | pc3=0 */ inq_response[7] = cmdque; /* wbus16=0 | sync=0 | vs=0 */ strncpy(&inq_response[8], "NVMe ", 8); strncpy(&inq_response[16], dev->model, 16); while (dev->firmware_rev[fw_offset - 1] == ' ' && fw_offset > 4) fw_offset--; fw_offset -= 4; strncpy(&inq_response[32], dev->firmware_rev + fw_offset, 4); xfer_len = min(alloc_len, STANDARD_INQUIRY_LENGTH); res = nvme_trans_copy_to_user(hdr, inq_response, xfer_len); out_free: dma_free_coherent(&dev->pci_dev->dev, sizeof(struct nvme_id_ns), mem, dma_addr); out_dma: return res; } static int nvme_trans_supported_vpd_pages(struct nvme_ns *ns, struct sg_io_hdr *hdr, u8 *inq_response, int alloc_len) { int res = SNTI_TRANSLATION_SUCCESS; int xfer_len; memset(inq_response, 0, STANDARD_INQUIRY_LENGTH); inq_response[1] = INQ_SUPPORTED_VPD_PAGES_PAGE; /* Page Code */ inq_response[3] = INQ_NUM_SUPPORTED_VPD_PAGES; /* Page Length */ inq_response[4] = INQ_SUPPORTED_VPD_PAGES_PAGE; inq_response[5] = INQ_UNIT_SERIAL_NUMBER_PAGE; inq_response[6] = INQ_DEVICE_IDENTIFICATION_PAGE; inq_response[7] = INQ_EXTENDED_INQUIRY_DATA_PAGE; inq_response[8] = INQ_BDEV_CHARACTERISTICS_PAGE; xfer_len = min(alloc_len, STANDARD_INQUIRY_LENGTH); res = nvme_trans_copy_to_user(hdr, inq_response, xfer_len); return res; } static int nvme_trans_unit_serial_page(struct nvme_ns *ns, struct sg_io_hdr *hdr, u8 *inq_response, int alloc_len) { struct nvme_dev *dev = ns->dev; int res = SNTI_TRANSLATION_SUCCESS; int xfer_len; memset(inq_response, 0, STANDARD_INQUIRY_LENGTH); inq_response[1] = INQ_UNIT_SERIAL_NUMBER_PAGE; /* Page Code */ inq_response[3] = INQ_SERIAL_NUMBER_LENGTH; /* Page Length */ strncpy(&inq_response[4], dev->serial, INQ_SERIAL_NUMBER_LENGTH); xfer_len = min(alloc_len, STANDARD_INQUIRY_LENGTH); res = nvme_trans_copy_to_user(hdr, inq_response, xfer_len); return res; } static int nvme_trans_device_id_page(struct nvme_ns *ns, struct sg_io_hdr *hdr, u8 *inq_response, int alloc_len) { struct nvme_dev *dev = ns->dev; dma_addr_t dma_addr; void *mem; struct nvme_id_ctrl *id_ctrl; int res = SNTI_TRANSLATION_SUCCESS; int nvme_sc; u8 ieee[4]; int xfer_len; __be32 tmp_id = cpu_to_be32(ns->ns_id); mem = dma_alloc_coherent(&dev->pci_dev->dev, sizeof(struct nvme_id_ns), &dma_addr, GFP_KERNEL); if (mem == NULL) { res = -ENOMEM; goto out_dma; } /* nvme controller identify */ nvme_sc = nvme_identify(dev, 0, 1, dma_addr); res = nvme_trans_status_code(hdr, nvme_sc); if (res) goto out_free; if (nvme_sc) { res = nvme_sc; goto out_free; } id_ctrl = mem; /* Since SCSI tried to save 4 bits... [SPC-4(r34) Table 591] */ ieee[0] = id_ctrl->ieee[0] << 4; ieee[1] = id_ctrl->ieee[0] >> 4 | id_ctrl->ieee[1] << 4; ieee[2] = id_ctrl->ieee[1] >> 4 | id_ctrl->ieee[2] << 4; ieee[3] = id_ctrl->ieee[2] >> 4; memset(inq_response, 0, STANDARD_INQUIRY_LENGTH); inq_response[1] = INQ_DEVICE_IDENTIFICATION_PAGE; /* Page Code */ inq_response[3] = 20; /* Page Length */ /* Designation Descriptor start */ inq_response[4] = 0x01; /* Proto ID=0h | Code set=1h */ inq_response[5] = 0x03; /* PIV=0b | Asso=00b | Designator Type=3h */ inq_response[6] = 0x00; /* Rsvd */ inq_response[7] = 16; /* Designator Length */ /* Designator start */ inq_response[8] = 0x60 | ieee[3]; /* NAA=6h | IEEE ID MSB, High nibble*/ inq_response[9] = ieee[2]; /* IEEE ID */ inq_response[10] = ieee[1]; /* IEEE ID */ inq_response[11] = ieee[0]; /* IEEE ID| Vendor Specific ID... */ inq_response[12] = (dev->pci_dev->vendor & 0xFF00) >> 8; inq_response[13] = (dev->pci_dev->vendor & 0x00FF); inq_response[14] = dev->serial[0]; inq_response[15] = dev->serial[1]; inq_response[16] = dev->model[0]; inq_response[17] = dev->model[1]; memcpy(&inq_response[18], &tmp_id, sizeof(u32)); /* Last 2 bytes are zero */ xfer_len = min(alloc_len, STANDARD_INQUIRY_LENGTH); res = nvme_trans_copy_to_user(hdr, inq_response, xfer_len); out_free: dma_free_coherent(&dev->pci_dev->dev, sizeof(struct nvme_id_ns), mem, dma_addr); out_dma: return res; } static int nvme_trans_ext_inq_page(struct nvme_ns *ns, struct sg_io_hdr *hdr, int alloc_len) { u8 *inq_response; int res = SNTI_TRANSLATION_SUCCESS; int nvme_sc; struct nvme_dev *dev = ns->dev; dma_addr_t dma_addr; void *mem; struct nvme_id_ctrl *id_ctrl; struct nvme_id_ns *id_ns; int xfer_len; u8 microcode = 0x80; u8 spt; u8 spt_lut[8] = {0, 0, 2, 1, 4, 6, 5, 7}; u8 grd_chk, app_chk, ref_chk, protect; u8 uask_sup = 0x20; u8 v_sup; u8 luiclr = 0x01; inq_response = kmalloc(EXTENDED_INQUIRY_DATA_PAGE_LENGTH, GFP_KERNEL); if (inq_response == NULL) { res = -ENOMEM; goto out_mem; } mem = dma_alloc_coherent(&dev->pci_dev->dev, sizeof(struct nvme_id_ns), &dma_addr, GFP_KERNEL); if (mem == NULL) { res = -ENOMEM; goto out_dma; } /* nvme ns identify */ nvme_sc = nvme_identify(dev, ns->ns_id, 0, dma_addr); res = nvme_trans_status_code(hdr, nvme_sc); if (res) goto out_free; if (nvme_sc) { res = nvme_sc; goto out_free; } id_ns = mem; spt = spt_lut[(id_ns->dpc) & 0x07] << 3; (id_ns->dps) ? (protect = 0x01) : (protect = 0); grd_chk = protect << 2; app_chk = protect << 1; ref_chk = protect; /* nvme controller identify */ nvme_sc = nvme_identify(dev, 0, 1, dma_addr); res = nvme_trans_status_code(hdr, nvme_sc); if (res) goto out_free; if (nvme_sc) { res = nvme_sc; goto out_free; } id_ctrl = mem; v_sup = id_ctrl->vwc; memset(inq_response, 0, EXTENDED_INQUIRY_DATA_PAGE_LENGTH); inq_response[1] = INQ_EXTENDED_INQUIRY_DATA_PAGE; /* Page Code */ inq_response[2] = 0x00; /* Page Length MSB */ inq_response[3] = 0x3C; /* Page Length LSB */ inq_response[4] = microcode | spt | grd_chk | app_chk | ref_chk; inq_response[5] = uask_sup; inq_response[6] = v_sup; inq_response[7] = luiclr; inq_response[8] = 0; inq_response[9] = 0; xfer_len = min(alloc_len, EXTENDED_INQUIRY_DATA_PAGE_LENGTH); res = nvme_trans_copy_to_user(hdr, inq_response, xfer_len); out_free: dma_free_coherent(&dev->pci_dev->dev, sizeof(struct nvme_id_ns), mem, dma_addr); out_dma: kfree(inq_response); out_mem: return res; } static int nvme_trans_bdev_char_page(struct nvme_ns *ns, struct sg_io_hdr *hdr, int alloc_len) { u8 *inq_response; int res = SNTI_TRANSLATION_SUCCESS; int xfer_len; inq_response = kzalloc(EXTENDED_INQUIRY_DATA_PAGE_LENGTH, GFP_KERNEL); if (inq_response == NULL) { res = -ENOMEM; goto out_mem; } inq_response[1] = INQ_BDEV_CHARACTERISTICS_PAGE; /* Page Code */ inq_response[2] = 0x00; /* Page Length MSB */ inq_response[3] = 0x3C; /* Page Length LSB */ inq_response[4] = 0x00; /* Medium Rotation Rate MSB */ inq_response[5] = 0x01; /* Medium Rotation Rate LSB */ inq_response[6] = 0x00; /* Form Factor */ xfer_len = min(alloc_len, EXTENDED_INQUIRY_DATA_PAGE_LENGTH); res = nvme_trans_copy_to_user(hdr, inq_response, xfer_len); kfree(inq_response); out_mem: return res; } /* LOG SENSE Helper Functions */ static int nvme_trans_log_supp_pages(struct nvme_ns *ns, struct sg_io_hdr *hdr, int alloc_len) { int res = SNTI_TRANSLATION_SUCCESS; int xfer_len; u8 *log_response; log_response = kzalloc(LOG_PAGE_SUPPORTED_LOG_PAGES_LENGTH, GFP_KERNEL); if (log_response == NULL) { res = -ENOMEM; goto out_mem; } log_response[0] = LOG_PAGE_SUPPORTED_LOG_PAGES_PAGE; /* Subpage=0x00, Page Length MSB=0 */ log_response[3] = SUPPORTED_LOG_PAGES_PAGE_LENGTH; log_response[4] = LOG_PAGE_SUPPORTED_LOG_PAGES_PAGE; log_response[5] = LOG_PAGE_INFORMATIONAL_EXCEPTIONS_PAGE; log_response[6] = LOG_PAGE_TEMPERATURE_PAGE; xfer_len = min(alloc_len, LOG_PAGE_SUPPORTED_LOG_PAGES_LENGTH); res = nvme_trans_copy_to_user(hdr, log_response, xfer_len); kfree(log_response); out_mem: return res; } static int nvme_trans_log_info_exceptions(struct nvme_ns *ns, struct sg_io_hdr *hdr, int alloc_len) { int res = SNTI_TRANSLATION_SUCCESS; int xfer_len; u8 *log_response; struct nvme_command c; struct nvme_dev *dev = ns->dev; struct nvme_smart_log *smart_log; dma_addr_t dma_addr; void *mem; u8 temp_c; u16 temp_k; log_response = kzalloc(LOG_INFO_EXCP_PAGE_LENGTH, GFP_KERNEL); if (log_response == NULL) { res = -ENOMEM; goto out_mem; } mem = dma_alloc_coherent(&dev->pci_dev->dev, sizeof(struct nvme_smart_log), &dma_addr, GFP_KERNEL); if (mem == NULL) { res = -ENOMEM; goto out_dma; } /* Get SMART Log Page */ memset(&c, 0, sizeof(c)); c.common.opcode = nvme_admin_get_log_page; c.common.nsid = cpu_to_le32(0xFFFFFFFF); c.common.prp1 = cpu_to_le64(dma_addr); c.common.cdw10[0] = cpu_to_le32((((sizeof(struct nvme_smart_log) / BYTES_TO_DWORDS) - 1) << 16) | NVME_LOG_SMART); res = nvme_submit_admin_cmd(dev, &c, NULL); if (res != NVME_SC_SUCCESS) { temp_c = LOG_TEMP_UNKNOWN; } else { smart_log = mem; temp_k = (smart_log->temperature[1] << 8) + (smart_log->temperature[0]); temp_c = temp_k - KELVIN_TEMP_FACTOR; } log_response[0] = LOG_PAGE_INFORMATIONAL_EXCEPTIONS_PAGE; /* Subpage=0x00, Page Length MSB=0 */ log_response[3] = REMAINING_INFO_EXCP_PAGE_LENGTH; /* Informational Exceptions Log Parameter 1 Start */ /* Parameter Code=0x0000 bytes 4,5 */ log_response[6] = 0x23; /* DU=0, TSD=1, ETC=0, TMC=0, FMT_AND_LNK=11b */ log_response[7] = 0x04; /* PARAMETER LENGTH */ /* Add sense Code and qualifier = 0x00 each */ /* Use Temperature from NVMe Get Log Page, convert to C from K */ log_response[10] = temp_c; xfer_len = min(alloc_len, LOG_INFO_EXCP_PAGE_LENGTH); res = nvme_trans_copy_to_user(hdr, log_response, xfer_len); dma_free_coherent(&dev->pci_dev->dev, sizeof(struct nvme_smart_log), mem, dma_addr); out_dma: kfree(log_response); out_mem: return res; } static int nvme_trans_log_temperature(struct nvme_ns *ns, struct sg_io_hdr *hdr, int alloc_len) { int res = SNTI_TRANSLATION_SUCCESS; int xfer_len; u8 *log_response; struct nvme_command c; struct nvme_dev *dev = ns->dev; struct nvme_smart_log *smart_log; dma_addr_t dma_addr; void *mem; u32 feature_resp; u8 temp_c_cur, temp_c_thresh; u16 temp_k; log_response = kzalloc(LOG_TEMP_PAGE_LENGTH, GFP_KERNEL); if (log_response == NULL) { res = -ENOMEM; goto out_mem; } mem = dma_alloc_coherent(&dev->pci_dev->dev, sizeof(struct nvme_smart_log), &dma_addr, GFP_KERNEL); if (mem == NULL) { res = -ENOMEM; goto out_dma; } /* Get SMART Log Page */ memset(&c, 0, sizeof(c)); c.common.opcode = nvme_admin_get_log_page; c.common.nsid = cpu_to_le32(0xFFFFFFFF); c.common.prp1 = cpu_to_le64(dma_addr); c.common.cdw10[0] = cpu_to_le32((((sizeof(struct nvme_smart_log) / BYTES_TO_DWORDS) - 1) << 16) | NVME_LOG_SMART); res = nvme_submit_admin_cmd(dev, &c, NULL); if (res != NVME_SC_SUCCESS) { temp_c_cur = LOG_TEMP_UNKNOWN; } else { smart_log = mem; temp_k = (smart_log->temperature[1] << 8) + (smart_log->temperature[0]); temp_c_cur = temp_k - KELVIN_TEMP_FACTOR; } /* Get Features for Temp Threshold */ res = nvme_get_features(dev, NVME_FEAT_TEMP_THRESH, 0, 0, &feature_resp); if (res != NVME_SC_SUCCESS) temp_c_thresh = LOG_TEMP_UNKNOWN; else temp_c_thresh = (feature_resp & 0xFFFF) - KELVIN_TEMP_FACTOR; log_response[0] = LOG_PAGE_TEMPERATURE_PAGE; /* Subpage=0x00, Page Length MSB=0 */ log_response[3] = REMAINING_TEMP_PAGE_LENGTH; /* Temperature Log Parameter 1 (Temperature) Start */ /* Parameter Code = 0x0000 */ log_response[6] = 0x01; /* Format and Linking = 01b */ log_response[7] = 0x02; /* Parameter Length */ /* Use Temperature from NVMe Get Log Page, convert to C from K */ log_response[9] = temp_c_cur; /* Temperature Log Parameter 2 (Reference Temperature) Start */ log_response[11] = 0x01; /* Parameter Code = 0x0001 */ log_response[12] = 0x01; /* Format and Linking = 01b */ log_response[13] = 0x02; /* Parameter Length */ /* Use Temperature Thresh from NVMe Get Log Page, convert to C from K */ log_response[15] = temp_c_thresh; xfer_len = min(alloc_len, LOG_TEMP_PAGE_LENGTH); res = nvme_trans_copy_to_user(hdr, log_response, xfer_len); dma_free_coherent(&dev->pci_dev->dev, sizeof(struct nvme_smart_log), mem, dma_addr); out_dma: kfree(log_response); out_mem: return res; } /* MODE SENSE Helper Functions */ static int nvme_trans_fill_mode_parm_hdr(u8 *resp, int len, u8 cdb10, u8 llbaa, u16 mode_data_length, u16 blk_desc_len) { /* Quick check to make sure I don't stomp on my own memory... */ if ((cdb10 && len < 8) || (!cdb10 && len < 4)) return SNTI_INTERNAL_ERROR; if (cdb10) { resp[0] = (mode_data_length & 0xFF00) >> 8; resp[1] = (mode_data_length & 0x00FF); /* resp[2] and [3] are zero */ resp[4] = llbaa; resp[5] = RESERVED_FIELD; resp[6] = (blk_desc_len & 0xFF00) >> 8; resp[7] = (blk_desc_len & 0x00FF); } else { resp[0] = (mode_data_length & 0x00FF); /* resp[1] and [2] are zero */ resp[3] = (blk_desc_len & 0x00FF); } return SNTI_TRANSLATION_SUCCESS; } static int nvme_trans_fill_blk_desc(struct nvme_ns *ns, struct sg_io_hdr *hdr, u8 *resp, int len, u8 llbaa) { int res = SNTI_TRANSLATION_SUCCESS; int nvme_sc; struct nvme_dev *dev = ns->dev; dma_addr_t dma_addr; void *mem; struct nvme_id_ns *id_ns; u8 flbas; u32 lba_length; if (llbaa == 0 && len < MODE_PAGE_BLK_DES_LEN) return SNTI_INTERNAL_ERROR; else if (llbaa > 0 && len < MODE_PAGE_LLBAA_BLK_DES_LEN) return SNTI_INTERNAL_ERROR; mem = dma_alloc_coherent(&dev->pci_dev->dev, sizeof(struct nvme_id_ns), &dma_addr, GFP_KERNEL); if (mem == NULL) { res = -ENOMEM; goto out; } /* nvme ns identify */ nvme_sc = nvme_identify(dev, ns->ns_id, 0, dma_addr); res = nvme_trans_status_code(hdr, nvme_sc); if (res) goto out_dma; if (nvme_sc) { res = nvme_sc; goto out_dma; } id_ns = mem; flbas = (id_ns->flbas) & 0x0F; lba_length = (1 << (id_ns->lbaf[flbas].ds)); if (llbaa == 0) { __be32 tmp_cap = cpu_to_be32(le64_to_cpu(id_ns->ncap)); /* Byte 4 is reserved */ __be32 tmp_len = cpu_to_be32(lba_length & 0x00FFFFFF); memcpy(resp, &tmp_cap, sizeof(u32)); memcpy(&resp[4], &tmp_len, sizeof(u32)); } else { __be64 tmp_cap = cpu_to_be64(le64_to_cpu(id_ns->ncap)); __be32 tmp_len = cpu_to_be32(lba_length); memcpy(resp, &tmp_cap, sizeof(u64)); /* Bytes 8, 9, 10, 11 are reserved */ memcpy(&resp[12], &tmp_len, sizeof(u32)); } out_dma: dma_free_coherent(&dev->pci_dev->dev, sizeof(struct nvme_id_ns), mem, dma_addr); out: return res; } static int nvme_trans_fill_control_page(struct nvme_ns *ns, struct sg_io_hdr *hdr, u8 *resp, int len) { if (len < MODE_PAGE_CONTROL_LEN) return SNTI_INTERNAL_ERROR; resp[0] = MODE_PAGE_CONTROL; resp[1] = MODE_PAGE_CONTROL_LEN_FIELD; resp[2] = 0x0E; /* TST=000b, TMF_ONLY=0, DPICZ=1, * D_SENSE=1, GLTSD=1, RLEC=0 */ resp[3] = 0x12; /* Q_ALGO_MODIFIER=1h, NUAR=0, QERR=01b */ /* Byte 4: VS=0, RAC=0, UA_INT=0, SWP=0 */ resp[5] = 0x40; /* ATO=0, TAS=1, ATMPE=0, RWWP=0, AUTOLOAD=0 */ /* resp[6] and [7] are obsolete, thus zero */ resp[8] = 0xFF; /* Busy timeout period = 0xffff */ resp[9] = 0xFF; /* Bytes 10,11: Extended selftest completion time = 0x0000 */ return SNTI_TRANSLATION_SUCCESS; } static int nvme_trans_fill_caching_page(struct nvme_ns *ns, struct sg_io_hdr *hdr, u8 *resp, int len) { int res = SNTI_TRANSLATION_SUCCESS; int nvme_sc; struct nvme_dev *dev = ns->dev; u32 feature_resp; u8 vwc; if (len < MODE_PAGE_CACHING_LEN) return SNTI_INTERNAL_ERROR; nvme_sc = nvme_get_features(dev, NVME_FEAT_VOLATILE_WC, 0, 0, &feature_resp); res = nvme_trans_status_code(hdr, nvme_sc); if (res) goto out; if (nvme_sc) { res = nvme_sc; goto out; } vwc = feature_resp & 0x00000001; resp[0] = MODE_PAGE_CACHING; resp[1] = MODE_PAGE_CACHING_LEN_FIELD; resp[2] = vwc << 2; out: return res; } static int nvme_trans_fill_pow_cnd_page(struct nvme_ns *ns, struct sg_io_hdr *hdr, u8 *resp, int len) { int res = SNTI_TRANSLATION_SUCCESS; if (len < MODE_PAGE_POW_CND_LEN) return SNTI_INTERNAL_ERROR; resp[0] = MODE_PAGE_POWER_CONDITION; resp[1] = MODE_PAGE_POW_CND_LEN_FIELD; /* All other bytes are zero */ return res; } static int nvme_trans_fill_inf_exc_page(struct nvme_ns *ns, struct sg_io_hdr *hdr, u8 *resp, int len) { int res = SNTI_TRANSLATION_SUCCESS; if (len < MODE_PAGE_INF_EXC_LEN) return SNTI_INTERNAL_ERROR; resp[0] = MODE_PAGE_INFO_EXCEP; resp[1] = MODE_PAGE_INF_EXC_LEN_FIELD; resp[2] = 0x88; /* All other bytes are zero */ return res; } static int nvme_trans_fill_all_pages(struct nvme_ns *ns, struct sg_io_hdr *hdr, u8 *resp, int len) { int res = SNTI_TRANSLATION_SUCCESS; u16 mode_pages_offset_1 = 0; u16 mode_pages_offset_2, mode_pages_offset_3, mode_pages_offset_4; mode_pages_offset_2 = mode_pages_offset_1 + MODE_PAGE_CACHING_LEN; mode_pages_offset_3 = mode_pages_offset_2 + MODE_PAGE_CONTROL_LEN; mode_pages_offset_4 = mode_pages_offset_3 + MODE_PAGE_POW_CND_LEN; res = nvme_trans_fill_caching_page(ns, hdr, &resp[mode_pages_offset_1], MODE_PAGE_CACHING_LEN); if (res != SNTI_TRANSLATION_SUCCESS) goto out; res = nvme_trans_fill_control_page(ns, hdr, &resp[mode_pages_offset_2], MODE_PAGE_CONTROL_LEN); if (res != SNTI_TRANSLATION_SUCCESS) goto out; res = nvme_trans_fill_pow_cnd_page(ns, hdr, &resp[mode_pages_offset_3], MODE_PAGE_POW_CND_LEN); if (res != SNTI_TRANSLATION_SUCCESS) goto out; res = nvme_trans_fill_inf_exc_page(ns, hdr, &resp[mode_pages_offset_4], MODE_PAGE_INF_EXC_LEN); if (res != SNTI_TRANSLATION_SUCCESS) goto out; out: return res; } static inline int nvme_trans_get_blk_desc_len(u8 dbd, u8 llbaa) { if (dbd == MODE_SENSE_BLK_DESC_ENABLED) { /* SPC-4: len = 8 x Num_of_descriptors if llbaa = 0, 16x if 1 */ return 8 * (llbaa + 1) * MODE_SENSE_BLK_DESC_COUNT; } else { return 0; } } static int nvme_trans_mode_page_create(struct nvme_ns *ns, struct sg_io_hdr *hdr, u8 *cmd, u16 alloc_len, u8 cdb10, int (*mode_page_fill_func) (struct nvme_ns *, struct sg_io_hdr *hdr, u8 *, int), u16 mode_pages_tot_len) { int res = SNTI_TRANSLATION_SUCCESS; int xfer_len; u8 *response; u8 dbd, llbaa; u16 resp_size; int mph_size; u16 mode_pages_offset_1; u16 blk_desc_len, blk_desc_offset, mode_data_length; dbd = GET_MODE_SENSE_DBD(cmd); llbaa = GET_MODE_SENSE_LLBAA(cmd); mph_size = GET_MODE_SENSE_MPH_SIZE(cdb10); blk_desc_len = nvme_trans_get_blk_desc_len(dbd, llbaa); resp_size = mph_size + blk_desc_len + mode_pages_tot_len; /* Refer spc4r34 Table 440 for calculation of Mode data Length field */ mode_data_length = 3 + (3 * cdb10) + blk_desc_len + mode_pages_tot_len; blk_desc_offset = mph_size; mode_pages_offset_1 = blk_desc_offset + blk_desc_len; response = kzalloc(resp_size, GFP_KERNEL); if (response == NULL) { res = -ENOMEM; goto out_mem; } res = nvme_trans_fill_mode_parm_hdr(&response[0], mph_size, cdb10, llbaa, mode_data_length, blk_desc_len); if (res != SNTI_TRANSLATION_SUCCESS) goto out_free; if (blk_desc_len > 0) { res = nvme_trans_fill_blk_desc(ns, hdr, &response[blk_desc_offset], blk_desc_len, llbaa); if (res != SNTI_TRANSLATION_SUCCESS) goto out_free; } res = mode_page_fill_func(ns, hdr, &response[mode_pages_offset_1], mode_pages_tot_len); if (res != SNTI_TRANSLATION_SUCCESS) goto out_free; xfer_len = min(alloc_len, resp_size); res = nvme_trans_copy_to_user(hdr, response, xfer_len); out_free: kfree(response); out_mem: return res; } /* Read Capacity Helper Functions */ static void nvme_trans_fill_read_cap(u8 *response, struct nvme_id_ns *id_ns, u8 cdb16) { u8 flbas; u32 lba_length; u64 rlba; u8 prot_en; u8 p_type_lut[4] = {0, 0, 1, 2}; __be64 tmp_rlba; __be32 tmp_rlba_32; __be32 tmp_len; flbas = (id_ns->flbas) & 0x0F; lba_length = (1 << (id_ns->lbaf[flbas].ds)); rlba = le64_to_cpup(&id_ns->nsze) - 1; (id_ns->dps) ? (prot_en = 0x01) : (prot_en = 0); if (!cdb16) { if (rlba > 0xFFFFFFFF) rlba = 0xFFFFFFFF; tmp_rlba_32 = cpu_to_be32(rlba); tmp_len = cpu_to_be32(lba_length); memcpy(response, &tmp_rlba_32, sizeof(u32)); memcpy(&response[4], &tmp_len, sizeof(u32)); } else { tmp_rlba = cpu_to_be64(rlba); tmp_len = cpu_to_be32(lba_length); memcpy(response, &tmp_rlba, sizeof(u64)); memcpy(&response[8], &tmp_len, sizeof(u32)); response[12] = (p_type_lut[id_ns->dps & 0x3] << 1) | prot_en; /* P_I_Exponent = 0x0 | LBPPBE = 0x0 */ /* LBPME = 0 | LBPRZ = 0 | LALBA = 0x00 */ /* Bytes 16-31 - Reserved */ } } /* Start Stop Unit Helper Functions */ static int nvme_trans_power_state(struct nvme_ns *ns, struct sg_io_hdr *hdr, u8 pc, u8 pcmod, u8 start) { int res = SNTI_TRANSLATION_SUCCESS; int nvme_sc; struct nvme_dev *dev = ns->dev; dma_addr_t dma_addr; void *mem; struct nvme_id_ctrl *id_ctrl; int lowest_pow_st; /* max npss = lowest power consumption */ unsigned ps_desired = 0; /* NVMe Controller Identify */ mem = dma_alloc_coherent(&dev->pci_dev->dev, sizeof(struct nvme_id_ctrl), &dma_addr, GFP_KERNEL); if (mem == NULL) { res = -ENOMEM; goto out; } nvme_sc = nvme_identify(dev, 0, 1, dma_addr); res = nvme_trans_status_code(hdr, nvme_sc); if (res) goto out_dma; if (nvme_sc) { res = nvme_sc; goto out_dma; } id_ctrl = mem; lowest_pow_st = max(POWER_STATE_0, (int)(id_ctrl->npss - 1)); switch (pc) { case NVME_POWER_STATE_START_VALID: /* Action unspecified if POWER CONDITION MODIFIER != 0 */ if (pcmod == 0 && start == 0x1) ps_desired = POWER_STATE_0; if (pcmod == 0 && start == 0x0) ps_desired = lowest_pow_st; break; case NVME_POWER_STATE_ACTIVE: /* Action unspecified if POWER CONDITION MODIFIER != 0 */ if (pcmod == 0) ps_desired = POWER_STATE_0; break; case NVME_POWER_STATE_IDLE: /* Action unspecified if POWER CONDITION MODIFIER != [0,1,2] */ if (pcmod == 0x0) ps_desired = POWER_STATE_1; else if (pcmod == 0x1) ps_desired = POWER_STATE_2; else if (pcmod == 0x2) ps_desired = POWER_STATE_3; break; case NVME_POWER_STATE_STANDBY: /* Action unspecified if POWER CONDITION MODIFIER != [0,1] */ if (pcmod == 0x0) ps_desired = max(POWER_STATE_0, (lowest_pow_st - 2)); else if (pcmod == 0x1) ps_desired = max(POWER_STATE_0, (lowest_pow_st - 1)); break; case NVME_POWER_STATE_LU_CONTROL: default: res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION, ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB, SCSI_ASCQ_CAUSE_NOT_REPORTABLE); break; } nvme_sc = nvme_set_features(dev, NVME_FEAT_POWER_MGMT, ps_desired, 0, NULL); res = nvme_trans_status_code(hdr, nvme_sc); if (res) goto out_dma; if (nvme_sc) res = nvme_sc; out_dma: dma_free_coherent(&dev->pci_dev->dev, sizeof(struct nvme_id_ctrl), mem, dma_addr); out: return res; } /* Write Buffer Helper Functions */ /* Also using this for Format Unit with hdr passed as NULL, and buffer_id, 0 */ static int nvme_trans_send_fw_cmd(struct nvme_ns *ns, struct sg_io_hdr *hdr, u8 opcode, u32 tot_len, u32 offset, u8 buffer_id) { int res = SNTI_TRANSLATION_SUCCESS; int nvme_sc; struct nvme_dev *dev = ns->dev; struct nvme_command c; struct nvme_iod *iod = NULL; unsigned length; memset(&c, 0, sizeof(c)); c.common.opcode = opcode; if (opcode == nvme_admin_download_fw) { if (hdr->iovec_count > 0) { /* Assuming SGL is not allowed for this command */ res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION, ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB, SCSI_ASCQ_CAUSE_NOT_REPORTABLE); goto out; } iod = nvme_map_user_pages(dev, DMA_TO_DEVICE, (unsigned long)hdr->dxferp, tot_len); if (IS_ERR(iod)) { res = PTR_ERR(iod); goto out; } length = nvme_setup_prps(dev, iod, tot_len, GFP_KERNEL); if (length != tot_len) { res = -ENOMEM; goto out_unmap; } c.dlfw.prp1 = cpu_to_le64(sg_dma_address(iod->sg)); c.dlfw.prp2 = cpu_to_le64(iod->first_dma); c.dlfw.numd = cpu_to_le32((tot_len/BYTES_TO_DWORDS) - 1); c.dlfw.offset = cpu_to_le32(offset/BYTES_TO_DWORDS); } else if (opcode == nvme_admin_activate_fw) { u32 cdw10 = buffer_id | NVME_FWACT_REPL_ACTV; c.common.cdw10[0] = cpu_to_le32(cdw10); } nvme_sc = nvme_submit_admin_cmd(dev, &c, NULL); res = nvme_trans_status_code(hdr, nvme_sc); if (res) goto out_unmap; if (nvme_sc) res = nvme_sc; out_unmap: if (opcode == nvme_admin_download_fw) { nvme_unmap_user_pages(dev, DMA_TO_DEVICE, iod); nvme_free_iod(dev, iod); } out: return res; } /* Mode Select Helper Functions */ static inline void nvme_trans_modesel_get_bd_len(u8 *parm_list, u8 cdb10, u16 *bd_len, u8 *llbaa) { if (cdb10) { /* 10 Byte CDB */ *bd_len = (parm_list[MODE_SELECT_10_BD_OFFSET] << 8) + parm_list[MODE_SELECT_10_BD_OFFSET + 1]; *llbaa = parm_list[MODE_SELECT_10_LLBAA_OFFSET] && MODE_SELECT_10_LLBAA_MASK; } else { /* 6 Byte CDB */ *bd_len = parm_list[MODE_SELECT_6_BD_OFFSET]; } } static void nvme_trans_modesel_save_bd(struct nvme_ns *ns, u8 *parm_list, u16 idx, u16 bd_len, u8 llbaa) { u16 bd_num; bd_num = bd_len / ((llbaa == 0) ? SHORT_DESC_BLOCK : LONG_DESC_BLOCK); /* Store block descriptor info if a FORMAT UNIT comes later */ /* TODO Saving 1st BD info; what to do if multiple BD received? */ if (llbaa == 0) { /* Standard Block Descriptor - spc4r34 7.5.5.1 */ ns->mode_select_num_blocks = (parm_list[idx + 1] << 16) + (parm_list[idx + 2] << 8) + (parm_list[idx + 3]); ns->mode_select_block_len = (parm_list[idx + 5] << 16) + (parm_list[idx + 6] << 8) + (parm_list[idx + 7]); } else { /* Long LBA Block Descriptor - sbc3r27 6.4.2.3 */ ns->mode_select_num_blocks = (((u64)parm_list[idx + 0]) << 56) + (((u64)parm_list[idx + 1]) << 48) + (((u64)parm_list[idx + 2]) << 40) + (((u64)parm_list[idx + 3]) << 32) + (((u64)parm_list[idx + 4]) << 24) + (((u64)parm_list[idx + 5]) << 16) + (((u64)parm_list[idx + 6]) << 8) + ((u64)parm_list[idx + 7]); ns->mode_select_block_len = (parm_list[idx + 12] << 24) + (parm_list[idx + 13] << 16) + (parm_list[idx + 14] << 8) + (parm_list[idx + 15]); } } static int nvme_trans_modesel_get_mp(struct nvme_ns *ns, struct sg_io_hdr *hdr, u8 *mode_page, u8 page_code) { int res = SNTI_TRANSLATION_SUCCESS; int nvme_sc; struct nvme_dev *dev = ns->dev; unsigned dword11; switch (page_code) { case MODE_PAGE_CACHING: dword11 = ((mode_page[2] & CACHING_MODE_PAGE_WCE_MASK) ? 1 : 0); nvme_sc = nvme_set_features(dev, NVME_FEAT_VOLATILE_WC, dword11, 0, NULL); res = nvme_trans_status_code(hdr, nvme_sc); if (res) break; if (nvme_sc) { res = nvme_sc; break; } break; case MODE_PAGE_CONTROL: break; case MODE_PAGE_POWER_CONDITION: /* Verify the OS is not trying to set timers */ if ((mode_page[2] & 0x01) != 0 || (mode_page[3] & 0x0F) != 0) { res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION, ILLEGAL_REQUEST, SCSI_ASC_INVALID_PARAMETER, SCSI_ASCQ_CAUSE_NOT_REPORTABLE); if (!res) res = SNTI_INTERNAL_ERROR; break; } break; default: res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION, ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB, SCSI_ASCQ_CAUSE_NOT_REPORTABLE); if (!res) res = SNTI_INTERNAL_ERROR; break; } return res; } static int nvme_trans_modesel_data(struct nvme_ns *ns, struct sg_io_hdr *hdr, u8 *cmd, u16 parm_list_len, u8 pf, u8 sp, u8 cdb10) { int res = SNTI_TRANSLATION_SUCCESS; u8 *parm_list; u16 bd_len; u8 llbaa = 0; u16 index, saved_index; u8 page_code; u16 mp_size; /* Get parm list from data-in/out buffer */ parm_list = kmalloc(parm_list_len, GFP_KERNEL); if (parm_list == NULL) { res = -ENOMEM; goto out; } res = nvme_trans_copy_from_user(hdr, parm_list, parm_list_len); if (res != SNTI_TRANSLATION_SUCCESS) goto out_mem; nvme_trans_modesel_get_bd_len(parm_list, cdb10, &bd_len, &llbaa); index = (cdb10) ? (MODE_SELECT_10_MPH_SIZE) : (MODE_SELECT_6_MPH_SIZE); if (bd_len != 0) { /* Block Descriptors present, parse */ nvme_trans_modesel_save_bd(ns, parm_list, index, bd_len, llbaa); index += bd_len; } saved_index = index; /* Multiple mode pages may be present; iterate through all */ /* In 1st Iteration, don't do NVME Command, only check for CDB errors */ do { page_code = parm_list[index] & MODE_SELECT_PAGE_CODE_MASK; mp_size = parm_list[index + 1] + 2; if ((page_code != MODE_PAGE_CACHING) && (page_code != MODE_PAGE_CONTROL) && (page_code != MODE_PAGE_POWER_CONDITION)) { res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION, ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB, SCSI_ASCQ_CAUSE_NOT_REPORTABLE); goto out_mem; } index += mp_size; } while (index < parm_list_len); /* In 2nd Iteration, do the NVME Commands */ index = saved_index; do { page_code = parm_list[index] & MODE_SELECT_PAGE_CODE_MASK; mp_size = parm_list[index + 1] + 2; res = nvme_trans_modesel_get_mp(ns, hdr, &parm_list[index], page_code); if (res != SNTI_TRANSLATION_SUCCESS) break; index += mp_size; } while (index < parm_list_len); out_mem: kfree(parm_list); out: return res; } /* Format Unit Helper Functions */ static int nvme_trans_fmt_set_blk_size_count(struct nvme_ns *ns, struct sg_io_hdr *hdr) { int res = SNTI_TRANSLATION_SUCCESS; int nvme_sc; struct nvme_dev *dev = ns->dev; dma_addr_t dma_addr; void *mem; struct nvme_id_ns *id_ns; u8 flbas; /* * SCSI Expects a MODE SELECT would have been issued prior to * a FORMAT UNIT, and the block size and number would be used * from the block descriptor in it. If a MODE SELECT had not * been issued, FORMAT shall use the current values for both. */ if (ns->mode_select_num_blocks == 0 || ns->mode_select_block_len == 0) { mem = dma_alloc_coherent(&dev->pci_dev->dev, sizeof(struct nvme_id_ns), &dma_addr, GFP_KERNEL); if (mem == NULL) { res = -ENOMEM; goto out; } /* nvme ns identify */ nvme_sc = nvme_identify(dev, ns->ns_id, 0, dma_addr); res = nvme_trans_status_code(hdr, nvme_sc); if (res) goto out_dma; if (nvme_sc) { res = nvme_sc; goto out_dma; } id_ns = mem; if (ns->mode_select_num_blocks == 0) ns->mode_select_num_blocks = le64_to_cpu(id_ns->ncap); if (ns->mode_select_block_len == 0) { flbas = (id_ns->flbas) & 0x0F; ns->mode_select_block_len = (1 << (id_ns->lbaf[flbas].ds)); } out_dma: dma_free_coherent(&dev->pci_dev->dev, sizeof(struct nvme_id_ns), mem, dma_addr); } out: return res; } static int nvme_trans_fmt_get_parm_header(struct sg_io_hdr *hdr, u8 len, u8 format_prot_info, u8 *nvme_pf_code) { int res = SNTI_TRANSLATION_SUCCESS; u8 *parm_list; u8 pf_usage, pf_code; parm_list = kmalloc(len, GFP_KERNEL); if (parm_list == NULL) { res = -ENOMEM; goto out; } res = nvme_trans_copy_from_user(hdr, parm_list, len); if (res != SNTI_TRANSLATION_SUCCESS) goto out_mem; if ((parm_list[FORMAT_UNIT_IMMED_OFFSET] & FORMAT_UNIT_IMMED_MASK) != 0) { res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION, ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB, SCSI_ASCQ_CAUSE_NOT_REPORTABLE); goto out_mem; } if (len == FORMAT_UNIT_LONG_PARM_LIST_LEN && (parm_list[FORMAT_UNIT_PROT_INT_OFFSET] & 0x0F) != 0) { res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION, ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB, SCSI_ASCQ_CAUSE_NOT_REPORTABLE); goto out_mem; } pf_usage = parm_list[FORMAT_UNIT_PROT_FIELD_USAGE_OFFSET] & FORMAT_UNIT_PROT_FIELD_USAGE_MASK; pf_code = (pf_usage << 2) | format_prot_info; switch (pf_code) { case 0: *nvme_pf_code = 0; break; case 2: *nvme_pf_code = 1; break; case 3: *nvme_pf_code = 2; break; case 7: *nvme_pf_code = 3; break; default: res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION, ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB, SCSI_ASCQ_CAUSE_NOT_REPORTABLE); break; } out_mem: kfree(parm_list); out: return res; } static int nvme_trans_fmt_send_cmd(struct nvme_ns *ns, struct sg_io_hdr *hdr, u8 prot_info) { int res = SNTI_TRANSLATION_SUCCESS; int nvme_sc; struct nvme_dev *dev = ns->dev; dma_addr_t dma_addr; void *mem; struct nvme_id_ns *id_ns; u8 i; u8 flbas, nlbaf; u8 selected_lbaf = 0xFF; u32 cdw10 = 0; struct nvme_command c; /* Loop thru LBAF's in id_ns to match reqd lbaf, put in cdw10 */ mem = dma_alloc_coherent(&dev->pci_dev->dev, sizeof(struct nvme_id_ns), &dma_addr, GFP_KERNEL); if (mem == NULL) { res = -ENOMEM; goto out; } /* nvme ns identify */ nvme_sc = nvme_identify(dev, ns->ns_id, 0, dma_addr); res = nvme_trans_status_code(hdr, nvme_sc); if (res) goto out_dma; if (nvme_sc) { res = nvme_sc; goto out_dma; } id_ns = mem; flbas = (id_ns->flbas) & 0x0F; nlbaf = id_ns->nlbaf; for (i = 0; i < nlbaf; i++) { if (ns->mode_select_block_len == (1 << (id_ns->lbaf[i].ds))) { selected_lbaf = i; break; } } if (selected_lbaf > 0x0F) { res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION, ILLEGAL_REQUEST, SCSI_ASC_INVALID_PARAMETER, SCSI_ASCQ_CAUSE_NOT_REPORTABLE); } if (ns->mode_select_num_blocks != le64_to_cpu(id_ns->ncap)) { res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION, ILLEGAL_REQUEST, SCSI_ASC_INVALID_PARAMETER, SCSI_ASCQ_CAUSE_NOT_REPORTABLE); } cdw10 |= prot_info << 5; cdw10 |= selected_lbaf & 0x0F; memset(&c, 0, sizeof(c)); c.format.opcode = nvme_admin_format_nvm; c.format.nsid = cpu_to_le32(ns->ns_id); c.format.cdw10 = cpu_to_le32(cdw10); nvme_sc = nvme_submit_admin_cmd(dev, &c, NULL); res = nvme_trans_status_code(hdr, nvme_sc); if (res) goto out_dma; if (nvme_sc) res = nvme_sc; out_dma: dma_free_coherent(&dev->pci_dev->dev, sizeof(struct nvme_id_ns), mem, dma_addr); out: return res; } /* Read/Write Helper Functions */ static inline void nvme_trans_get_io_cdb6(u8 *cmd, struct nvme_trans_io_cdb *cdb_info) { cdb_info->fua = 0; cdb_info->prot_info = 0; cdb_info->lba = GET_U32_FROM_CDB(cmd, IO_6_CDB_LBA_OFFSET) & IO_6_CDB_LBA_MASK; cdb_info->xfer_len = GET_U8_FROM_CDB(cmd, IO_6_CDB_TX_LEN_OFFSET); /* sbc3r27 sec 5.32 - TRANSFER LEN of 0 implies a 256 Block transfer */ if (cdb_info->xfer_len == 0) cdb_info->xfer_len = IO_6_DEFAULT_TX_LEN; } static inline void nvme_trans_get_io_cdb10(u8 *cmd, struct nvme_trans_io_cdb *cdb_info) { cdb_info->fua = GET_U8_FROM_CDB(cmd, IO_10_CDB_FUA_OFFSET) & IO_CDB_FUA_MASK; cdb_info->prot_info = GET_U8_FROM_CDB(cmd, IO_10_CDB_WP_OFFSET) & IO_CDB_WP_MASK >> IO_CDB_WP_SHIFT; cdb_info->lba = GET_U32_FROM_CDB(cmd, IO_10_CDB_LBA_OFFSET); cdb_info->xfer_len = GET_U16_FROM_CDB(cmd, IO_10_CDB_TX_LEN_OFFSET); } static inline void nvme_trans_get_io_cdb12(u8 *cmd, struct nvme_trans_io_cdb *cdb_info) { cdb_info->fua = GET_U8_FROM_CDB(cmd, IO_12_CDB_FUA_OFFSET) & IO_CDB_FUA_MASK; cdb_info->prot_info = GET_U8_FROM_CDB(cmd, IO_12_CDB_WP_OFFSET) & IO_CDB_WP_MASK >> IO_CDB_WP_SHIFT; cdb_info->lba = GET_U32_FROM_CDB(cmd, IO_12_CDB_LBA_OFFSET); cdb_info->xfer_len = GET_U32_FROM_CDB(cmd, IO_12_CDB_TX_LEN_OFFSET); } static inline void nvme_trans_get_io_cdb16(u8 *cmd, struct nvme_trans_io_cdb *cdb_info) { cdb_info->fua = GET_U8_FROM_CDB(cmd, IO_16_CDB_FUA_OFFSET) & IO_CDB_FUA_MASK; cdb_info->prot_info = GET_U8_FROM_CDB(cmd, IO_16_CDB_WP_OFFSET) & IO_CDB_WP_MASK >> IO_CDB_WP_SHIFT; cdb_info->lba = GET_U64_FROM_CDB(cmd, IO_16_CDB_LBA_OFFSET); cdb_info->xfer_len = GET_U32_FROM_CDB(cmd, IO_16_CDB_TX_LEN_OFFSET); } static inline u32 nvme_trans_io_get_num_cmds(struct sg_io_hdr *hdr, struct nvme_trans_io_cdb *cdb_info, u32 max_blocks) { /* If using iovecs, send one nvme command per vector */ if (hdr->iovec_count > 0) return hdr->iovec_count; else if (cdb_info->xfer_len > max_blocks) return ((cdb_info->xfer_len - 1) / max_blocks) + 1; else return 1; } static u16 nvme_trans_io_get_control(struct nvme_ns *ns, struct nvme_trans_io_cdb *cdb_info) { u16 control = 0; /* When Protection information support is added, implement here */ if (cdb_info->fua > 0) control |= NVME_RW_FUA; return control; } static int nvme_trans_do_nvme_io(struct nvme_ns *ns, struct sg_io_hdr *hdr, struct nvme_trans_io_cdb *cdb_info, u8 is_write) { int res = SNTI_TRANSLATION_SUCCESS; int nvme_sc; struct nvme_dev *dev = ns->dev; u32 num_cmds; struct nvme_iod *iod; u64 unit_len; u64 unit_num_blocks; /* Number of blocks to xfer in each nvme cmd */ u32 retcode; u32 i = 0; u64 nvme_offset = 0; void __user *next_mapping_addr; struct nvme_command c; u8 opcode = (is_write ? nvme_cmd_write : nvme_cmd_read); u16 control; u32 max_blocks = queue_max_hw_sectors(ns->queue); num_cmds = nvme_trans_io_get_num_cmds(hdr, cdb_info, max_blocks); /* * This loop handles two cases. * First, when an SGL is used in the form of an iovec list: * - Use iov_base as the next mapping address for the nvme command_id * - Use iov_len as the data transfer length for the command. * Second, when we have a single buffer * - If larger than max_blocks, split into chunks, offset * each nvme command accordingly. */ for (i = 0; i < num_cmds; i++) { memset(&c, 0, sizeof(c)); if (hdr->iovec_count > 0) { struct sg_iovec sgl; retcode = copy_from_user(&sgl, hdr->dxferp + i * sizeof(struct sg_iovec), sizeof(struct sg_iovec)); if (retcode) return -EFAULT; unit_len = sgl.iov_len; unit_num_blocks = unit_len >> ns->lba_shift; next_mapping_addr = sgl.iov_base; } else { unit_num_blocks = min((u64)max_blocks, (cdb_info->xfer_len - nvme_offset)); unit_len = unit_num_blocks << ns->lba_shift; next_mapping_addr = hdr->dxferp + ((1 << ns->lba_shift) * nvme_offset); } c.rw.opcode = opcode; c.rw.nsid = cpu_to_le32(ns->ns_id); c.rw.slba = cpu_to_le64(cdb_info->lba + nvme_offset); c.rw.length = cpu_to_le16(unit_num_blocks - 1); control = nvme_trans_io_get_control(ns, cdb_info); c.rw.control = cpu_to_le16(control); iod = nvme_map_user_pages(dev, (is_write) ? DMA_TO_DEVICE : DMA_FROM_DEVICE, (unsigned long)next_mapping_addr, unit_len); if (IS_ERR(iod)) { res = PTR_ERR(iod); goto out; } retcode = nvme_setup_prps(dev, iod, unit_len, GFP_KERNEL); if (retcode != unit_len) { nvme_unmap_user_pages(dev, (is_write) ? DMA_TO_DEVICE : DMA_FROM_DEVICE, iod); nvme_free_iod(dev, iod); res = -ENOMEM; goto out; } c.rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg)); c.rw.prp2 = cpu_to_le64(iod->first_dma); nvme_offset += unit_num_blocks; nvme_sc = nvme_submit_io_cmd(dev, &c, NULL); if (nvme_sc != NVME_SC_SUCCESS) { nvme_unmap_user_pages(dev, (is_write) ? DMA_TO_DEVICE : DMA_FROM_DEVICE, iod); nvme_free_iod(dev, iod); res = nvme_trans_status_code(hdr, nvme_sc); goto out; } nvme_unmap_user_pages(dev, (is_write) ? DMA_TO_DEVICE : DMA_FROM_DEVICE, iod); nvme_free_iod(dev, iod); } res = nvme_trans_status_code(hdr, NVME_SC_SUCCESS); out: return res; } /* SCSI Command Translation Functions */ static int nvme_trans_io(struct nvme_ns *ns, struct sg_io_hdr *hdr, u8 is_write, u8 *cmd) { int res = SNTI_TRANSLATION_SUCCESS; struct nvme_trans_io_cdb cdb_info; u8 opcode = cmd[0]; u64 xfer_bytes; u64 sum_iov_len = 0; struct sg_iovec sgl; int i; size_t not_copied; /* Extract Fields from CDB */ switch (opcode) { case WRITE_6: case READ_6: nvme_trans_get_io_cdb6(cmd, &cdb_info); break; case WRITE_10: case READ_10: nvme_trans_get_io_cdb10(cmd, &cdb_info); break; case WRITE_12: case READ_12: nvme_trans_get_io_cdb12(cmd, &cdb_info); break; case WRITE_16: case READ_16: nvme_trans_get_io_cdb16(cmd, &cdb_info); break; default: /* Will never really reach here */ res = SNTI_INTERNAL_ERROR; goto out; } /* Calculate total length of transfer (in bytes) */ if (hdr->iovec_count > 0) { for (i = 0; i < hdr->iovec_count; i++) { not_copied = copy_from_user(&sgl, hdr->dxferp + i * sizeof(struct sg_iovec), sizeof(struct sg_iovec)); if (not_copied) return -EFAULT; sum_iov_len += sgl.iov_len; /* IO vector sizes should be multiples of block size */ if (sgl.iov_len % (1 << ns->lba_shift) != 0) { res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION, ILLEGAL_REQUEST, SCSI_ASC_INVALID_PARAMETER, SCSI_ASCQ_CAUSE_NOT_REPORTABLE); goto out; } } } else { sum_iov_len = hdr->dxfer_len; } /* As Per sg ioctl howto, if the lengths differ, use the lower one */ xfer_bytes = min(((u64)hdr->dxfer_len), sum_iov_len); /* If block count and actual data buffer size dont match, error out */ if (xfer_bytes != (cdb_info.xfer_len << ns->lba_shift)) { res = -EINVAL; goto out; } /* Check for 0 length transfer - it is not illegal */ if (cdb_info.xfer_len == 0) goto out; /* Send NVMe IO Command(s) */ res = nvme_trans_do_nvme_io(ns, hdr, &cdb_info, is_write); if (res != SNTI_TRANSLATION_SUCCESS) goto out; out: return res; } static int nvme_trans_inquiry(struct nvme_ns *ns, struct sg_io_hdr *hdr, u8 *cmd) { int res = SNTI_TRANSLATION_SUCCESS; u8 evpd; u8 page_code; int alloc_len; u8 *inq_response; evpd = GET_INQ_EVPD_BIT(cmd); page_code = GET_INQ_PAGE_CODE(cmd); alloc_len = GET_INQ_ALLOC_LENGTH(cmd); inq_response = kmalloc(STANDARD_INQUIRY_LENGTH, GFP_KERNEL); if (inq_response == NULL) { res = -ENOMEM; goto out_mem; } if (evpd == 0) { if (page_code == INQ_STANDARD_INQUIRY_PAGE) { res = nvme_trans_standard_inquiry_page(ns, hdr, inq_response, alloc_len); } else { res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION, ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB, SCSI_ASCQ_CAUSE_NOT_REPORTABLE); } } else { switch (page_code) { case VPD_SUPPORTED_PAGES: res = nvme_trans_supported_vpd_pages(ns, hdr, inq_response, alloc_len); break; case VPD_SERIAL_NUMBER: res = nvme_trans_unit_serial_page(ns, hdr, inq_response, alloc_len); break; case VPD_DEVICE_IDENTIFIERS: res = nvme_trans_device_id_page(ns, hdr, inq_response, alloc_len); break; case VPD_EXTENDED_INQUIRY: res = nvme_trans_ext_inq_page(ns, hdr, alloc_len); break; case VPD_BLOCK_DEV_CHARACTERISTICS: res = nvme_trans_bdev_char_page(ns, hdr, alloc_len); break; default: res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION, ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB, SCSI_ASCQ_CAUSE_NOT_REPORTABLE); break; } } kfree(inq_response); out_mem: return res; } static int nvme_trans_log_sense(struct nvme_ns *ns, struct sg_io_hdr *hdr, u8 *cmd) { int res = SNTI_TRANSLATION_SUCCESS; u16 alloc_len; u8 sp; u8 pc; u8 page_code; sp = GET_U8_FROM_CDB(cmd, LOG_SENSE_CDB_SP_OFFSET); if (sp != LOG_SENSE_CDB_SP_NOT_ENABLED) { res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION, ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB, SCSI_ASCQ_CAUSE_NOT_REPORTABLE); goto out; } pc = GET_U8_FROM_CDB(cmd, LOG_SENSE_CDB_PC_OFFSET); page_code = pc & LOG_SENSE_CDB_PAGE_CODE_MASK; pc = (pc & LOG_SENSE_CDB_PC_MASK) >> LOG_SENSE_CDB_PC_SHIFT; if (pc != LOG_SENSE_CDB_PC_CUMULATIVE_VALUES) { res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION, ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB, SCSI_ASCQ_CAUSE_NOT_REPORTABLE); goto out; } alloc_len = GET_U16_FROM_CDB(cmd, LOG_SENSE_CDB_ALLOC_LENGTH_OFFSET); switch (page_code) { case LOG_PAGE_SUPPORTED_LOG_PAGES_PAGE: res = nvme_trans_log_supp_pages(ns, hdr, alloc_len); break; case LOG_PAGE_INFORMATIONAL_EXCEPTIONS_PAGE: res = nvme_trans_log_info_exceptions(ns, hdr, alloc_len); break; case LOG_PAGE_TEMPERATURE_PAGE: res = nvme_trans_log_temperature(ns, hdr, alloc_len); break; default: res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION, ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB, SCSI_ASCQ_CAUSE_NOT_REPORTABLE); break; } out: return res; } static int nvme_trans_mode_select(struct nvme_ns *ns, struct sg_io_hdr *hdr, u8 *cmd) { int res = SNTI_TRANSLATION_SUCCESS; u8 cdb10 = 0; u16 parm_list_len; u8 page_format; u8 save_pages; page_format = GET_U8_FROM_CDB(cmd, MODE_SELECT_CDB_PAGE_FORMAT_OFFSET); page_format &= MODE_SELECT_CDB_PAGE_FORMAT_MASK; save_pages = GET_U8_FROM_CDB(cmd, MODE_SELECT_CDB_SAVE_PAGES_OFFSET); save_pages &= MODE_SELECT_CDB_SAVE_PAGES_MASK; if (GET_OPCODE(cmd) == MODE_SELECT) { parm_list_len = GET_U8_FROM_CDB(cmd, MODE_SELECT_6_CDB_PARAM_LIST_LENGTH_OFFSET); } else { parm_list_len = GET_U16_FROM_CDB(cmd, MODE_SELECT_10_CDB_PARAM_LIST_LENGTH_OFFSET); cdb10 = 1; } if (parm_list_len != 0) { /* * According to SPC-4 r24, a paramter list length field of 0 * shall not be considered an error */ res = nvme_trans_modesel_data(ns, hdr, cmd, parm_list_len, page_format, save_pages, cdb10); } return res; } static int nvme_trans_mode_sense(struct nvme_ns *ns, struct sg_io_hdr *hdr, u8 *cmd) { int res = SNTI_TRANSLATION_SUCCESS; u16 alloc_len; u8 cdb10 = 0; u8 page_code; u8 pc; if (GET_OPCODE(cmd) == MODE_SENSE) { alloc_len = GET_U8_FROM_CDB(cmd, MODE_SENSE6_ALLOC_LEN_OFFSET); } else { alloc_len = GET_U16_FROM_CDB(cmd, MODE_SENSE10_ALLOC_LEN_OFFSET); cdb10 = 1; } pc = GET_U8_FROM_CDB(cmd, MODE_SENSE_PAGE_CONTROL_OFFSET) & MODE_SENSE_PAGE_CONTROL_MASK; if (pc != MODE_SENSE_PC_CURRENT_VALUES) { res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION, ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB, SCSI_ASCQ_CAUSE_NOT_REPORTABLE); goto out; } page_code = GET_U8_FROM_CDB(cmd, MODE_SENSE_PAGE_CODE_OFFSET) & MODE_SENSE_PAGE_CODE_MASK; switch (page_code) { case MODE_PAGE_CACHING: res = nvme_trans_mode_page_create(ns, hdr, cmd, alloc_len, cdb10, &nvme_trans_fill_caching_page, MODE_PAGE_CACHING_LEN); break; case MODE_PAGE_CONTROL: res = nvme_trans_mode_page_create(ns, hdr, cmd, alloc_len, cdb10, &nvme_trans_fill_control_page, MODE_PAGE_CONTROL_LEN); break; case MODE_PAGE_POWER_CONDITION: res = nvme_trans_mode_page_create(ns, hdr, cmd, alloc_len, cdb10, &nvme_trans_fill_pow_cnd_page, MODE_PAGE_POW_CND_LEN); break; case MODE_PAGE_INFO_EXCEP: res = nvme_trans_mode_page_create(ns, hdr, cmd, alloc_len, cdb10, &nvme_trans_fill_inf_exc_page, MODE_PAGE_INF_EXC_LEN); break; case MODE_PAGE_RETURN_ALL: res = nvme_trans_mode_page_create(ns, hdr, cmd, alloc_len, cdb10, &nvme_trans_fill_all_pages, MODE_PAGE_ALL_LEN); break; default: res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION, ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB, SCSI_ASCQ_CAUSE_NOT_REPORTABLE); break; } out: return res; } static int nvme_trans_read_capacity(struct nvme_ns *ns, struct sg_io_hdr *hdr, u8 *cmd) { int res = SNTI_TRANSLATION_SUCCESS; int nvme_sc; u32 alloc_len = READ_CAP_10_RESP_SIZE; u32 resp_size = READ_CAP_10_RESP_SIZE; u32 xfer_len; u8 cdb16; struct nvme_dev *dev = ns->dev; dma_addr_t dma_addr; void *mem; struct nvme_id_ns *id_ns; u8 *response; cdb16 = IS_READ_CAP_16(cmd); if (cdb16) { alloc_len = GET_READ_CAP_16_ALLOC_LENGTH(cmd); resp_size = READ_CAP_16_RESP_SIZE; } mem = dma_alloc_coherent(&dev->pci_dev->dev, sizeof(struct nvme_id_ns), &dma_addr, GFP_KERNEL); if (mem == NULL) { res = -ENOMEM; goto out; } /* nvme ns identify */ nvme_sc = nvme_identify(dev, ns->ns_id, 0, dma_addr); res = nvme_trans_status_code(hdr, nvme_sc); if (res) goto out_dma; if (nvme_sc) { res = nvme_sc; goto out_dma; } id_ns = mem; response = kzalloc(resp_size, GFP_KERNEL); if (response == NULL) { res = -ENOMEM; goto out_dma; } nvme_trans_fill_read_cap(response, id_ns, cdb16); xfer_len = min(alloc_len, resp_size); res = nvme_trans_copy_to_user(hdr, response, xfer_len); kfree(response); out_dma: dma_free_coherent(&dev->pci_dev->dev, sizeof(struct nvme_id_ns), mem, dma_addr); out: return res; } static int nvme_trans_report_luns(struct nvme_ns *ns, struct sg_io_hdr *hdr, u8 *cmd) { int res = SNTI_TRANSLATION_SUCCESS; int nvme_sc; u32 alloc_len, xfer_len, resp_size; u8 select_report; u8 *response; struct nvme_dev *dev = ns->dev; dma_addr_t dma_addr; void *mem; struct nvme_id_ctrl *id_ctrl; u32 ll_length, lun_id; u8 lun_id_offset = REPORT_LUNS_FIRST_LUN_OFFSET; __be32 tmp_len; alloc_len = GET_REPORT_LUNS_ALLOC_LENGTH(cmd); select_report = GET_U8_FROM_CDB(cmd, REPORT_LUNS_SR_OFFSET); if ((select_report != ALL_LUNS_RETURNED) && (select_report != ALL_WELL_KNOWN_LUNS_RETURNED) && (select_report != RESTRICTED_LUNS_RETURNED)) { res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION, ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB, SCSI_ASCQ_CAUSE_NOT_REPORTABLE); goto out; } else { /* NVMe Controller Identify */ mem = dma_alloc_coherent(&dev->pci_dev->dev, sizeof(struct nvme_id_ctrl), &dma_addr, GFP_KERNEL); if (mem == NULL) { res = -ENOMEM; goto out; } nvme_sc = nvme_identify(dev, 0, 1, dma_addr); res = nvme_trans_status_code(hdr, nvme_sc); if (res) goto out_dma; if (nvme_sc) { res = nvme_sc; goto out_dma; } id_ctrl = mem; ll_length = le32_to_cpu(id_ctrl->nn) * LUN_ENTRY_SIZE; resp_size = ll_length + LUN_DATA_HEADER_SIZE; if (alloc_len < resp_size) { res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION, ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB, SCSI_ASCQ_CAUSE_NOT_REPORTABLE); goto out_dma; } response = kzalloc(resp_size, GFP_KERNEL); if (response == NULL) { res = -ENOMEM; goto out_dma; } /* The first LUN ID will always be 0 per the SAM spec */ for (lun_id = 0; lun_id < le32_to_cpu(id_ctrl->nn); lun_id++) { /* * Set the LUN Id and then increment to the next LUN * location in the parameter data. */ __be64 tmp_id = cpu_to_be64(lun_id); memcpy(&response[lun_id_offset], &tmp_id, sizeof(u64)); lun_id_offset += LUN_ENTRY_SIZE; } tmp_len = cpu_to_be32(ll_length); memcpy(response, &tmp_len, sizeof(u32)); } xfer_len = min(alloc_len, resp_size); res = nvme_trans_copy_to_user(hdr, response, xfer_len); kfree(response); out_dma: dma_free_coherent(&dev->pci_dev->dev, sizeof(struct nvme_id_ctrl), mem, dma_addr); out: return res; } static int nvme_trans_request_sense(struct nvme_ns *ns, struct sg_io_hdr *hdr, u8 *cmd) { int res = SNTI_TRANSLATION_SUCCESS; u8 alloc_len, xfer_len, resp_size; u8 desc_format; u8 *response; alloc_len = GET_REQUEST_SENSE_ALLOC_LENGTH(cmd); desc_format = GET_U8_FROM_CDB(cmd, REQUEST_SENSE_DESC_OFFSET); desc_format &= REQUEST_SENSE_DESC_MASK; resp_size = ((desc_format) ? (DESC_FMT_SENSE_DATA_SIZE) : (FIXED_FMT_SENSE_DATA_SIZE)); response = kzalloc(resp_size, GFP_KERNEL); if (response == NULL) { res = -ENOMEM; goto out; } if (desc_format == DESCRIPTOR_FORMAT_SENSE_DATA_TYPE) { /* Descriptor Format Sense Data */ response[0] = DESC_FORMAT_SENSE_DATA; response[1] = NO_SENSE; /* TODO How is LOW POWER CONDITION ON handled? (byte 2) */ response[2] = SCSI_ASC_NO_SENSE; response[3] = SCSI_ASCQ_CAUSE_NOT_REPORTABLE; /* SDAT_OVFL = 0 | Additional Sense Length = 0 */ } else { /* Fixed Format Sense Data */ response[0] = FIXED_SENSE_DATA; /* Byte 1 = Obsolete */ response[2] = NO_SENSE; /* FM, EOM, ILI, SDAT_OVFL = 0 */ /* Bytes 3-6 - Information - set to zero */ response[7] = FIXED_SENSE_DATA_ADD_LENGTH; /* Bytes 8-11 - Cmd Specific Information - set to zero */ response[12] = SCSI_ASC_NO_SENSE; response[13] = SCSI_ASCQ_CAUSE_NOT_REPORTABLE; /* Byte 14 = Field Replaceable Unit Code = 0 */ /* Bytes 15-17 - SKSV=0; Sense Key Specific = 0 */ } xfer_len = min(alloc_len, resp_size); res = nvme_trans_copy_to_user(hdr, response, xfer_len); kfree(response); out: return res; } static int nvme_trans_security_protocol(struct nvme_ns *ns, struct sg_io_hdr *hdr, u8 *cmd) { return nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION, ILLEGAL_REQUEST, SCSI_ASC_ILLEGAL_COMMAND, SCSI_ASCQ_CAUSE_NOT_REPORTABLE); } static int nvme_trans_start_stop(struct nvme_ns *ns, struct sg_io_hdr *hdr, u8 *cmd) { int res = SNTI_TRANSLATION_SUCCESS; int nvme_sc; struct nvme_command c; u8 immed, pcmod, pc, no_flush, start; immed = GET_U8_FROM_CDB(cmd, START_STOP_UNIT_CDB_IMMED_OFFSET); pcmod = GET_U8_FROM_CDB(cmd, START_STOP_UNIT_CDB_POWER_COND_MOD_OFFSET); pc = GET_U8_FROM_CDB(cmd, START_STOP_UNIT_CDB_POWER_COND_OFFSET); no_flush = GET_U8_FROM_CDB(cmd, START_STOP_UNIT_CDB_NO_FLUSH_OFFSET); start = GET_U8_FROM_CDB(cmd, START_STOP_UNIT_CDB_START_OFFSET); immed &= START_STOP_UNIT_CDB_IMMED_MASK; pcmod &= START_STOP_UNIT_CDB_POWER_COND_MOD_MASK; pc = (pc & START_STOP_UNIT_CDB_POWER_COND_MASK) >> NIBBLE_SHIFT; no_flush &= START_STOP_UNIT_CDB_NO_FLUSH_MASK; start &= START_STOP_UNIT_CDB_START_MASK; if (immed != 0) { res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION, ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB, SCSI_ASCQ_CAUSE_NOT_REPORTABLE); } else { if (no_flush == 0) { /* Issue NVME FLUSH command prior to START STOP UNIT */ memset(&c, 0, sizeof(c)); c.common.opcode = nvme_cmd_flush; c.common.nsid = cpu_to_le32(ns->ns_id); nvme_sc = nvme_submit_io_cmd(ns->dev, &c, NULL); res = nvme_trans_status_code(hdr, nvme_sc); if (res) goto out; if (nvme_sc) { res = nvme_sc; goto out; } } /* Setup the expected power state transition */ res = nvme_trans_power_state(ns, hdr, pc, pcmod, start); } out: return res; } static int nvme_trans_synchronize_cache(struct nvme_ns *ns, struct sg_io_hdr *hdr, u8 *cmd) { int res = SNTI_TRANSLATION_SUCCESS; int nvme_sc; struct nvme_command c; memset(&c, 0, sizeof(c)); c.common.opcode = nvme_cmd_flush; c.common.nsid = cpu_to_le32(ns->ns_id); nvme_sc = nvme_submit_io_cmd(ns->dev, &c, NULL); res = nvme_trans_status_code(hdr, nvme_sc); if (res) goto out; if (nvme_sc) res = nvme_sc; out: return res; } static int nvme_trans_format_unit(struct nvme_ns *ns, struct sg_io_hdr *hdr, u8 *cmd) { int res = SNTI_TRANSLATION_SUCCESS; u8 parm_hdr_len = 0; u8 nvme_pf_code = 0; u8 format_prot_info, long_list, format_data; format_prot_info = GET_U8_FROM_CDB(cmd, FORMAT_UNIT_CDB_FORMAT_PROT_INFO_OFFSET); long_list = GET_U8_FROM_CDB(cmd, FORMAT_UNIT_CDB_LONG_LIST_OFFSET); format_data = GET_U8_FROM_CDB(cmd, FORMAT_UNIT_CDB_FORMAT_DATA_OFFSET); format_prot_info = (format_prot_info & FORMAT_UNIT_CDB_FORMAT_PROT_INFO_MASK) >> FORMAT_UNIT_CDB_FORMAT_PROT_INFO_SHIFT; long_list &= FORMAT_UNIT_CDB_LONG_LIST_MASK; format_data &= FORMAT_UNIT_CDB_FORMAT_DATA_MASK; if (format_data != 0) { if (format_prot_info != 0) { if (long_list == 0) parm_hdr_len = FORMAT_UNIT_SHORT_PARM_LIST_LEN; else parm_hdr_len = FORMAT_UNIT_LONG_PARM_LIST_LEN; } } else if (format_data == 0 && format_prot_info != 0) { res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION, ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB, SCSI_ASCQ_CAUSE_NOT_REPORTABLE); goto out; } /* Get parm header from data-in/out buffer */ /* * According to the translation spec, the only fields in the parameter * list we are concerned with are in the header. So allocate only that. */ if (parm_hdr_len > 0) { res = nvme_trans_fmt_get_parm_header(hdr, parm_hdr_len, format_prot_info, &nvme_pf_code); if (res != SNTI_TRANSLATION_SUCCESS) goto out; } /* Attempt to activate any previously downloaded firmware image */ res = nvme_trans_send_fw_cmd(ns, hdr, nvme_admin_activate_fw, 0, 0, 0); /* Determine Block size and count and send format command */ res = nvme_trans_fmt_set_blk_size_count(ns, hdr); if (res != SNTI_TRANSLATION_SUCCESS) goto out; res = nvme_trans_fmt_send_cmd(ns, hdr, nvme_pf_code); out: return res; } static int nvme_trans_test_unit_ready(struct nvme_ns *ns, struct sg_io_hdr *hdr, u8 *cmd) { int res = SNTI_TRANSLATION_SUCCESS; struct nvme_dev *dev = ns->dev; if (!(readl(&dev->bar->csts) & NVME_CSTS_RDY)) res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION, NOT_READY, SCSI_ASC_LUN_NOT_READY, SCSI_ASCQ_CAUSE_NOT_REPORTABLE); else res = nvme_trans_completion(hdr, SAM_STAT_GOOD, NO_SENSE, 0, 0); return res; } static int nvme_trans_write_buffer(struct nvme_ns *ns, struct sg_io_hdr *hdr, u8 *cmd) { int res = SNTI_TRANSLATION_SUCCESS; u32 buffer_offset, parm_list_length; u8 buffer_id, mode; parm_list_length = GET_U24_FROM_CDB(cmd, WRITE_BUFFER_CDB_PARM_LIST_LENGTH_OFFSET); if (parm_list_length % BYTES_TO_DWORDS != 0) { /* NVMe expects Firmware file to be a whole number of DWORDS */ res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION, ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB, SCSI_ASCQ_CAUSE_NOT_REPORTABLE); goto out; } buffer_id = GET_U8_FROM_CDB(cmd, WRITE_BUFFER_CDB_BUFFER_ID_OFFSET); if (buffer_id > NVME_MAX_FIRMWARE_SLOT) { res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION, ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB, SCSI_ASCQ_CAUSE_NOT_REPORTABLE); goto out; } mode = GET_U8_FROM_CDB(cmd, WRITE_BUFFER_CDB_MODE_OFFSET) & WRITE_BUFFER_CDB_MODE_MASK; buffer_offset = GET_U24_FROM_CDB(cmd, WRITE_BUFFER_CDB_BUFFER_OFFSET_OFFSET); switch (mode) { case DOWNLOAD_SAVE_ACTIVATE: res = nvme_trans_send_fw_cmd(ns, hdr, nvme_admin_download_fw, parm_list_length, buffer_offset, buffer_id); if (res != SNTI_TRANSLATION_SUCCESS) goto out; res = nvme_trans_send_fw_cmd(ns, hdr, nvme_admin_activate_fw, parm_list_length, buffer_offset, buffer_id); break; case DOWNLOAD_SAVE_DEFER_ACTIVATE: res = nvme_trans_send_fw_cmd(ns, hdr, nvme_admin_download_fw, parm_list_length, buffer_offset, buffer_id); break; case ACTIVATE_DEFERRED_MICROCODE: res = nvme_trans_send_fw_cmd(ns, hdr, nvme_admin_activate_fw, parm_list_length, buffer_offset, buffer_id); break; default: res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION, ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB, SCSI_ASCQ_CAUSE_NOT_REPORTABLE); break; } out: return res; } struct scsi_unmap_blk_desc { __be64 slba; __be32 nlb; u32 resv; }; struct scsi_unmap_parm_list { __be16 unmap_data_len; __be16 unmap_blk_desc_data_len; u32 resv; struct scsi_unmap_blk_desc desc[0]; }; static int nvme_trans_unmap(struct nvme_ns *ns, struct sg_io_hdr *hdr, u8 *cmd) { struct nvme_dev *dev = ns->dev; struct scsi_unmap_parm_list *plist; struct nvme_dsm_range *range; struct nvme_command c; int i, nvme_sc, res = -ENOMEM; u16 ndesc, list_len; dma_addr_t dma_addr; list_len = GET_U16_FROM_CDB(cmd, UNMAP_CDB_PARAM_LIST_LENGTH_OFFSET); if (!list_len) return -EINVAL; plist = kmalloc(list_len, GFP_KERNEL); if (!plist) return -ENOMEM; res = nvme_trans_copy_from_user(hdr, plist, list_len); if (res != SNTI_TRANSLATION_SUCCESS) goto out; ndesc = be16_to_cpu(plist->unmap_blk_desc_data_len) >> 4; if (!ndesc || ndesc > 256) { res = -EINVAL; goto out; } range = dma_alloc_coherent(&dev->pci_dev->dev, ndesc * sizeof(*range), &dma_addr, GFP_KERNEL); if (!range) goto out; for (i = 0; i < ndesc; i++) { range[i].nlb = cpu_to_le32(be32_to_cpu(plist->desc[i].nlb)); range[i].slba = cpu_to_le64(be64_to_cpu(plist->desc[i].slba)); range[i].cattr = 0; } memset(&c, 0, sizeof(c)); c.dsm.opcode = nvme_cmd_dsm; c.dsm.nsid = cpu_to_le32(ns->ns_id); c.dsm.prp1 = cpu_to_le64(dma_addr); c.dsm.nr = cpu_to_le32(ndesc - 1); c.dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD); nvme_sc = nvme_submit_io_cmd(dev, &c, NULL); res = nvme_trans_status_code(hdr, nvme_sc); dma_free_coherent(&dev->pci_dev->dev, ndesc * sizeof(*range), range, dma_addr); out: kfree(plist); return res; } static int nvme_scsi_translate(struct nvme_ns *ns, struct sg_io_hdr *hdr) { u8 cmd[BLK_MAX_CDB]; int retcode; unsigned int opcode; if (hdr->cmdp == NULL) return -EMSGSIZE; if (copy_from_user(cmd, hdr->cmdp, hdr->cmd_len)) return -EFAULT; opcode = cmd[0]; switch (opcode) { case READ_6: case READ_10: case READ_12: case READ_16: retcode = nvme_trans_io(ns, hdr, 0, cmd); break; case WRITE_6: case WRITE_10: case WRITE_12: case WRITE_16: retcode = nvme_trans_io(ns, hdr, 1, cmd); break; case INQUIRY: retcode = nvme_trans_inquiry(ns, hdr, cmd); break; case LOG_SENSE: retcode = nvme_trans_log_sense(ns, hdr, cmd); break; case MODE_SELECT: case MODE_SELECT_10: retcode = nvme_trans_mode_select(ns, hdr, cmd); break; case MODE_SENSE: case MODE_SENSE_10: retcode = nvme_trans_mode_sense(ns, hdr, cmd); break; case READ_CAPACITY: retcode = nvme_trans_read_capacity(ns, hdr, cmd); break; case SERVICE_ACTION_IN: if (IS_READ_CAP_16(cmd)) retcode = nvme_trans_read_capacity(ns, hdr, cmd); else goto out; break; case REPORT_LUNS: retcode = nvme_trans_report_luns(ns, hdr, cmd); break; case REQUEST_SENSE: retcode = nvme_trans_request_sense(ns, hdr, cmd); break; case SECURITY_PROTOCOL_IN: case SECURITY_PROTOCOL_OUT: retcode = nvme_trans_security_protocol(ns, hdr, cmd); break; case START_STOP: retcode = nvme_trans_start_stop(ns, hdr, cmd); break; case SYNCHRONIZE_CACHE: retcode = nvme_trans_synchronize_cache(ns, hdr, cmd); break; case FORMAT_UNIT: retcode = nvme_trans_format_unit(ns, hdr, cmd); break; case TEST_UNIT_READY: retcode = nvme_trans_test_unit_ready(ns, hdr, cmd); break; case WRITE_BUFFER: retcode = nvme_trans_write_buffer(ns, hdr, cmd); break; case UNMAP: retcode = nvme_trans_unmap(ns, hdr, cmd); break; default: out: retcode = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION, ILLEGAL_REQUEST, SCSI_ASC_ILLEGAL_COMMAND, SCSI_ASCQ_CAUSE_NOT_REPORTABLE); break; } return retcode; } int nvme_sg_io(struct nvme_ns *ns, struct sg_io_hdr __user *u_hdr) { struct sg_io_hdr hdr; int retcode; if (!capable(CAP_SYS_ADMIN)) return -EACCES; if (copy_from_user(&hdr, u_hdr, sizeof(hdr))) return -EFAULT; if (hdr.interface_id != 'S') return -EINVAL; if (hdr.cmd_len > BLK_MAX_CDB) return -EINVAL; retcode = nvme_scsi_translate(ns, &hdr); if (retcode < 0) return retcode; if (retcode > 0) retcode = SNTI_TRANSLATION_SUCCESS; if (copy_to_user(u_hdr, &hdr, sizeof(sg_io_hdr_t)) > 0) return -EFAULT; return retcode; } #ifdef CONFIG_COMPAT typedef struct sg_io_hdr32 { compat_int_t interface_id; /* [i] 'S' for SCSI generic (required) */ compat_int_t dxfer_direction; /* [i] data transfer direction */ unsigned char cmd_len; /* [i] SCSI command length ( <= 16 bytes) */ unsigned char mx_sb_len; /* [i] max length to write to sbp */ unsigned short iovec_count; /* [i] 0 implies no scatter gather */ compat_uint_t dxfer_len; /* [i] byte count of data transfer */ compat_uint_t dxferp; /* [i], [*io] points to data transfer memory or scatter gather list */ compat_uptr_t cmdp; /* [i], [*i] points to command to perform */ compat_uptr_t sbp; /* [i], [*o] points to sense_buffer memory */ compat_uint_t timeout; /* [i] MAX_UINT->no timeout (unit: millisec) */ compat_uint_t flags; /* [i] 0 -> default, see SG_FLAG... */ compat_int_t pack_id; /* [i->o] unused internally (normally) */ compat_uptr_t usr_ptr; /* [i->o] unused internally */ unsigned char status; /* [o] scsi status */ unsigned char masked_status; /* [o] shifted, masked scsi status */ unsigned char msg_status; /* [o] messaging level data (optional) */ unsigned char sb_len_wr; /* [o] byte count actually written to sbp */ unsigned short host_status; /* [o] errors from host adapter */ unsigned short driver_status; /* [o] errors from software driver */ compat_int_t resid; /* [o] dxfer_len - actual_transferred */ compat_uint_t duration; /* [o] time taken by cmd (unit: millisec) */ compat_uint_t info; /* [o] auxiliary information */ } sg_io_hdr32_t; /* 64 bytes long (on sparc32) */ typedef struct sg_iovec32 { compat_uint_t iov_base; compat_uint_t iov_len; } sg_iovec32_t; static int sg_build_iovec(sg_io_hdr_t __user *sgio, void __user *dxferp, u16 iovec_count) { sg_iovec_t __user *iov = (sg_iovec_t __user *) (sgio + 1); sg_iovec32_t __user *iov32 = dxferp; int i; for (i = 0; i < iovec_count; i++) { u32 base, len; if (get_user(base, &iov32[i].iov_base) || get_user(len, &iov32[i].iov_len) || put_user(compat_ptr(base), &iov[i].iov_base) || put_user(len, &iov[i].iov_len)) return -EFAULT; } if (put_user(iov, &sgio->dxferp)) return -EFAULT; return 0; } int nvme_sg_io32(struct nvme_ns *ns, unsigned long arg) { sg_io_hdr32_t __user *sgio32 = (sg_io_hdr32_t __user *)arg; sg_io_hdr_t __user *sgio; u16 iovec_count; u32 data; void __user *dxferp; int err; int interface_id; if (get_user(interface_id, &sgio32->interface_id)) return -EFAULT; if (interface_id != 'S') return -EINVAL; if (get_user(iovec_count, &sgio32->iovec_count)) return -EFAULT; { void __user *top = compat_alloc_user_space(0); void __user *new = compat_alloc_user_space(sizeof(sg_io_hdr_t) + (iovec_count * sizeof(sg_iovec_t))); if (new > top) return -EINVAL; sgio = new; } /* Ok, now construct. */ if (copy_in_user(&sgio->interface_id, &sgio32->interface_id, (2 * sizeof(int)) + (2 * sizeof(unsigned char)) + (1 * sizeof(unsigned short)) + (1 * sizeof(unsigned int)))) return -EFAULT; if (get_user(data, &sgio32->dxferp)) return -EFAULT; dxferp = compat_ptr(data); if (iovec_count) { if (sg_build_iovec(sgio, dxferp, iovec_count)) return -EFAULT; } else { if (put_user(dxferp, &sgio->dxferp)) return -EFAULT; } { unsigned char __user *cmdp; unsigned char __user *sbp; if (get_user(data, &sgio32->cmdp)) return -EFAULT; cmdp = compat_ptr(data); if (get_user(data, &sgio32->sbp)) return -EFAULT; sbp = compat_ptr(data); if (put_user(cmdp, &sgio->cmdp) || put_user(sbp, &sgio->sbp)) return -EFAULT; } if (copy_in_user(&sgio->timeout, &sgio32->timeout, 3 * sizeof(int))) return -EFAULT; if (get_user(data, &sgio32->usr_ptr)) return -EFAULT; if (put_user(compat_ptr(data), &sgio->usr_ptr)) return -EFAULT; err = nvme_sg_io(ns, sgio); if (err >= 0) { void __user *datap; if (copy_in_user(&sgio32->pack_id, &sgio->pack_id, sizeof(int)) || get_user(datap, &sgio->usr_ptr) || put_user((u32)(unsigned long)datap, &sgio32->usr_ptr) || copy_in_user(&sgio32->status, &sgio->status, (4 * sizeof(unsigned char)) + (2 * sizeof(unsigned short)) + (3 * sizeof(int)))) err = -EFAULT; } return err; } #endif int nvme_sg_get_version_num(int __user *ip) { return put_user(sg_version_num, ip); }