/* * x86_64 specific EFI support functions * Based on Extensible Firmware Interface Specification version 1.0 * * Copyright (C) 2005-2008 Intel Co. * Fenghua Yu <fenghua.yu@intel.com> * Bibo Mao <bibo.mao@intel.com> * Chandramouli Narayanan <mouli@linux.intel.com> * Huang Ying <ying.huang@intel.com> * * Code to convert EFI to E820 map has been implemented in elilo bootloader * based on a EFI patch by Edgar Hucek. Based on the E820 map, the page table * is setup appropriately for EFI runtime code. * - mouli 06/14/2007. * */ #include <linux/kernel.h> #include <linux/init.h> #include <linux/mm.h> #include <linux/types.h> #include <linux/spinlock.h> #include <linux/bootmem.h> #include <linux/ioport.h> #include <linux/module.h> #include <linux/efi.h> #include <linux/uaccess.h> #include <linux/io.h> #include <linux/reboot.h> #include <linux/slab.h> #include <asm/setup.h> #include <asm/page.h> #include <asm/e820.h> #include <asm/pgtable.h> #include <asm/tlbflush.h> #include <asm/proto.h> #include <asm/efi.h> #include <asm/cacheflush.h> #include <asm/fixmap.h> #include <asm/realmode.h> #include <asm/time.h> static pgd_t *save_pgd __initdata; static unsigned long efi_flags __initdata; /* * We allocate runtime services regions bottom-up, starting from -4G, i.e. * 0xffff_ffff_0000_0000 and limit EFI VA mapping space to 64G. */ static u64 efi_va = -4 * (1UL << 30); #define EFI_VA_END (-68 * (1UL << 30)) /* * Scratch space used for switching the pagetable in the EFI stub */ struct efi_scratch { u64 r15; u64 prev_cr3; pgd_t *efi_pgt; bool use_pgd; u64 phys_stack; } __packed; static void __init early_code_mapping_set_exec(int executable) { efi_memory_desc_t *md; void *p; if (!(__supported_pte_mask & _PAGE_NX)) return; /* Make EFI service code area executable */ for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) { md = p; if (md->type == EFI_RUNTIME_SERVICES_CODE || md->type == EFI_BOOT_SERVICES_CODE) efi_set_executable(md, executable); } } void __init efi_call_phys_prolog(void) { unsigned long vaddress; int pgd; int n_pgds; if (!efi_enabled(EFI_OLD_MEMMAP)) return; early_code_mapping_set_exec(1); local_irq_save(efi_flags); n_pgds = DIV_ROUND_UP((max_pfn << PAGE_SHIFT), PGDIR_SIZE); save_pgd = kmalloc(n_pgds * sizeof(pgd_t), GFP_KERNEL); for (pgd = 0; pgd < n_pgds; pgd++) { save_pgd[pgd] = *pgd_offset_k(pgd * PGDIR_SIZE); vaddress = (unsigned long)__va(pgd * PGDIR_SIZE); set_pgd(pgd_offset_k(pgd * PGDIR_SIZE), *pgd_offset_k(vaddress)); } __flush_tlb_all(); } void __init efi_call_phys_epilog(void) { /* * After the lock is released, the original page table is restored. */ int pgd; int n_pgds = DIV_ROUND_UP((max_pfn << PAGE_SHIFT) , PGDIR_SIZE); if (!efi_enabled(EFI_OLD_MEMMAP)) return; for (pgd = 0; pgd < n_pgds; pgd++) set_pgd(pgd_offset_k(pgd * PGDIR_SIZE), save_pgd[pgd]); kfree(save_pgd); __flush_tlb_all(); local_irq_restore(efi_flags); early_code_mapping_set_exec(0); } /* * Add low kernel mappings for passing arguments to EFI functions. */ void efi_sync_low_kernel_mappings(void) { unsigned num_pgds; pgd_t *pgd = (pgd_t *)__va(real_mode_header->trampoline_pgd); if (efi_enabled(EFI_OLD_MEMMAP)) return; num_pgds = pgd_index(MODULES_END - 1) - pgd_index(PAGE_OFFSET); memcpy(pgd + pgd_index(PAGE_OFFSET), init_mm.pgd + pgd_index(PAGE_OFFSET), sizeof(pgd_t) * num_pgds); } int __init efi_setup_page_tables(unsigned long pa_memmap, unsigned num_pages) { unsigned long text; struct page *page; unsigned npages; pgd_t *pgd; if (efi_enabled(EFI_OLD_MEMMAP)) return 0; efi_scratch.efi_pgt = (pgd_t *)(unsigned long)real_mode_header->trampoline_pgd; pgd = __va(efi_scratch.efi_pgt); /* * It can happen that the physical address of new_memmap lands in memory * which is not mapped in the EFI page table. Therefore we need to go * and ident-map those pages containing the map before calling * phys_efi_set_virtual_address_map(). */ if (kernel_map_pages_in_pgd(pgd, pa_memmap, pa_memmap, num_pages, _PAGE_NX)) { pr_err("Error ident-mapping new memmap (0x%lx)!\n", pa_memmap); return 1; } efi_scratch.use_pgd = true; /* * When making calls to the firmware everything needs to be 1:1 * mapped and addressable with 32-bit pointers. Map the kernel * text and allocate a new stack because we can't rely on the * stack pointer being < 4GB. */ if (!IS_ENABLED(CONFIG_EFI_MIXED)) return 0; page = alloc_page(GFP_KERNEL|__GFP_DMA32); if (!page) panic("Unable to allocate EFI runtime stack < 4GB\n"); efi_scratch.phys_stack = virt_to_phys(page_address(page)); efi_scratch.phys_stack += PAGE_SIZE; /* stack grows down */ npages = (_end - _text) >> PAGE_SHIFT; text = __pa(_text); if (kernel_map_pages_in_pgd(pgd, text >> PAGE_SHIFT, text, npages, 0)) { pr_err("Failed to map kernel text 1:1\n"); return 1; } return 0; } void __init efi_cleanup_page_tables(unsigned long pa_memmap, unsigned num_pages) { pgd_t *pgd = (pgd_t *)__va(real_mode_header->trampoline_pgd); kernel_unmap_pages_in_pgd(pgd, pa_memmap, num_pages); } static void __init __map_region(efi_memory_desc_t *md, u64 va) { pgd_t *pgd = (pgd_t *)__va(real_mode_header->trampoline_pgd); unsigned long pf = 0; if (!(md->attribute & EFI_MEMORY_WB)) pf |= _PAGE_PCD; if (kernel_map_pages_in_pgd(pgd, md->phys_addr, va, md->num_pages, pf)) pr_warn("Error mapping PA 0x%llx -> VA 0x%llx!\n", md->phys_addr, va); } void __init efi_map_region(efi_memory_desc_t *md) { unsigned long size = md->num_pages << PAGE_SHIFT; u64 pa = md->phys_addr; if (efi_enabled(EFI_OLD_MEMMAP)) return old_map_region(md); /* * Make sure the 1:1 mappings are present as a catch-all for b0rked * firmware which doesn't update all internal pointers after switching * to virtual mode and would otherwise crap on us. */ __map_region(md, md->phys_addr); /* * Enforce the 1:1 mapping as the default virtual address when * booting in EFI mixed mode, because even though we may be * running a 64-bit kernel, the firmware may only be 32-bit. */ if (!efi_is_native () && IS_ENABLED(CONFIG_EFI_MIXED)) { md->virt_addr = md->phys_addr; return; } efi_va -= size; /* Is PA 2M-aligned? */ if (!(pa & (PMD_SIZE - 1))) { efi_va &= PMD_MASK; } else { u64 pa_offset = pa & (PMD_SIZE - 1); u64 prev_va = efi_va; /* get us the same offset within this 2M page */ efi_va = (efi_va & PMD_MASK) + pa_offset; if (efi_va > prev_va) efi_va -= PMD_SIZE; } if (efi_va < EFI_VA_END) { pr_warn(FW_WARN "VA address range overflow!\n"); return; } /* Do the VA map */ __map_region(md, efi_va); md->virt_addr = efi_va; } /* * kexec kernel will use efi_map_region_fixed to map efi runtime memory ranges. * md->virt_addr is the original virtual address which had been mapped in kexec * 1st kernel. */ void __init efi_map_region_fixed(efi_memory_desc_t *md) { __map_region(md, md->virt_addr); } void __iomem *__init efi_ioremap(unsigned long phys_addr, unsigned long size, u32 type, u64 attribute) { unsigned long last_map_pfn; if (type == EFI_MEMORY_MAPPED_IO) return ioremap(phys_addr, size); last_map_pfn = init_memory_mapping(phys_addr, phys_addr + size); if ((last_map_pfn << PAGE_SHIFT) < phys_addr + size) { unsigned long top = last_map_pfn << PAGE_SHIFT; efi_ioremap(top, size - (top - phys_addr), type, attribute); } if (!(attribute & EFI_MEMORY_WB)) efi_memory_uc((u64)(unsigned long)__va(phys_addr), size); return (void __iomem *)__va(phys_addr); } void __init parse_efi_setup(u64 phys_addr, u32 data_len) { efi_setup = phys_addr + sizeof(struct setup_data); } void __init efi_runtime_mkexec(void) { if (!efi_enabled(EFI_OLD_MEMMAP)) return; if (__supported_pte_mask & _PAGE_NX) runtime_code_page_mkexec(); } void __init efi_dump_pagetable(void) { #ifdef CONFIG_EFI_PGT_DUMP pgd_t *pgd = (pgd_t *)__va(real_mode_header->trampoline_pgd); ptdump_walk_pgd_level(NULL, pgd); #endif } #ifdef CONFIG_EFI_MIXED extern efi_status_t efi64_thunk(u32, ...); #define runtime_service32(func) \ ({ \ u32 table = (u32)(unsigned long)efi.systab; \ u32 *rt, *___f; \ \ rt = (u32 *)(table + offsetof(efi_system_table_32_t, runtime)); \ ___f = (u32 *)(*rt + offsetof(efi_runtime_services_32_t, func)); \ *___f; \ }) /* * Switch to the EFI page tables early so that we can access the 1:1 * runtime services mappings which are not mapped in any other page * tables. This function must be called before runtime_service32(). * * Also, disable interrupts because the IDT points to 64-bit handlers, * which aren't going to function correctly when we switch to 32-bit. */ #define efi_thunk(f, ...) \ ({ \ efi_status_t __s; \ unsigned long flags; \ u32 func; \ \ efi_sync_low_kernel_mappings(); \ local_irq_save(flags); \ \ efi_scratch.prev_cr3 = read_cr3(); \ write_cr3((unsigned long)efi_scratch.efi_pgt); \ __flush_tlb_all(); \ \ func = runtime_service32(f); \ __s = efi64_thunk(func, __VA_ARGS__); \ \ write_cr3(efi_scratch.prev_cr3); \ __flush_tlb_all(); \ local_irq_restore(flags); \ \ __s; \ }) efi_status_t efi_thunk_set_virtual_address_map( void *phys_set_virtual_address_map, unsigned long memory_map_size, unsigned long descriptor_size, u32 descriptor_version, efi_memory_desc_t *virtual_map) { efi_status_t status; unsigned long flags; u32 func; efi_sync_low_kernel_mappings(); local_irq_save(flags); efi_scratch.prev_cr3 = read_cr3(); write_cr3((unsigned long)efi_scratch.efi_pgt); __flush_tlb_all(); func = (u32)(unsigned long)phys_set_virtual_address_map; status = efi64_thunk(func, memory_map_size, descriptor_size, descriptor_version, virtual_map); write_cr3(efi_scratch.prev_cr3); __flush_tlb_all(); local_irq_restore(flags); return status; } static efi_status_t efi_thunk_get_time(efi_time_t *tm, efi_time_cap_t *tc) { efi_status_t status; u32 phys_tm, phys_tc; spin_lock(&rtc_lock); phys_tm = virt_to_phys(tm); phys_tc = virt_to_phys(tc); status = efi_thunk(get_time, phys_tm, phys_tc); spin_unlock(&rtc_lock); return status; } static efi_status_t efi_thunk_set_time(efi_time_t *tm) { efi_status_t status; u32 phys_tm; spin_lock(&rtc_lock); phys_tm = virt_to_phys(tm); status = efi_thunk(set_time, phys_tm); spin_unlock(&rtc_lock); return status; } static efi_status_t efi_thunk_get_wakeup_time(efi_bool_t *enabled, efi_bool_t *pending, efi_time_t *tm) { efi_status_t status; u32 phys_enabled, phys_pending, phys_tm; spin_lock(&rtc_lock); phys_enabled = virt_to_phys(enabled); phys_pending = virt_to_phys(pending); phys_tm = virt_to_phys(tm); status = efi_thunk(get_wakeup_time, phys_enabled, phys_pending, phys_tm); spin_unlock(&rtc_lock); return status; } static efi_status_t efi_thunk_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm) { efi_status_t status; u32 phys_tm; spin_lock(&rtc_lock); phys_tm = virt_to_phys(tm); status = efi_thunk(set_wakeup_time, enabled, phys_tm); spin_unlock(&rtc_lock); return status; } static efi_status_t efi_thunk_get_variable(efi_char16_t *name, efi_guid_t *vendor, u32 *attr, unsigned long *data_size, void *data) { efi_status_t status; u32 phys_name, phys_vendor, phys_attr; u32 phys_data_size, phys_data; phys_data_size = virt_to_phys(data_size); phys_vendor = virt_to_phys(vendor); phys_name = virt_to_phys(name); phys_attr = virt_to_phys(attr); phys_data = virt_to_phys(data); status = efi_thunk(get_variable, phys_name, phys_vendor, phys_attr, phys_data_size, phys_data); return status; } static efi_status_t efi_thunk_set_variable(efi_char16_t *name, efi_guid_t *vendor, u32 attr, unsigned long data_size, void *data) { u32 phys_name, phys_vendor, phys_data; efi_status_t status; phys_name = virt_to_phys(name); phys_vendor = virt_to_phys(vendor); phys_data = virt_to_phys(data); /* If data_size is > sizeof(u32) we've got problems */ status = efi_thunk(set_variable, phys_name, phys_vendor, attr, data_size, phys_data); return status; } static efi_status_t efi_thunk_get_next_variable(unsigned long *name_size, efi_char16_t *name, efi_guid_t *vendor) { efi_status_t status; u32 phys_name_size, phys_name, phys_vendor; phys_name_size = virt_to_phys(name_size); phys_vendor = virt_to_phys(vendor); phys_name = virt_to_phys(name); status = efi_thunk(get_next_variable, phys_name_size, phys_name, phys_vendor); return status; } static efi_status_t efi_thunk_get_next_high_mono_count(u32 *count) { efi_status_t status; u32 phys_count; phys_count = virt_to_phys(count); status = efi_thunk(get_next_high_mono_count, phys_count); return status; } static void efi_thunk_reset_system(int reset_type, efi_status_t status, unsigned long data_size, efi_char16_t *data) { u32 phys_data; phys_data = virt_to_phys(data); efi_thunk(reset_system, reset_type, status, data_size, phys_data); } static efi_status_t efi_thunk_update_capsule(efi_capsule_header_t **capsules, unsigned long count, unsigned long sg_list) { /* * To properly support this function we would need to repackage * 'capsules' because the firmware doesn't understand 64-bit * pointers. */ return EFI_UNSUPPORTED; } static efi_status_t efi_thunk_query_variable_info(u32 attr, u64 *storage_space, u64 *remaining_space, u64 *max_variable_size) { efi_status_t status; u32 phys_storage, phys_remaining, phys_max; if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION) return EFI_UNSUPPORTED; phys_storage = virt_to_phys(storage_space); phys_remaining = virt_to_phys(remaining_space); phys_max = virt_to_phys(max_variable_size); status = efi_thunk(query_variable_info, attr, phys_storage, phys_remaining, phys_max); return status; } static efi_status_t efi_thunk_query_capsule_caps(efi_capsule_header_t **capsules, unsigned long count, u64 *max_size, int *reset_type) { /* * To properly support this function we would need to repackage * 'capsules' because the firmware doesn't understand 64-bit * pointers. */ return EFI_UNSUPPORTED; } void efi_thunk_runtime_setup(void) { efi.get_time = efi_thunk_get_time; efi.set_time = efi_thunk_set_time; efi.get_wakeup_time = efi_thunk_get_wakeup_time; efi.set_wakeup_time = efi_thunk_set_wakeup_time; efi.get_variable = efi_thunk_get_variable; efi.get_next_variable = efi_thunk_get_next_variable; efi.set_variable = efi_thunk_set_variable; efi.get_next_high_mono_count = efi_thunk_get_next_high_mono_count; efi.reset_system = efi_thunk_reset_system; efi.query_variable_info = efi_thunk_query_variable_info; efi.update_capsule = efi_thunk_update_capsule; efi.query_capsule_caps = efi_thunk_query_capsule_caps; } #endif /* CONFIG_EFI_MIXED */