/* * Intel CPU microcode early update for Linux * * Copyright (C) 2012 Fenghua Yu <fenghua.yu@intel.com> * H Peter Anvin" <hpa@zytor.com> * * This allows to early upgrade microcode on Intel processors * belonging to IA-32 family - PentiumPro, Pentium II, * Pentium III, Xeon, Pentium 4, etc. * * Reference: Section 9.11 of Volume 3, IA-32 Intel Architecture * Software Developer's Manual. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #include <linux/module.h> #include <linux/mm.h> #include <linux/slab.h> #include <linux/earlycpio.h> #include <linux/initrd.h> #include <linux/cpu.h> #include <asm/msr.h> #include <asm/microcode_intel.h> #include <asm/processor.h> #include <asm/tlbflush.h> #include <asm/setup.h> static unsigned long mc_saved_in_initrd[MAX_UCODE_COUNT]; static struct mc_saved_data { unsigned int mc_saved_count; struct microcode_intel **mc_saved; } mc_saved_data; static enum ucode_state generic_load_microcode_early(struct microcode_intel **mc_saved_p, unsigned int mc_saved_count, struct ucode_cpu_info *uci) { struct microcode_intel *ucode_ptr, *new_mc = NULL; int new_rev = uci->cpu_sig.rev; enum ucode_state state = UCODE_OK; unsigned int mc_size; struct microcode_header_intel *mc_header; unsigned int csig = uci->cpu_sig.sig; unsigned int cpf = uci->cpu_sig.pf; int i; for (i = 0; i < mc_saved_count; i++) { ucode_ptr = mc_saved_p[i]; mc_header = (struct microcode_header_intel *)ucode_ptr; mc_size = get_totalsize(mc_header); if (get_matching_microcode(csig, cpf, ucode_ptr, new_rev)) { new_rev = mc_header->rev; new_mc = ucode_ptr; } } if (!new_mc) { state = UCODE_NFOUND; goto out; } uci->mc = (struct microcode_intel *)new_mc; out: return state; } static void microcode_pointer(struct microcode_intel **mc_saved, unsigned long *mc_saved_in_initrd, unsigned long initrd_start, int mc_saved_count) { int i; for (i = 0; i < mc_saved_count; i++) mc_saved[i] = (struct microcode_intel *) (mc_saved_in_initrd[i] + initrd_start); } #ifdef CONFIG_X86_32 static void microcode_phys(struct microcode_intel **mc_saved_tmp, struct mc_saved_data *mc_saved_data) { int i; struct microcode_intel ***mc_saved; mc_saved = (struct microcode_intel ***) __pa_nodebug(&mc_saved_data->mc_saved); for (i = 0; i < mc_saved_data->mc_saved_count; i++) { struct microcode_intel *p; p = *(struct microcode_intel **) __pa_nodebug(mc_saved_data->mc_saved + i); mc_saved_tmp[i] = (struct microcode_intel *)__pa_nodebug(p); } } #endif static enum ucode_state load_microcode(struct mc_saved_data *mc_saved_data, unsigned long *mc_saved_in_initrd, unsigned long initrd_start, struct ucode_cpu_info *uci) { struct microcode_intel *mc_saved_tmp[MAX_UCODE_COUNT]; unsigned int count = mc_saved_data->mc_saved_count; if (!mc_saved_data->mc_saved) { microcode_pointer(mc_saved_tmp, mc_saved_in_initrd, initrd_start, count); return generic_load_microcode_early(mc_saved_tmp, count, uci); } else { #ifdef CONFIG_X86_32 microcode_phys(mc_saved_tmp, mc_saved_data); return generic_load_microcode_early(mc_saved_tmp, count, uci); #else return generic_load_microcode_early(mc_saved_data->mc_saved, count, uci); #endif } } static u8 get_x86_family(unsigned long sig) { u8 x86; x86 = (sig >> 8) & 0xf; if (x86 == 0xf) x86 += (sig >> 20) & 0xff; return x86; } static u8 get_x86_model(unsigned long sig) { u8 x86, x86_model; x86 = get_x86_family(sig); x86_model = (sig >> 4) & 0xf; if (x86 == 0x6 || x86 == 0xf) x86_model += ((sig >> 16) & 0xf) << 4; return x86_model; } /* * Given CPU signature and a microcode patch, this function finds if the * microcode patch has matching family and model with the CPU. */ static enum ucode_state matching_model_microcode(struct microcode_header_intel *mc_header, unsigned long sig) { u8 x86, x86_model; u8 x86_ucode, x86_model_ucode; struct extended_sigtable *ext_header; unsigned long total_size = get_totalsize(mc_header); unsigned long data_size = get_datasize(mc_header); int ext_sigcount, i; struct extended_signature *ext_sig; x86 = get_x86_family(sig); x86_model = get_x86_model(sig); x86_ucode = get_x86_family(mc_header->sig); x86_model_ucode = get_x86_model(mc_header->sig); if (x86 == x86_ucode && x86_model == x86_model_ucode) return UCODE_OK; /* Look for ext. headers: */ if (total_size <= data_size + MC_HEADER_SIZE) return UCODE_NFOUND; ext_header = (struct extended_sigtable *) mc_header + data_size + MC_HEADER_SIZE; ext_sigcount = ext_header->count; ext_sig = (void *)ext_header + EXT_HEADER_SIZE; for (i = 0; i < ext_sigcount; i++) { x86_ucode = get_x86_family(ext_sig->sig); x86_model_ucode = get_x86_model(ext_sig->sig); if (x86 == x86_ucode && x86_model == x86_model_ucode) return UCODE_OK; ext_sig++; } return UCODE_NFOUND; } static int save_microcode(struct mc_saved_data *mc_saved_data, struct microcode_intel **mc_saved_src, unsigned int mc_saved_count) { int i, j; struct microcode_intel **mc_saved_p; int ret; if (!mc_saved_count) return -EINVAL; /* * Copy new microcode data. */ mc_saved_p = kmalloc(mc_saved_count*sizeof(struct microcode_intel *), GFP_KERNEL); if (!mc_saved_p) return -ENOMEM; for (i = 0; i < mc_saved_count; i++) { struct microcode_intel *mc = mc_saved_src[i]; struct microcode_header_intel *mc_header = &mc->hdr; unsigned long mc_size = get_totalsize(mc_header); mc_saved_p[i] = kmalloc(mc_size, GFP_KERNEL); if (!mc_saved_p[i]) { ret = -ENOMEM; goto err; } if (!mc_saved_src[i]) { ret = -EINVAL; goto err; } memcpy(mc_saved_p[i], mc, mc_size); } /* * Point to newly saved microcode. */ mc_saved_data->mc_saved = mc_saved_p; mc_saved_data->mc_saved_count = mc_saved_count; return 0; err: for (j = 0; j <= i; j++) kfree(mc_saved_p[j]); kfree(mc_saved_p); return ret; } /* * A microcode patch in ucode_ptr is saved into mc_saved * - if it has matching signature and newer revision compared to an existing * patch mc_saved. * - or if it is a newly discovered microcode patch. * * The microcode patch should have matching model with CPU. */ static void _save_mc(struct microcode_intel **mc_saved, u8 *ucode_ptr, unsigned int *mc_saved_count_p) { int i; int found = 0; unsigned int mc_saved_count = *mc_saved_count_p; struct microcode_header_intel *mc_header; mc_header = (struct microcode_header_intel *)ucode_ptr; for (i = 0; i < mc_saved_count; i++) { unsigned int sig, pf; unsigned int new_rev; struct microcode_header_intel *mc_saved_header = (struct microcode_header_intel *)mc_saved[i]; sig = mc_saved_header->sig; pf = mc_saved_header->pf; new_rev = mc_header->rev; if (get_matching_sig(sig, pf, ucode_ptr, new_rev)) { found = 1; if (update_match_revision(mc_header, new_rev)) { /* * Found an older ucode saved before. * Replace the older one with this newer * one. */ mc_saved[i] = (struct microcode_intel *)ucode_ptr; break; } } } if (i >= mc_saved_count && !found) /* * This ucode is first time discovered in ucode file. * Save it to memory. */ mc_saved[mc_saved_count++] = (struct microcode_intel *)ucode_ptr; *mc_saved_count_p = mc_saved_count; } /* * Get microcode matching with BSP's model. Only CPUs with the same model as * BSP can stay in the platform. */ static enum ucode_state __init get_matching_model_microcode(int cpu, unsigned long start, void *data, size_t size, struct mc_saved_data *mc_saved_data, unsigned long *mc_saved_in_initrd, struct ucode_cpu_info *uci) { u8 *ucode_ptr = data; unsigned int leftover = size; enum ucode_state state = UCODE_OK; unsigned int mc_size; struct microcode_header_intel *mc_header; struct microcode_intel *mc_saved_tmp[MAX_UCODE_COUNT]; unsigned int mc_saved_count = mc_saved_data->mc_saved_count; int i; while (leftover) { mc_header = (struct microcode_header_intel *)ucode_ptr; mc_size = get_totalsize(mc_header); if (!mc_size || mc_size > leftover || microcode_sanity_check(ucode_ptr, 0) < 0) break; leftover -= mc_size; /* * Since APs with same family and model as the BSP may boot in * the platform, we need to find and save microcode patches * with the same family and model as the BSP. */ if (matching_model_microcode(mc_header, uci->cpu_sig.sig) != UCODE_OK) { ucode_ptr += mc_size; continue; } _save_mc(mc_saved_tmp, ucode_ptr, &mc_saved_count); ucode_ptr += mc_size; } if (leftover) { state = UCODE_ERROR; goto out; } if (mc_saved_count == 0) { state = UCODE_NFOUND; goto out; } for (i = 0; i < mc_saved_count; i++) mc_saved_in_initrd[i] = (unsigned long)mc_saved_tmp[i] - start; mc_saved_data->mc_saved_count = mc_saved_count; out: return state; } static int collect_cpu_info_early(struct ucode_cpu_info *uci) { unsigned int val[2]; u8 x86, x86_model; struct cpu_signature csig; unsigned int eax, ebx, ecx, edx; csig.sig = 0; csig.pf = 0; csig.rev = 0; memset(uci, 0, sizeof(*uci)); eax = 0x00000001; ecx = 0; native_cpuid(&eax, &ebx, &ecx, &edx); csig.sig = eax; x86 = get_x86_family(csig.sig); x86_model = get_x86_model(csig.sig); if ((x86_model >= 5) || (x86 > 6)) { /* get processor flags from MSR 0x17 */ native_rdmsr(MSR_IA32_PLATFORM_ID, val[0], val[1]); csig.pf = 1 << ((val[1] >> 18) & 7); } native_wrmsr(MSR_IA32_UCODE_REV, 0, 0); /* As documented in the SDM: Do a CPUID 1 here */ sync_core(); /* get the current revision from MSR 0x8B */ native_rdmsr(MSR_IA32_UCODE_REV, val[0], val[1]); csig.rev = val[1]; uci->cpu_sig = csig; uci->valid = 1; return 0; } #ifdef DEBUG static void __ref show_saved_mc(void) { int i, j; unsigned int sig, pf, rev, total_size, data_size, date; struct ucode_cpu_info uci; if (mc_saved_data.mc_saved_count == 0) { pr_debug("no microcode data saved.\n"); return; } pr_debug("Total microcode saved: %d\n", mc_saved_data.mc_saved_count); collect_cpu_info_early(&uci); sig = uci.cpu_sig.sig; pf = uci.cpu_sig.pf; rev = uci.cpu_sig.rev; pr_debug("CPU%d: sig=0x%x, pf=0x%x, rev=0x%x\n", smp_processor_id(), sig, pf, rev); for (i = 0; i < mc_saved_data.mc_saved_count; i++) { struct microcode_header_intel *mc_saved_header; struct extended_sigtable *ext_header; int ext_sigcount; struct extended_signature *ext_sig; mc_saved_header = (struct microcode_header_intel *) mc_saved_data.mc_saved[i]; sig = mc_saved_header->sig; pf = mc_saved_header->pf; rev = mc_saved_header->rev; total_size = get_totalsize(mc_saved_header); data_size = get_datasize(mc_saved_header); date = mc_saved_header->date; pr_debug("mc_saved[%d]: sig=0x%x, pf=0x%x, rev=0x%x, toal size=0x%x, date = %04x-%02x-%02x\n", i, sig, pf, rev, total_size, date & 0xffff, date >> 24, (date >> 16) & 0xff); /* Look for ext. headers: */ if (total_size <= data_size + MC_HEADER_SIZE) continue; ext_header = (struct extended_sigtable *) mc_saved_header + data_size + MC_HEADER_SIZE; ext_sigcount = ext_header->count; ext_sig = (void *)ext_header + EXT_HEADER_SIZE; for (j = 0; j < ext_sigcount; j++) { sig = ext_sig->sig; pf = ext_sig->pf; pr_debug("\tExtended[%d]: sig=0x%x, pf=0x%x\n", j, sig, pf); ext_sig++; } } } #else static inline void show_saved_mc(void) { } #endif #if defined(CONFIG_MICROCODE_INTEL_EARLY) && defined(CONFIG_HOTPLUG_CPU) static DEFINE_MUTEX(x86_cpu_microcode_mutex); /* * Save this mc into mc_saved_data. So it will be loaded early when a CPU is * hot added or resumes. * * Please make sure this mc should be a valid microcode patch before calling * this function. */ int save_mc_for_early(u8 *mc) { struct microcode_intel *mc_saved_tmp[MAX_UCODE_COUNT]; unsigned int mc_saved_count_init; unsigned int mc_saved_count; struct microcode_intel **mc_saved; int ret = 0; int i; /* * Hold hotplug lock so mc_saved_data is not accessed by a CPU in * hotplug. */ mutex_lock(&x86_cpu_microcode_mutex); mc_saved_count_init = mc_saved_data.mc_saved_count; mc_saved_count = mc_saved_data.mc_saved_count; mc_saved = mc_saved_data.mc_saved; if (mc_saved && mc_saved_count) memcpy(mc_saved_tmp, mc_saved, mc_saved_count * sizeof(struct microcode_intel *)); /* * Save the microcode patch mc in mc_save_tmp structure if it's a newer * version. */ _save_mc(mc_saved_tmp, mc, &mc_saved_count); /* * Save the mc_save_tmp in global mc_saved_data. */ ret = save_microcode(&mc_saved_data, mc_saved_tmp, mc_saved_count); if (ret) { pr_err("Cannot save microcode patch.\n"); goto out; } show_saved_mc(); /* * Free old saved microcode data. */ if (mc_saved) { for (i = 0; i < mc_saved_count_init; i++) kfree(mc_saved[i]); kfree(mc_saved); } out: mutex_unlock(&x86_cpu_microcode_mutex); return ret; } EXPORT_SYMBOL_GPL(save_mc_for_early); #endif static __initdata char ucode_name[] = "kernel/x86/microcode/GenuineIntel.bin"; static __init enum ucode_state scan_microcode(unsigned long start, unsigned long end, struct mc_saved_data *mc_saved_data, unsigned long *mc_saved_in_initrd, struct ucode_cpu_info *uci) { unsigned int size = end - start + 1; struct cpio_data cd; long offset = 0; #ifdef CONFIG_X86_32 char *p = (char *)__pa_nodebug(ucode_name); #else char *p = ucode_name; #endif cd.data = NULL; cd.size = 0; cd = find_cpio_data(p, (void *)start, size, &offset); if (!cd.data) return UCODE_ERROR; return get_matching_model_microcode(0, start, cd.data, cd.size, mc_saved_data, mc_saved_in_initrd, uci); } /* * Print ucode update info. */ static void print_ucode_info(struct ucode_cpu_info *uci, unsigned int date) { int cpu = smp_processor_id(); pr_info("CPU%d microcode updated early to revision 0x%x, date = %04x-%02x-%02x\n", cpu, uci->cpu_sig.rev, date & 0xffff, date >> 24, (date >> 16) & 0xff); } #ifdef CONFIG_X86_32 static int delay_ucode_info; static int current_mc_date; /* * Print early updated ucode info after printk works. This is delayed info dump. */ void show_ucode_info_early(void) { struct ucode_cpu_info uci; if (delay_ucode_info) { collect_cpu_info_early(&uci); print_ucode_info(&uci, current_mc_date); delay_ucode_info = 0; } } /* * At this point, we can not call printk() yet. Keep microcode patch number in * mc_saved_data.mc_saved and delay printing microcode info in * show_ucode_info_early() until printk() works. */ static void print_ucode(struct ucode_cpu_info *uci) { struct microcode_intel *mc_intel; int *delay_ucode_info_p; int *current_mc_date_p; mc_intel = uci->mc; if (mc_intel == NULL) return; delay_ucode_info_p = (int *)__pa_nodebug(&delay_ucode_info); current_mc_date_p = (int *)__pa_nodebug(¤t_mc_date); *delay_ucode_info_p = 1; *current_mc_date_p = mc_intel->hdr.date; } #else /* * Flush global tlb. We only do this in x86_64 where paging has been enabled * already and PGE should be enabled as well. */ static inline void flush_tlb_early(void) { __native_flush_tlb_global_irq_disabled(); } static inline void print_ucode(struct ucode_cpu_info *uci) { struct microcode_intel *mc_intel; mc_intel = uci->mc; if (mc_intel == NULL) return; print_ucode_info(uci, mc_intel->hdr.date); } #endif static int apply_microcode_early(struct mc_saved_data *mc_saved_data, struct ucode_cpu_info *uci) { struct microcode_intel *mc_intel; unsigned int val[2]; mc_intel = uci->mc; if (mc_intel == NULL) return 0; /* write microcode via MSR 0x79 */ native_wrmsr(MSR_IA32_UCODE_WRITE, (unsigned long) mc_intel->bits, (unsigned long) mc_intel->bits >> 16 >> 16); native_wrmsr(MSR_IA32_UCODE_REV, 0, 0); /* As documented in the SDM: Do a CPUID 1 here */ sync_core(); /* get the current revision from MSR 0x8B */ native_rdmsr(MSR_IA32_UCODE_REV, val[0], val[1]); if (val[1] != mc_intel->hdr.rev) return -1; #ifdef CONFIG_X86_64 /* Flush global tlb. This is precaution. */ flush_tlb_early(); #endif uci->cpu_sig.rev = val[1]; print_ucode(uci); return 0; } /* * This function converts microcode patch offsets previously stored in * mc_saved_in_initrd to pointers and stores the pointers in mc_saved_data. */ int __init save_microcode_in_initrd_intel(void) { unsigned int count = mc_saved_data.mc_saved_count; struct microcode_intel *mc_saved[MAX_UCODE_COUNT]; int ret = 0; if (count == 0) return ret; microcode_pointer(mc_saved, mc_saved_in_initrd, initrd_start, count); ret = save_microcode(&mc_saved_data, mc_saved, count); if (ret) pr_err("Cannot save microcode patches from initrd.\n"); show_saved_mc(); return ret; } static void __init _load_ucode_intel_bsp(struct mc_saved_data *mc_saved_data, unsigned long *mc_saved_in_initrd, unsigned long initrd_start_early, unsigned long initrd_end_early, struct ucode_cpu_info *uci) { collect_cpu_info_early(uci); scan_microcode(initrd_start_early, initrd_end_early, mc_saved_data, mc_saved_in_initrd, uci); load_microcode(mc_saved_data, mc_saved_in_initrd, initrd_start_early, uci); apply_microcode_early(mc_saved_data, uci); } void __init load_ucode_intel_bsp(void) { u64 ramdisk_image, ramdisk_size; unsigned long initrd_start_early, initrd_end_early; struct ucode_cpu_info uci; #ifdef CONFIG_X86_32 struct boot_params *boot_params_p; boot_params_p = (struct boot_params *)__pa_nodebug(&boot_params); ramdisk_image = boot_params_p->hdr.ramdisk_image; ramdisk_size = boot_params_p->hdr.ramdisk_size; initrd_start_early = ramdisk_image; initrd_end_early = initrd_start_early + ramdisk_size; _load_ucode_intel_bsp( (struct mc_saved_data *)__pa_nodebug(&mc_saved_data), (unsigned long *)__pa_nodebug(&mc_saved_in_initrd), initrd_start_early, initrd_end_early, &uci); #else ramdisk_image = boot_params.hdr.ramdisk_image; ramdisk_size = boot_params.hdr.ramdisk_size; initrd_start_early = ramdisk_image + PAGE_OFFSET; initrd_end_early = initrd_start_early + ramdisk_size; _load_ucode_intel_bsp(&mc_saved_data, mc_saved_in_initrd, initrd_start_early, initrd_end_early, &uci); #endif } void load_ucode_intel_ap(void) { struct mc_saved_data *mc_saved_data_p; struct ucode_cpu_info uci; unsigned long *mc_saved_in_initrd_p; unsigned long initrd_start_addr; #ifdef CONFIG_X86_32 unsigned long *initrd_start_p; mc_saved_in_initrd_p = (unsigned long *)__pa_nodebug(mc_saved_in_initrd); mc_saved_data_p = (struct mc_saved_data *)__pa_nodebug(&mc_saved_data); initrd_start_p = (unsigned long *)__pa_nodebug(&initrd_start); initrd_start_addr = (unsigned long)__pa_nodebug(*initrd_start_p); #else mc_saved_data_p = &mc_saved_data; mc_saved_in_initrd_p = mc_saved_in_initrd; initrd_start_addr = initrd_start; #endif /* * If there is no valid ucode previously saved in memory, no need to * update ucode on this AP. */ if (mc_saved_data_p->mc_saved_count == 0) return; collect_cpu_info_early(&uci); load_microcode(mc_saved_data_p, mc_saved_in_initrd_p, initrd_start_addr, &uci); apply_microcode_early(mc_saved_data_p, &uci); }