/* * X86 CPU microcode early update for Linux * * Copyright (C) 2012 Fenghua Yu <fenghua.yu@intel.com> * H Peter Anvin" <hpa@zytor.com> * * This driver allows to early upgrade microcode on Intel processors * belonging to IA-32 family - PentiumPro, Pentium II, * Pentium III, Xeon, Pentium 4, etc. * * Reference: Section 9.11 of Volume 3, IA-32 Intel Architecture * Software Developer's Manual. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #include <linux/module.h> #include <asm/microcode.h> #include <asm/microcode_intel.h> #include <asm/microcode_amd.h> #include <asm/processor.h> #include <asm/cmdline.h> #define QCHAR(a, b, c, d) ((a) + ((b) << 8) + ((c) << 16) + ((d) << 24)) #define CPUID_INTEL1 QCHAR('G', 'e', 'n', 'u') #define CPUID_INTEL2 QCHAR('i', 'n', 'e', 'I') #define CPUID_INTEL3 QCHAR('n', 't', 'e', 'l') #define CPUID_AMD1 QCHAR('A', 'u', 't', 'h') #define CPUID_AMD2 QCHAR('e', 'n', 't', 'i') #define CPUID_AMD3 QCHAR('c', 'A', 'M', 'D') #define CPUID_IS(a, b, c, ebx, ecx, edx) \ (!((ebx ^ (a))|(edx ^ (b))|(ecx ^ (c)))) /* * In early loading microcode phase on BSP, boot_cpu_data is not set up yet. * x86_vendor() gets vendor id for BSP. * * In 32 bit AP case, accessing boot_cpu_data needs linear address. To simplify * coding, we still use x86_vendor() to get vendor id for AP. * * x86_vendor() gets vendor information directly through cpuid. */ static int x86_vendor(void) { u32 eax = 0x00000000; u32 ebx, ecx = 0, edx; native_cpuid(&eax, &ebx, &ecx, &edx); if (CPUID_IS(CPUID_INTEL1, CPUID_INTEL2, CPUID_INTEL3, ebx, ecx, edx)) return X86_VENDOR_INTEL; if (CPUID_IS(CPUID_AMD1, CPUID_AMD2, CPUID_AMD3, ebx, ecx, edx)) return X86_VENDOR_AMD; return X86_VENDOR_UNKNOWN; } static int x86_family(void) { u32 eax = 0x00000001; u32 ebx, ecx = 0, edx; int x86; native_cpuid(&eax, &ebx, &ecx, &edx); x86 = (eax >> 8) & 0xf; if (x86 == 15) x86 += (eax >> 20) & 0xff; return x86; } static bool __init check_loader_disabled_bsp(void) { #ifdef CONFIG_X86_32 const char *cmdline = (const char *)__pa_nodebug(boot_command_line); const char *opt = "dis_ucode_ldr"; const char *option = (const char *)__pa_nodebug(opt); bool *res = (bool *)__pa_nodebug(&dis_ucode_ldr); #else /* CONFIG_X86_64 */ const char *cmdline = boot_command_line; const char *option = "dis_ucode_ldr"; bool *res = &dis_ucode_ldr; #endif if (cmdline_find_option_bool(cmdline, option)) *res = true; return *res; } void __init load_ucode_bsp(void) { int vendor, x86; if (check_loader_disabled_bsp()) return; if (!have_cpuid_p()) return; vendor = x86_vendor(); x86 = x86_family(); switch (vendor) { case X86_VENDOR_INTEL: if (x86 >= 6) load_ucode_intel_bsp(); break; case X86_VENDOR_AMD: if (x86 >= 0x10) load_ucode_amd_bsp(); break; default: break; } } static bool check_loader_disabled_ap(void) { #ifdef CONFIG_X86_32 return *((bool *)__pa_nodebug(&dis_ucode_ldr)); #else return dis_ucode_ldr; #endif } void load_ucode_ap(void) { int vendor, x86; if (check_loader_disabled_ap()) return; if (!have_cpuid_p()) return; vendor = x86_vendor(); x86 = x86_family(); switch (vendor) { case X86_VENDOR_INTEL: if (x86 >= 6) load_ucode_intel_ap(); break; case X86_VENDOR_AMD: if (x86 >= 0x10) load_ucode_amd_ap(); break; default: break; } } int __init save_microcode_in_initrd(void) { struct cpuinfo_x86 *c = &boot_cpu_data; switch (c->x86_vendor) { case X86_VENDOR_INTEL: if (c->x86 >= 6) save_microcode_in_initrd_intel(); break; case X86_VENDOR_AMD: if (c->x86 >= 0x10) save_microcode_in_initrd_amd(); break; default: break; } return 0; }