#ifndef _ASM_X86_UACCESS_H #define _ASM_X86_UACCESS_H /* * User space memory access functions */ #include <linux/errno.h> #include <linux/compiler.h> #include <linux/thread_info.h> #include <linux/string.h> #include <asm/asm.h> #include <asm/page.h> #include <asm/smap.h> #define VERIFY_READ 0 #define VERIFY_WRITE 1 /* * The fs value determines whether argument validity checking should be * performed or not. If get_fs() == USER_DS, checking is performed, with * get_fs() == KERNEL_DS, checking is bypassed. * * For historical reasons, these macros are grossly misnamed. */ #define MAKE_MM_SEG(s) ((mm_segment_t) { (s) }) #define KERNEL_DS MAKE_MM_SEG(-1UL) #define USER_DS MAKE_MM_SEG(TASK_SIZE_MAX) #define get_ds() (KERNEL_DS) #define get_fs() (current_thread_info()->addr_limit) #define set_fs(x) (current_thread_info()->addr_limit = (x)) #define segment_eq(a, b) ((a).seg == (b).seg) #define user_addr_max() (current_thread_info()->addr_limit.seg) #define __addr_ok(addr) \ ((unsigned long __force)(addr) < user_addr_max()) /* * Test whether a block of memory is a valid user space address. * Returns 0 if the range is valid, nonzero otherwise. */ static inline bool __chk_range_not_ok(unsigned long addr, unsigned long size, unsigned long limit) { /* * If we have used "sizeof()" for the size, * we know it won't overflow the limit (but * it might overflow the 'addr', so it's * important to subtract the size from the * limit, not add it to the address). */ if (__builtin_constant_p(size)) return addr > limit - size; /* Arbitrary sizes? Be careful about overflow */ addr += size; if (addr < size) return true; return addr > limit; } #define __range_not_ok(addr, size, limit) \ ({ \ __chk_user_ptr(addr); \ __chk_range_not_ok((unsigned long __force)(addr), size, limit); \ }) /** * access_ok: - Checks if a user space pointer is valid * @type: Type of access: %VERIFY_READ or %VERIFY_WRITE. Note that * %VERIFY_WRITE is a superset of %VERIFY_READ - if it is safe * to write to a block, it is always safe to read from it. * @addr: User space pointer to start of block to check * @size: Size of block to check * * Context: User context only. This function may sleep. * * Checks if a pointer to a block of memory in user space is valid. * * Returns true (nonzero) if the memory block may be valid, false (zero) * if it is definitely invalid. * * Note that, depending on architecture, this function probably just * checks that the pointer is in the user space range - after calling * this function, memory access functions may still return -EFAULT. */ #define access_ok(type, addr, size) \ likely(!__range_not_ok(addr, size, user_addr_max())) /* * The exception table consists of pairs of addresses relative to the * exception table enty itself: the first is the address of an * instruction that is allowed to fault, and the second is the address * at which the program should continue. No registers are modified, * so it is entirely up to the continuation code to figure out what to * do. * * All the routines below use bits of fixup code that are out of line * with the main instruction path. This means when everything is well, * we don't even have to jump over them. Further, they do not intrude * on our cache or tlb entries. */ struct exception_table_entry { int insn, fixup; }; /* This is not the generic standard exception_table_entry format */ #define ARCH_HAS_SORT_EXTABLE #define ARCH_HAS_SEARCH_EXTABLE extern int fixup_exception(struct pt_regs *regs); extern int early_fixup_exception(unsigned long *ip); /* * These are the main single-value transfer routines. They automatically * use the right size if we just have the right pointer type. * * This gets kind of ugly. We want to return _two_ values in "get_user()" * and yet we don't want to do any pointers, because that is too much * of a performance impact. Thus we have a few rather ugly macros here, * and hide all the ugliness from the user. * * The "__xxx" versions of the user access functions are versions that * do not verify the address space, that must have been done previously * with a separate "access_ok()" call (this is used when we do multiple * accesses to the same area of user memory). */ extern int __get_user_1(void); extern int __get_user_2(void); extern int __get_user_4(void); extern int __get_user_8(void); extern int __get_user_bad(void); /* * This is a type: either unsigned long, if the argument fits into * that type, or otherwise unsigned long long. */ #define __inttype(x) \ __typeof__(__builtin_choose_expr(sizeof(x) > sizeof(0UL), 0ULL, 0UL)) /** * get_user: - Get a simple variable from user space. * @x: Variable to store result. * @ptr: Source address, in user space. * * Context: User context only. This function may sleep. * * This macro copies a single simple variable from user space to kernel * space. It supports simple types like char and int, but not larger * data types like structures or arrays. * * @ptr must have pointer-to-simple-variable type, and the result of * dereferencing @ptr must be assignable to @x without a cast. * * Returns zero on success, or -EFAULT on error. * On error, the variable @x is set to zero. */ /* * Careful: we have to cast the result to the type of the pointer * for sign reasons. * * The use of _ASM_DX as the register specifier is a bit of a * simplification, as gcc only cares about it as the starting point * and not size: for a 64-bit value it will use %ecx:%edx on 32 bits * (%ecx being the next register in gcc's x86 register sequence), and * %rdx on 64 bits. * * Clang/LLVM cares about the size of the register, but still wants * the base register for something that ends up being a pair. */ #define get_user(x, ptr) \ ({ \ int __ret_gu; \ register __inttype(*(ptr)) __val_gu asm("%"_ASM_DX); \ __chk_user_ptr(ptr); \ might_fault(); \ asm volatile("call __get_user_%P3" \ : "=a" (__ret_gu), "=r" (__val_gu) \ : "0" (ptr), "i" (sizeof(*(ptr)))); \ (x) = (__typeof__(*(ptr))) __val_gu; \ __ret_gu; \ }) #define __put_user_x(size, x, ptr, __ret_pu) \ asm volatile("call __put_user_" #size : "=a" (__ret_pu) \ : "0" ((typeof(*(ptr)))(x)), "c" (ptr) : "ebx") #ifdef CONFIG_X86_32 #define __put_user_asm_u64(x, addr, err, errret) \ asm volatile(ASM_STAC "\n" \ "1: movl %%eax,0(%2)\n" \ "2: movl %%edx,4(%2)\n" \ "3: " ASM_CLAC "\n" \ ".section .fixup,\"ax\"\n" \ "4: movl %3,%0\n" \ " jmp 3b\n" \ ".previous\n" \ _ASM_EXTABLE(1b, 4b) \ _ASM_EXTABLE(2b, 4b) \ : "=r" (err) \ : "A" (x), "r" (addr), "i" (errret), "0" (err)) #define __put_user_asm_ex_u64(x, addr) \ asm volatile(ASM_STAC "\n" \ "1: movl %%eax,0(%1)\n" \ "2: movl %%edx,4(%1)\n" \ "3: " ASM_CLAC "\n" \ _ASM_EXTABLE_EX(1b, 2b) \ _ASM_EXTABLE_EX(2b, 3b) \ : : "A" (x), "r" (addr)) #define __put_user_x8(x, ptr, __ret_pu) \ asm volatile("call __put_user_8" : "=a" (__ret_pu) \ : "A" ((typeof(*(ptr)))(x)), "c" (ptr) : "ebx") #else #define __put_user_asm_u64(x, ptr, retval, errret) \ __put_user_asm(x, ptr, retval, "q", "", "er", errret) #define __put_user_asm_ex_u64(x, addr) \ __put_user_asm_ex(x, addr, "q", "", "er") #define __put_user_x8(x, ptr, __ret_pu) __put_user_x(8, x, ptr, __ret_pu) #endif extern void __put_user_bad(void); /* * Strange magic calling convention: pointer in %ecx, * value in %eax(:%edx), return value in %eax. clobbers %rbx */ extern void __put_user_1(void); extern void __put_user_2(void); extern void __put_user_4(void); extern void __put_user_8(void); /** * put_user: - Write a simple value into user space. * @x: Value to copy to user space. * @ptr: Destination address, in user space. * * Context: User context only. This function may sleep. * * This macro copies a single simple value from kernel space to user * space. It supports simple types like char and int, but not larger * data types like structures or arrays. * * @ptr must have pointer-to-simple-variable type, and @x must be assignable * to the result of dereferencing @ptr. * * Returns zero on success, or -EFAULT on error. */ #define put_user(x, ptr) \ ({ \ int __ret_pu; \ __typeof__(*(ptr)) __pu_val; \ __chk_user_ptr(ptr); \ might_fault(); \ __pu_val = x; \ switch (sizeof(*(ptr))) { \ case 1: \ __put_user_x(1, __pu_val, ptr, __ret_pu); \ break; \ case 2: \ __put_user_x(2, __pu_val, ptr, __ret_pu); \ break; \ case 4: \ __put_user_x(4, __pu_val, ptr, __ret_pu); \ break; \ case 8: \ __put_user_x8(__pu_val, ptr, __ret_pu); \ break; \ default: \ __put_user_x(X, __pu_val, ptr, __ret_pu); \ break; \ } \ __ret_pu; \ }) #define __put_user_size(x, ptr, size, retval, errret) \ do { \ retval = 0; \ __chk_user_ptr(ptr); \ switch (size) { \ case 1: \ __put_user_asm(x, ptr, retval, "b", "b", "iq", errret); \ break; \ case 2: \ __put_user_asm(x, ptr, retval, "w", "w", "ir", errret); \ break; \ case 4: \ __put_user_asm(x, ptr, retval, "l", "k", "ir", errret); \ break; \ case 8: \ __put_user_asm_u64((__typeof__(*ptr))(x), ptr, retval, \ errret); \ break; \ default: \ __put_user_bad(); \ } \ } while (0) #define __put_user_size_ex(x, ptr, size) \ do { \ __chk_user_ptr(ptr); \ switch (size) { \ case 1: \ __put_user_asm_ex(x, ptr, "b", "b", "iq"); \ break; \ case 2: \ __put_user_asm_ex(x, ptr, "w", "w", "ir"); \ break; \ case 4: \ __put_user_asm_ex(x, ptr, "l", "k", "ir"); \ break; \ case 8: \ __put_user_asm_ex_u64((__typeof__(*ptr))(x), ptr); \ break; \ default: \ __put_user_bad(); \ } \ } while (0) #ifdef CONFIG_X86_32 #define __get_user_asm_u64(x, ptr, retval, errret) (x) = __get_user_bad() #define __get_user_asm_ex_u64(x, ptr) (x) = __get_user_bad() #else #define __get_user_asm_u64(x, ptr, retval, errret) \ __get_user_asm(x, ptr, retval, "q", "", "=r", errret) #define __get_user_asm_ex_u64(x, ptr) \ __get_user_asm_ex(x, ptr, "q", "", "=r") #endif #define __get_user_size(x, ptr, size, retval, errret) \ do { \ retval = 0; \ __chk_user_ptr(ptr); \ switch (size) { \ case 1: \ __get_user_asm(x, ptr, retval, "b", "b", "=q", errret); \ break; \ case 2: \ __get_user_asm(x, ptr, retval, "w", "w", "=r", errret); \ break; \ case 4: \ __get_user_asm(x, ptr, retval, "l", "k", "=r", errret); \ break; \ case 8: \ __get_user_asm_u64(x, ptr, retval, errret); \ break; \ default: \ (x) = __get_user_bad(); \ } \ } while (0) #define __get_user_asm(x, addr, err, itype, rtype, ltype, errret) \ asm volatile(ASM_STAC "\n" \ "1: mov"itype" %2,%"rtype"1\n" \ "2: " ASM_CLAC "\n" \ ".section .fixup,\"ax\"\n" \ "3: mov %3,%0\n" \ " xor"itype" %"rtype"1,%"rtype"1\n" \ " jmp 2b\n" \ ".previous\n" \ _ASM_EXTABLE(1b, 3b) \ : "=r" (err), ltype(x) \ : "m" (__m(addr)), "i" (errret), "0" (err)) #define __get_user_size_ex(x, ptr, size) \ do { \ __chk_user_ptr(ptr); \ switch (size) { \ case 1: \ __get_user_asm_ex(x, ptr, "b", "b", "=q"); \ break; \ case 2: \ __get_user_asm_ex(x, ptr, "w", "w", "=r"); \ break; \ case 4: \ __get_user_asm_ex(x, ptr, "l", "k", "=r"); \ break; \ case 8: \ __get_user_asm_ex_u64(x, ptr); \ break; \ default: \ (x) = __get_user_bad(); \ } \ } while (0) #define __get_user_asm_ex(x, addr, itype, rtype, ltype) \ asm volatile("1: mov"itype" %1,%"rtype"0\n" \ "2:\n" \ _ASM_EXTABLE_EX(1b, 2b) \ : ltype(x) : "m" (__m(addr))) #define __put_user_nocheck(x, ptr, size) \ ({ \ int __pu_err; \ __put_user_size((x), (ptr), (size), __pu_err, -EFAULT); \ __pu_err; \ }) #define __get_user_nocheck(x, ptr, size) \ ({ \ int __gu_err; \ unsigned long __gu_val; \ __get_user_size(__gu_val, (ptr), (size), __gu_err, -EFAULT); \ (x) = (__force __typeof__(*(ptr)))__gu_val; \ __gu_err; \ }) /* FIXME: this hack is definitely wrong -AK */ struct __large_struct { unsigned long buf[100]; }; #define __m(x) (*(struct __large_struct __user *)(x)) /* * Tell gcc we read from memory instead of writing: this is because * we do not write to any memory gcc knows about, so there are no * aliasing issues. */ #define __put_user_asm(x, addr, err, itype, rtype, ltype, errret) \ asm volatile(ASM_STAC "\n" \ "1: mov"itype" %"rtype"1,%2\n" \ "2: " ASM_CLAC "\n" \ ".section .fixup,\"ax\"\n" \ "3: mov %3,%0\n" \ " jmp 2b\n" \ ".previous\n" \ _ASM_EXTABLE(1b, 3b) \ : "=r"(err) \ : ltype(x), "m" (__m(addr)), "i" (errret), "0" (err)) #define __put_user_asm_ex(x, addr, itype, rtype, ltype) \ asm volatile("1: mov"itype" %"rtype"0,%1\n" \ "2:\n" \ _ASM_EXTABLE_EX(1b, 2b) \ : : ltype(x), "m" (__m(addr))) /* * uaccess_try and catch */ #define uaccess_try do { \ current_thread_info()->uaccess_err = 0; \ stac(); \ barrier(); #define uaccess_catch(err) \ clac(); \ (err) |= (current_thread_info()->uaccess_err ? -EFAULT : 0); \ } while (0) /** * __get_user: - Get a simple variable from user space, with less checking. * @x: Variable to store result. * @ptr: Source address, in user space. * * Context: User context only. This function may sleep. * * This macro copies a single simple variable from user space to kernel * space. It supports simple types like char and int, but not larger * data types like structures or arrays. * * @ptr must have pointer-to-simple-variable type, and the result of * dereferencing @ptr must be assignable to @x without a cast. * * Caller must check the pointer with access_ok() before calling this * function. * * Returns zero on success, or -EFAULT on error. * On error, the variable @x is set to zero. */ #define __get_user(x, ptr) \ __get_user_nocheck((x), (ptr), sizeof(*(ptr))) /** * __put_user: - Write a simple value into user space, with less checking. * @x: Value to copy to user space. * @ptr: Destination address, in user space. * * Context: User context only. This function may sleep. * * This macro copies a single simple value from kernel space to user * space. It supports simple types like char and int, but not larger * data types like structures or arrays. * * @ptr must have pointer-to-simple-variable type, and @x must be assignable * to the result of dereferencing @ptr. * * Caller must check the pointer with access_ok() before calling this * function. * * Returns zero on success, or -EFAULT on error. */ #define __put_user(x, ptr) \ __put_user_nocheck((__typeof__(*(ptr)))(x), (ptr), sizeof(*(ptr))) #define __get_user_unaligned __get_user #define __put_user_unaligned __put_user /* * {get|put}_user_try and catch * * get_user_try { * get_user_ex(...); * } get_user_catch(err) */ #define get_user_try uaccess_try #define get_user_catch(err) uaccess_catch(err) #define get_user_ex(x, ptr) do { \ unsigned long __gue_val; \ __get_user_size_ex((__gue_val), (ptr), (sizeof(*(ptr)))); \ (x) = (__force __typeof__(*(ptr)))__gue_val; \ } while (0) #define put_user_try uaccess_try #define put_user_catch(err) uaccess_catch(err) #define put_user_ex(x, ptr) \ __put_user_size_ex((__typeof__(*(ptr)))(x), (ptr), sizeof(*(ptr))) extern unsigned long copy_from_user_nmi(void *to, const void __user *from, unsigned long n); extern __must_check long strncpy_from_user(char *dst, const char __user *src, long count); extern __must_check long strlen_user(const char __user *str); extern __must_check long strnlen_user(const char __user *str, long n); unsigned long __must_check clear_user(void __user *mem, unsigned long len); unsigned long __must_check __clear_user(void __user *mem, unsigned long len); extern void __cmpxchg_wrong_size(void) __compiletime_error("Bad argument size for cmpxchg"); #define __user_atomic_cmpxchg_inatomic(uval, ptr, old, new, size) \ ({ \ int __ret = 0; \ __typeof__(ptr) __uval = (uval); \ __typeof__(*(ptr)) __old = (old); \ __typeof__(*(ptr)) __new = (new); \ switch (size) { \ case 1: \ { \ asm volatile("\t" ASM_STAC "\n" \ "1:\t" LOCK_PREFIX "cmpxchgb %4, %2\n" \ "2:\t" ASM_CLAC "\n" \ "\t.section .fixup, \"ax\"\n" \ "3:\tmov %3, %0\n" \ "\tjmp 2b\n" \ "\t.previous\n" \ _ASM_EXTABLE(1b, 3b) \ : "+r" (__ret), "=a" (__old), "+m" (*(ptr)) \ : "i" (-EFAULT), "q" (__new), "1" (__old) \ : "memory" \ ); \ break; \ } \ case 2: \ { \ asm volatile("\t" ASM_STAC "\n" \ "1:\t" LOCK_PREFIX "cmpxchgw %4, %2\n" \ "2:\t" ASM_CLAC "\n" \ "\t.section .fixup, \"ax\"\n" \ "3:\tmov %3, %0\n" \ "\tjmp 2b\n" \ "\t.previous\n" \ _ASM_EXTABLE(1b, 3b) \ : "+r" (__ret), "=a" (__old), "+m" (*(ptr)) \ : "i" (-EFAULT), "r" (__new), "1" (__old) \ : "memory" \ ); \ break; \ } \ case 4: \ { \ asm volatile("\t" ASM_STAC "\n" \ "1:\t" LOCK_PREFIX "cmpxchgl %4, %2\n" \ "2:\t" ASM_CLAC "\n" \ "\t.section .fixup, \"ax\"\n" \ "3:\tmov %3, %0\n" \ "\tjmp 2b\n" \ "\t.previous\n" \ _ASM_EXTABLE(1b, 3b) \ : "+r" (__ret), "=a" (__old), "+m" (*(ptr)) \ : "i" (-EFAULT), "r" (__new), "1" (__old) \ : "memory" \ ); \ break; \ } \ case 8: \ { \ if (!IS_ENABLED(CONFIG_X86_64)) \ __cmpxchg_wrong_size(); \ \ asm volatile("\t" ASM_STAC "\n" \ "1:\t" LOCK_PREFIX "cmpxchgq %4, %2\n" \ "2:\t" ASM_CLAC "\n" \ "\t.section .fixup, \"ax\"\n" \ "3:\tmov %3, %0\n" \ "\tjmp 2b\n" \ "\t.previous\n" \ _ASM_EXTABLE(1b, 3b) \ : "+r" (__ret), "=a" (__old), "+m" (*(ptr)) \ : "i" (-EFAULT), "r" (__new), "1" (__old) \ : "memory" \ ); \ break; \ } \ default: \ __cmpxchg_wrong_size(); \ } \ *__uval = __old; \ __ret; \ }) #define user_atomic_cmpxchg_inatomic(uval, ptr, old, new) \ ({ \ access_ok(VERIFY_WRITE, (ptr), sizeof(*(ptr))) ? \ __user_atomic_cmpxchg_inatomic((uval), (ptr), \ (old), (new), sizeof(*(ptr))) : \ -EFAULT; \ }) /* * movsl can be slow when source and dest are not both 8-byte aligned */ #ifdef CONFIG_X86_INTEL_USERCOPY extern struct movsl_mask { int mask; } ____cacheline_aligned_in_smp movsl_mask; #endif #define ARCH_HAS_NOCACHE_UACCESS 1 #ifdef CONFIG_X86_32 # include <asm/uaccess_32.h> #else # include <asm/uaccess_64.h> #endif unsigned long __must_check _copy_from_user(void *to, const void __user *from, unsigned n); unsigned long __must_check _copy_to_user(void __user *to, const void *from, unsigned n); #ifdef CONFIG_DEBUG_STRICT_USER_COPY_CHECKS # define copy_user_diag __compiletime_error #else # define copy_user_diag __compiletime_warning #endif extern void copy_user_diag("copy_from_user() buffer size is too small") copy_from_user_overflow(void); extern void copy_user_diag("copy_to_user() buffer size is too small") copy_to_user_overflow(void) __asm__("copy_from_user_overflow"); #undef copy_user_diag #ifdef CONFIG_DEBUG_STRICT_USER_COPY_CHECKS extern void __compiletime_warning("copy_from_user() buffer size is not provably correct") __copy_from_user_overflow(void) __asm__("copy_from_user_overflow"); #define __copy_from_user_overflow(size, count) __copy_from_user_overflow() extern void __compiletime_warning("copy_to_user() buffer size is not provably correct") __copy_to_user_overflow(void) __asm__("copy_from_user_overflow"); #define __copy_to_user_overflow(size, count) __copy_to_user_overflow() #else static inline void __copy_from_user_overflow(int size, unsigned long count) { WARN(1, "Buffer overflow detected (%d < %lu)!\n", size, count); } #define __copy_to_user_overflow __copy_from_user_overflow #endif static inline unsigned long __must_check copy_from_user(void *to, const void __user *from, unsigned long n) { int sz = __compiletime_object_size(to); might_fault(); /* * While we would like to have the compiler do the checking for us * even in the non-constant size case, any false positives there are * a problem (especially when DEBUG_STRICT_USER_COPY_CHECKS, but even * without - the [hopefully] dangerous looking nature of the warning * would make people go look at the respecitive call sites over and * over again just to find that there's no problem). * * And there are cases where it's just not realistic for the compiler * to prove the count to be in range. For example when multiple call * sites of a helper function - perhaps in different source files - * all doing proper range checking, yet the helper function not doing * so again. * * Therefore limit the compile time checking to the constant size * case, and do only runtime checking for non-constant sizes. */ if (likely(sz < 0 || sz >= n)) n = _copy_from_user(to, from, n); else if(__builtin_constant_p(n)) copy_from_user_overflow(); else __copy_from_user_overflow(sz, n); return n; } static inline unsigned long __must_check copy_to_user(void __user *to, const void *from, unsigned long n) { int sz = __compiletime_object_size(from); might_fault(); /* See the comment in copy_from_user() above. */ if (likely(sz < 0 || sz >= n)) n = _copy_to_user(to, from, n); else if(__builtin_constant_p(n)) copy_to_user_overflow(); else __copy_to_user_overflow(sz, n); return n; } #undef __copy_from_user_overflow #undef __copy_to_user_overflow #endif /* _ASM_X86_UACCESS_H */