/* * Twofish Cipher 8-way parallel algorithm (AVX/x86_64) * * Copyright (C) 2012 Johannes Goetzfried * <Johannes.Goetzfried@informatik.stud.uni-erlangen.de> * * Copyright © 2012-2013 Jussi Kivilinna <jussi.kivilinna@iki.fi> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 * USA * */ #include <linux/linkage.h> #include "glue_helper-asm-avx.S" .file "twofish-avx-x86_64-asm_64.S" .data .align 16 .Lbswap128_mask: .byte 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0 .Lxts_gf128mul_and_shl1_mask: .byte 0x87, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0 .text /* structure of crypto context */ #define s0 0 #define s1 1024 #define s2 2048 #define s3 3072 #define w 4096 #define k 4128 /********************************************************************** 8-way AVX twofish **********************************************************************/ #define CTX %rdi #define RA1 %xmm0 #define RB1 %xmm1 #define RC1 %xmm2 #define RD1 %xmm3 #define RA2 %xmm4 #define RB2 %xmm5 #define RC2 %xmm6 #define RD2 %xmm7 #define RX0 %xmm8 #define RY0 %xmm9 #define RX1 %xmm10 #define RY1 %xmm11 #define RK1 %xmm12 #define RK2 %xmm13 #define RT %xmm14 #define RR %xmm15 #define RID1 %rbp #define RID1d %ebp #define RID2 %rsi #define RID2d %esi #define RGI1 %rdx #define RGI1bl %dl #define RGI1bh %dh #define RGI2 %rcx #define RGI2bl %cl #define RGI2bh %ch #define RGI3 %rax #define RGI3bl %al #define RGI3bh %ah #define RGI4 %rbx #define RGI4bl %bl #define RGI4bh %bh #define RGS1 %r8 #define RGS1d %r8d #define RGS2 %r9 #define RGS2d %r9d #define RGS3 %r10 #define RGS3d %r10d #define lookup_32bit(t0, t1, t2, t3, src, dst, interleave_op, il_reg) \ movzbl src ## bl, RID1d; \ movzbl src ## bh, RID2d; \ shrq $16, src; \ movl t0(CTX, RID1, 4), dst ## d; \ movl t1(CTX, RID2, 4), RID2d; \ movzbl src ## bl, RID1d; \ xorl RID2d, dst ## d; \ movzbl src ## bh, RID2d; \ interleave_op(il_reg); \ xorl t2(CTX, RID1, 4), dst ## d; \ xorl t3(CTX, RID2, 4), dst ## d; #define dummy(d) /* do nothing */ #define shr_next(reg) \ shrq $16, reg; #define G(gi1, gi2, x, t0, t1, t2, t3) \ lookup_32bit(t0, t1, t2, t3, ##gi1, RGS1, shr_next, ##gi1); \ lookup_32bit(t0, t1, t2, t3, ##gi2, RGS3, shr_next, ##gi2); \ \ lookup_32bit(t0, t1, t2, t3, ##gi1, RGS2, dummy, none); \ shlq $32, RGS2; \ orq RGS1, RGS2; \ lookup_32bit(t0, t1, t2, t3, ##gi2, RGS1, dummy, none); \ shlq $32, RGS1; \ orq RGS1, RGS3; #define round_head_2(a, b, x1, y1, x2, y2) \ vmovq b ## 1, RGI3; \ vpextrq $1, b ## 1, RGI4; \ \ G(RGI1, RGI2, x1, s0, s1, s2, s3); \ vmovq a ## 2, RGI1; \ vpextrq $1, a ## 2, RGI2; \ vmovq RGS2, x1; \ vpinsrq $1, RGS3, x1, x1; \ \ G(RGI3, RGI4, y1, s1, s2, s3, s0); \ vmovq b ## 2, RGI3; \ vpextrq $1, b ## 2, RGI4; \ vmovq RGS2, y1; \ vpinsrq $1, RGS3, y1, y1; \ \ G(RGI1, RGI2, x2, s0, s1, s2, s3); \ vmovq RGS2, x2; \ vpinsrq $1, RGS3, x2, x2; \ \ G(RGI3, RGI4, y2, s1, s2, s3, s0); \ vmovq RGS2, y2; \ vpinsrq $1, RGS3, y2, y2; #define encround_tail(a, b, c, d, x, y, prerotate) \ vpaddd x, y, x; \ vpaddd x, RK1, RT;\ prerotate(b); \ vpxor RT, c, c; \ vpaddd y, x, y; \ vpaddd y, RK2, y; \ vpsrld $1, c, RT; \ vpslld $(32 - 1), c, c; \ vpor c, RT, c; \ vpxor d, y, d; \ #define decround_tail(a, b, c, d, x, y, prerotate) \ vpaddd x, y, x; \ vpaddd x, RK1, RT;\ prerotate(a); \ vpxor RT, c, c; \ vpaddd y, x, y; \ vpaddd y, RK2, y; \ vpxor d, y, d; \ vpsrld $1, d, y; \ vpslld $(32 - 1), d, d; \ vpor d, y, d; \ #define rotate_1l(x) \ vpslld $1, x, RR; \ vpsrld $(32 - 1), x, x; \ vpor x, RR, x; #define preload_rgi(c) \ vmovq c, RGI1; \ vpextrq $1, c, RGI2; #define encrypt_round(n, a, b, c, d, preload, prerotate) \ vbroadcastss (k+4*(2*(n)))(CTX), RK1; \ vbroadcastss (k+4*(2*(n)+1))(CTX), RK2; \ round_head_2(a, b, RX0, RY0, RX1, RY1); \ encround_tail(a ## 1, b ## 1, c ## 1, d ## 1, RX0, RY0, prerotate); \ preload(c ## 1); \ encround_tail(a ## 2, b ## 2, c ## 2, d ## 2, RX1, RY1, prerotate); #define decrypt_round(n, a, b, c, d, preload, prerotate) \ vbroadcastss (k+4*(2*(n)))(CTX), RK1; \ vbroadcastss (k+4*(2*(n)+1))(CTX), RK2; \ round_head_2(a, b, RX0, RY0, RX1, RY1); \ decround_tail(a ## 1, b ## 1, c ## 1, d ## 1, RX0, RY0, prerotate); \ preload(c ## 1); \ decround_tail(a ## 2, b ## 2, c ## 2, d ## 2, RX1, RY1, prerotate); #define encrypt_cycle(n) \ encrypt_round((2*n), RA, RB, RC, RD, preload_rgi, rotate_1l); \ encrypt_round(((2*n) + 1), RC, RD, RA, RB, preload_rgi, rotate_1l); #define encrypt_cycle_last(n) \ encrypt_round((2*n), RA, RB, RC, RD, preload_rgi, rotate_1l); \ encrypt_round(((2*n) + 1), RC, RD, RA, RB, dummy, dummy); #define decrypt_cycle(n) \ decrypt_round(((2*n) + 1), RC, RD, RA, RB, preload_rgi, rotate_1l); \ decrypt_round((2*n), RA, RB, RC, RD, preload_rgi, rotate_1l); #define decrypt_cycle_last(n) \ decrypt_round(((2*n) + 1), RC, RD, RA, RB, preload_rgi, rotate_1l); \ decrypt_round((2*n), RA, RB, RC, RD, dummy, dummy); #define transpose_4x4(x0, x1, x2, x3, t0, t1, t2) \ vpunpckldq x1, x0, t0; \ vpunpckhdq x1, x0, t2; \ vpunpckldq x3, x2, t1; \ vpunpckhdq x3, x2, x3; \ \ vpunpcklqdq t1, t0, x0; \ vpunpckhqdq t1, t0, x1; \ vpunpcklqdq x3, t2, x2; \ vpunpckhqdq x3, t2, x3; #define inpack_blocks(x0, x1, x2, x3, wkey, t0, t1, t2) \ vpxor x0, wkey, x0; \ vpxor x1, wkey, x1; \ vpxor x2, wkey, x2; \ vpxor x3, wkey, x3; \ \ transpose_4x4(x0, x1, x2, x3, t0, t1, t2) #define outunpack_blocks(x0, x1, x2, x3, wkey, t0, t1, t2) \ transpose_4x4(x0, x1, x2, x3, t0, t1, t2) \ \ vpxor x0, wkey, x0; \ vpxor x1, wkey, x1; \ vpxor x2, wkey, x2; \ vpxor x3, wkey, x3; .align 8 __twofish_enc_blk8: /* input: * %rdi: ctx, CTX * RA1, RB1, RC1, RD1, RA2, RB2, RC2, RD2: blocks * output: * RC1, RD1, RA1, RB1, RC2, RD2, RA2, RB2: encrypted blocks */ vmovdqu w(CTX), RK1; pushq %rbp; pushq %rbx; pushq %rcx; inpack_blocks(RA1, RB1, RC1, RD1, RK1, RX0, RY0, RK2); preload_rgi(RA1); rotate_1l(RD1); inpack_blocks(RA2, RB2, RC2, RD2, RK1, RX0, RY0, RK2); rotate_1l(RD2); encrypt_cycle(0); encrypt_cycle(1); encrypt_cycle(2); encrypt_cycle(3); encrypt_cycle(4); encrypt_cycle(5); encrypt_cycle(6); encrypt_cycle_last(7); vmovdqu (w+4*4)(CTX), RK1; popq %rcx; popq %rbx; popq %rbp; outunpack_blocks(RC1, RD1, RA1, RB1, RK1, RX0, RY0, RK2); outunpack_blocks(RC2, RD2, RA2, RB2, RK1, RX0, RY0, RK2); ret; ENDPROC(__twofish_enc_blk8) .align 8 __twofish_dec_blk8: /* input: * %rdi: ctx, CTX * RC1, RD1, RA1, RB1, RC2, RD2, RA2, RB2: encrypted blocks * output: * RA1, RB1, RC1, RD1, RA2, RB2, RC2, RD2: decrypted blocks */ vmovdqu (w+4*4)(CTX), RK1; pushq %rbp; pushq %rbx; inpack_blocks(RC1, RD1, RA1, RB1, RK1, RX0, RY0, RK2); preload_rgi(RC1); rotate_1l(RA1); inpack_blocks(RC2, RD2, RA2, RB2, RK1, RX0, RY0, RK2); rotate_1l(RA2); decrypt_cycle(7); decrypt_cycle(6); decrypt_cycle(5); decrypt_cycle(4); decrypt_cycle(3); decrypt_cycle(2); decrypt_cycle(1); decrypt_cycle_last(0); vmovdqu (w)(CTX), RK1; popq %rbx; popq %rbp; outunpack_blocks(RA1, RB1, RC1, RD1, RK1, RX0, RY0, RK2); outunpack_blocks(RA2, RB2, RC2, RD2, RK1, RX0, RY0, RK2); ret; ENDPROC(__twofish_dec_blk8) ENTRY(twofish_ecb_enc_8way) /* input: * %rdi: ctx, CTX * %rsi: dst * %rdx: src */ movq %rsi, %r11; load_8way(%rdx, RA1, RB1, RC1, RD1, RA2, RB2, RC2, RD2); call __twofish_enc_blk8; store_8way(%r11, RC1, RD1, RA1, RB1, RC2, RD2, RA2, RB2); ret; ENDPROC(twofish_ecb_enc_8way) ENTRY(twofish_ecb_dec_8way) /* input: * %rdi: ctx, CTX * %rsi: dst * %rdx: src */ movq %rsi, %r11; load_8way(%rdx, RC1, RD1, RA1, RB1, RC2, RD2, RA2, RB2); call __twofish_dec_blk8; store_8way(%r11, RA1, RB1, RC1, RD1, RA2, RB2, RC2, RD2); ret; ENDPROC(twofish_ecb_dec_8way) ENTRY(twofish_cbc_dec_8way) /* input: * %rdi: ctx, CTX * %rsi: dst * %rdx: src */ pushq %r12; movq %rsi, %r11; movq %rdx, %r12; load_8way(%rdx, RC1, RD1, RA1, RB1, RC2, RD2, RA2, RB2); call __twofish_dec_blk8; store_cbc_8way(%r12, %r11, RA1, RB1, RC1, RD1, RA2, RB2, RC2, RD2); popq %r12; ret; ENDPROC(twofish_cbc_dec_8way) ENTRY(twofish_ctr_8way) /* input: * %rdi: ctx, CTX * %rsi: dst * %rdx: src * %rcx: iv (little endian, 128bit) */ pushq %r12; movq %rsi, %r11; movq %rdx, %r12; load_ctr_8way(%rcx, .Lbswap128_mask, RA1, RB1, RC1, RD1, RA2, RB2, RC2, RD2, RX0, RX1, RY0); call __twofish_enc_blk8; store_ctr_8way(%r12, %r11, RC1, RD1, RA1, RB1, RC2, RD2, RA2, RB2); popq %r12; ret; ENDPROC(twofish_ctr_8way) ENTRY(twofish_xts_enc_8way) /* input: * %rdi: ctx, CTX * %rsi: dst * %rdx: src * %rcx: iv (t ⊕ αⁿ ∈ GF(2¹²⁸)) */ movq %rsi, %r11; /* regs <= src, dst <= IVs, regs <= regs xor IVs */ load_xts_8way(%rcx, %rdx, %rsi, RA1, RB1, RC1, RD1, RA2, RB2, RC2, RD2, RX0, RX1, RY0, .Lxts_gf128mul_and_shl1_mask); call __twofish_enc_blk8; /* dst <= regs xor IVs(in dst) */ store_xts_8way(%r11, RC1, RD1, RA1, RB1, RC2, RD2, RA2, RB2); ret; ENDPROC(twofish_xts_enc_8way) ENTRY(twofish_xts_dec_8way) /* input: * %rdi: ctx, CTX * %rsi: dst * %rdx: src * %rcx: iv (t ⊕ αⁿ ∈ GF(2¹²⁸)) */ movq %rsi, %r11; /* regs <= src, dst <= IVs, regs <= regs xor IVs */ load_xts_8way(%rcx, %rdx, %rsi, RC1, RD1, RA1, RB1, RC2, RD2, RA2, RB2, RX0, RX1, RY0, .Lxts_gf128mul_and_shl1_mask); call __twofish_dec_blk8; /* dst <= regs xor IVs(in dst) */ store_xts_8way(%r11, RA1, RB1, RC1, RD1, RA2, RB2, RC2, RD2); ret; ENDPROC(twofish_xts_dec_8way)