/* * Cryptographic API. * * Glue code for the SHA256 Secure Hash Algorithm assembler * implementation using supplemental SSE3 / AVX / AVX2 instructions. * * This file is based on sha256_generic.c * * Copyright (C) 2013 Intel Corporation. * * Author: * Tim Chen <tim.c.chen@linux.intel.com> * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the Free * Software Foundation; either version 2 of the License, or (at your option) * any later version. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <crypto/internal/hash.h> #include <linux/init.h> #include <linux/module.h> #include <linux/mm.h> #include <linux/cryptohash.h> #include <linux/types.h> #include <crypto/sha.h> #include <asm/byteorder.h> #include <asm/i387.h> #include <asm/xcr.h> #include <asm/xsave.h> #include <linux/string.h> asmlinkage void sha256_transform_ssse3(const char *data, u32 *digest, u64 rounds); #ifdef CONFIG_AS_AVX asmlinkage void sha256_transform_avx(const char *data, u32 *digest, u64 rounds); #endif #ifdef CONFIG_AS_AVX2 asmlinkage void sha256_transform_rorx(const char *data, u32 *digest, u64 rounds); #endif static asmlinkage void (*sha256_transform_asm)(const char *, u32 *, u64); static int sha256_ssse3_init(struct shash_desc *desc) { struct sha256_state *sctx = shash_desc_ctx(desc); sctx->state[0] = SHA256_H0; sctx->state[1] = SHA256_H1; sctx->state[2] = SHA256_H2; sctx->state[3] = SHA256_H3; sctx->state[4] = SHA256_H4; sctx->state[5] = SHA256_H5; sctx->state[6] = SHA256_H6; sctx->state[7] = SHA256_H7; sctx->count = 0; return 0; } static int __sha256_ssse3_update(struct shash_desc *desc, const u8 *data, unsigned int len, unsigned int partial) { struct sha256_state *sctx = shash_desc_ctx(desc); unsigned int done = 0; sctx->count += len; if (partial) { done = SHA256_BLOCK_SIZE - partial; memcpy(sctx->buf + partial, data, done); sha256_transform_asm(sctx->buf, sctx->state, 1); } if (len - done >= SHA256_BLOCK_SIZE) { const unsigned int rounds = (len - done) / SHA256_BLOCK_SIZE; sha256_transform_asm(data + done, sctx->state, (u64) rounds); done += rounds * SHA256_BLOCK_SIZE; } memcpy(sctx->buf, data + done, len - done); return 0; } static int sha256_ssse3_update(struct shash_desc *desc, const u8 *data, unsigned int len) { struct sha256_state *sctx = shash_desc_ctx(desc); unsigned int partial = sctx->count % SHA256_BLOCK_SIZE; int res; /* Handle the fast case right here */ if (partial + len < SHA256_BLOCK_SIZE) { sctx->count += len; memcpy(sctx->buf + partial, data, len); return 0; } if (!irq_fpu_usable()) { res = crypto_sha256_update(desc, data, len); } else { kernel_fpu_begin(); res = __sha256_ssse3_update(desc, data, len, partial); kernel_fpu_end(); } return res; } /* Add padding and return the message digest. */ static int sha256_ssse3_final(struct shash_desc *desc, u8 *out) { struct sha256_state *sctx = shash_desc_ctx(desc); unsigned int i, index, padlen; __be32 *dst = (__be32 *)out; __be64 bits; static const u8 padding[SHA256_BLOCK_SIZE] = { 0x80, }; bits = cpu_to_be64(sctx->count << 3); /* Pad out to 56 mod 64 and append length */ index = sctx->count % SHA256_BLOCK_SIZE; padlen = (index < 56) ? (56 - index) : ((SHA256_BLOCK_SIZE+56)-index); if (!irq_fpu_usable()) { crypto_sha256_update(desc, padding, padlen); crypto_sha256_update(desc, (const u8 *)&bits, sizeof(bits)); } else { kernel_fpu_begin(); /* We need to fill a whole block for __sha256_ssse3_update() */ if (padlen <= 56) { sctx->count += padlen; memcpy(sctx->buf + index, padding, padlen); } else { __sha256_ssse3_update(desc, padding, padlen, index); } __sha256_ssse3_update(desc, (const u8 *)&bits, sizeof(bits), 56); kernel_fpu_end(); } /* Store state in digest */ for (i = 0; i < 8; i++) dst[i] = cpu_to_be32(sctx->state[i]); /* Wipe context */ memset(sctx, 0, sizeof(*sctx)); return 0; } static int sha256_ssse3_export(struct shash_desc *desc, void *out) { struct sha256_state *sctx = shash_desc_ctx(desc); memcpy(out, sctx, sizeof(*sctx)); return 0; } static int sha256_ssse3_import(struct shash_desc *desc, const void *in) { struct sha256_state *sctx = shash_desc_ctx(desc); memcpy(sctx, in, sizeof(*sctx)); return 0; } static int sha224_ssse3_init(struct shash_desc *desc) { struct sha256_state *sctx = shash_desc_ctx(desc); sctx->state[0] = SHA224_H0; sctx->state[1] = SHA224_H1; sctx->state[2] = SHA224_H2; sctx->state[3] = SHA224_H3; sctx->state[4] = SHA224_H4; sctx->state[5] = SHA224_H5; sctx->state[6] = SHA224_H6; sctx->state[7] = SHA224_H7; sctx->count = 0; return 0; } static int sha224_ssse3_final(struct shash_desc *desc, u8 *hash) { u8 D[SHA256_DIGEST_SIZE]; sha256_ssse3_final(desc, D); memcpy(hash, D, SHA224_DIGEST_SIZE); memset(D, 0, SHA256_DIGEST_SIZE); return 0; } static struct shash_alg algs[] = { { .digestsize = SHA256_DIGEST_SIZE, .init = sha256_ssse3_init, .update = sha256_ssse3_update, .final = sha256_ssse3_final, .export = sha256_ssse3_export, .import = sha256_ssse3_import, .descsize = sizeof(struct sha256_state), .statesize = sizeof(struct sha256_state), .base = { .cra_name = "sha256", .cra_driver_name = "sha256-ssse3", .cra_priority = 150, .cra_flags = CRYPTO_ALG_TYPE_SHASH, .cra_blocksize = SHA256_BLOCK_SIZE, .cra_module = THIS_MODULE, } }, { .digestsize = SHA224_DIGEST_SIZE, .init = sha224_ssse3_init, .update = sha256_ssse3_update, .final = sha224_ssse3_final, .export = sha256_ssse3_export, .import = sha256_ssse3_import, .descsize = sizeof(struct sha256_state), .statesize = sizeof(struct sha256_state), .base = { .cra_name = "sha224", .cra_driver_name = "sha224-ssse3", .cra_priority = 150, .cra_flags = CRYPTO_ALG_TYPE_SHASH, .cra_blocksize = SHA224_BLOCK_SIZE, .cra_module = THIS_MODULE, } } }; #ifdef CONFIG_AS_AVX static bool __init avx_usable(void) { u64 xcr0; if (!cpu_has_avx || !cpu_has_osxsave) return false; xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); if ((xcr0 & (XSTATE_SSE | XSTATE_YMM)) != (XSTATE_SSE | XSTATE_YMM)) { pr_info("AVX detected but unusable.\n"); return false; } return true; } #endif static int __init sha256_ssse3_mod_init(void) { /* test for SSSE3 first */ if (cpu_has_ssse3) sha256_transform_asm = sha256_transform_ssse3; #ifdef CONFIG_AS_AVX /* allow AVX to override SSSE3, it's a little faster */ if (avx_usable()) { #ifdef CONFIG_AS_AVX2 if (boot_cpu_has(X86_FEATURE_AVX2) && boot_cpu_has(X86_FEATURE_BMI2)) sha256_transform_asm = sha256_transform_rorx; else #endif sha256_transform_asm = sha256_transform_avx; } #endif if (sha256_transform_asm) { #ifdef CONFIG_AS_AVX if (sha256_transform_asm == sha256_transform_avx) pr_info("Using AVX optimized SHA-256 implementation\n"); #ifdef CONFIG_AS_AVX2 else if (sha256_transform_asm == sha256_transform_rorx) pr_info("Using AVX2 optimized SHA-256 implementation\n"); #endif else #endif pr_info("Using SSSE3 optimized SHA-256 implementation\n"); return crypto_register_shashes(algs, ARRAY_SIZE(algs)); } pr_info("Neither AVX nor SSSE3 is available/usable.\n"); return -ENODEV; } static void __exit sha256_ssse3_mod_fini(void) { crypto_unregister_shashes(algs, ARRAY_SIZE(algs)); } module_init(sha256_ssse3_mod_init); module_exit(sha256_ssse3_mod_fini); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("SHA256 Secure Hash Algorithm, Supplemental SSE3 accelerated"); MODULE_ALIAS("sha256"); MODULE_ALIAS("sha224");