/* * Glue Code for x86_64/AVX2 assembler optimized version of Serpent * * Copyright © 2012-2013 Jussi Kivilinna <jussi.kivilinna@mbnet.fi> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * */ #include <linux/module.h> #include <linux/types.h> #include <linux/crypto.h> #include <linux/err.h> #include <crypto/ablk_helper.h> #include <crypto/algapi.h> #include <crypto/ctr.h> #include <crypto/lrw.h> #include <crypto/xts.h> #include <crypto/serpent.h> #include <asm/xcr.h> #include <asm/xsave.h> #include <asm/crypto/serpent-avx.h> #include <asm/crypto/glue_helper.h> #define SERPENT_AVX2_PARALLEL_BLOCKS 16 /* 16-way AVX2 parallel cipher functions */ asmlinkage void serpent_ecb_enc_16way(struct serpent_ctx *ctx, u8 *dst, const u8 *src); asmlinkage void serpent_ecb_dec_16way(struct serpent_ctx *ctx, u8 *dst, const u8 *src); asmlinkage void serpent_cbc_dec_16way(void *ctx, u128 *dst, const u128 *src); asmlinkage void serpent_ctr_16way(void *ctx, u128 *dst, const u128 *src, le128 *iv); asmlinkage void serpent_xts_enc_16way(struct serpent_ctx *ctx, u8 *dst, const u8 *src, le128 *iv); asmlinkage void serpent_xts_dec_16way(struct serpent_ctx *ctx, u8 *dst, const u8 *src, le128 *iv); static const struct common_glue_ctx serpent_enc = { .num_funcs = 3, .fpu_blocks_limit = 8, .funcs = { { .num_blocks = 16, .fn_u = { .ecb = GLUE_FUNC_CAST(serpent_ecb_enc_16way) } }, { .num_blocks = 8, .fn_u = { .ecb = GLUE_FUNC_CAST(serpent_ecb_enc_8way_avx) } }, { .num_blocks = 1, .fn_u = { .ecb = GLUE_FUNC_CAST(__serpent_encrypt) } } } }; static const struct common_glue_ctx serpent_ctr = { .num_funcs = 3, .fpu_blocks_limit = 8, .funcs = { { .num_blocks = 16, .fn_u = { .ctr = GLUE_CTR_FUNC_CAST(serpent_ctr_16way) } }, { .num_blocks = 8, .fn_u = { .ctr = GLUE_CTR_FUNC_CAST(serpent_ctr_8way_avx) } }, { .num_blocks = 1, .fn_u = { .ctr = GLUE_CTR_FUNC_CAST(__serpent_crypt_ctr) } } } }; static const struct common_glue_ctx serpent_enc_xts = { .num_funcs = 3, .fpu_blocks_limit = 8, .funcs = { { .num_blocks = 16, .fn_u = { .xts = GLUE_XTS_FUNC_CAST(serpent_xts_enc_16way) } }, { .num_blocks = 8, .fn_u = { .xts = GLUE_XTS_FUNC_CAST(serpent_xts_enc_8way_avx) } }, { .num_blocks = 1, .fn_u = { .xts = GLUE_XTS_FUNC_CAST(serpent_xts_enc) } } } }; static const struct common_glue_ctx serpent_dec = { .num_funcs = 3, .fpu_blocks_limit = 8, .funcs = { { .num_blocks = 16, .fn_u = { .ecb = GLUE_FUNC_CAST(serpent_ecb_dec_16way) } }, { .num_blocks = 8, .fn_u = { .ecb = GLUE_FUNC_CAST(serpent_ecb_dec_8way_avx) } }, { .num_blocks = 1, .fn_u = { .ecb = GLUE_FUNC_CAST(__serpent_decrypt) } } } }; static const struct common_glue_ctx serpent_dec_cbc = { .num_funcs = 3, .fpu_blocks_limit = 8, .funcs = { { .num_blocks = 16, .fn_u = { .cbc = GLUE_CBC_FUNC_CAST(serpent_cbc_dec_16way) } }, { .num_blocks = 8, .fn_u = { .cbc = GLUE_CBC_FUNC_CAST(serpent_cbc_dec_8way_avx) } }, { .num_blocks = 1, .fn_u = { .cbc = GLUE_CBC_FUNC_CAST(__serpent_decrypt) } } } }; static const struct common_glue_ctx serpent_dec_xts = { .num_funcs = 3, .fpu_blocks_limit = 8, .funcs = { { .num_blocks = 16, .fn_u = { .xts = GLUE_XTS_FUNC_CAST(serpent_xts_dec_16way) } }, { .num_blocks = 8, .fn_u = { .xts = GLUE_XTS_FUNC_CAST(serpent_xts_dec_8way_avx) } }, { .num_blocks = 1, .fn_u = { .xts = GLUE_XTS_FUNC_CAST(serpent_xts_dec) } } } }; static int ecb_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes) { return glue_ecb_crypt_128bit(&serpent_enc, desc, dst, src, nbytes); } static int ecb_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes) { return glue_ecb_crypt_128bit(&serpent_dec, desc, dst, src, nbytes); } static int cbc_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes) { return glue_cbc_encrypt_128bit(GLUE_FUNC_CAST(__serpent_encrypt), desc, dst, src, nbytes); } static int cbc_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes) { return glue_cbc_decrypt_128bit(&serpent_dec_cbc, desc, dst, src, nbytes); } static int ctr_crypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes) { return glue_ctr_crypt_128bit(&serpent_ctr, desc, dst, src, nbytes); } static inline bool serpent_fpu_begin(bool fpu_enabled, unsigned int nbytes) { /* since reusing AVX functions, starts using FPU at 8 parallel blocks */ return glue_fpu_begin(SERPENT_BLOCK_SIZE, 8, NULL, fpu_enabled, nbytes); } static inline void serpent_fpu_end(bool fpu_enabled) { glue_fpu_end(fpu_enabled); } struct crypt_priv { struct serpent_ctx *ctx; bool fpu_enabled; }; static void encrypt_callback(void *priv, u8 *srcdst, unsigned int nbytes) { const unsigned int bsize = SERPENT_BLOCK_SIZE; struct crypt_priv *ctx = priv; int i; ctx->fpu_enabled = serpent_fpu_begin(ctx->fpu_enabled, nbytes); if (nbytes >= SERPENT_AVX2_PARALLEL_BLOCKS * bsize) { serpent_ecb_enc_16way(ctx->ctx, srcdst, srcdst); srcdst += bsize * SERPENT_AVX2_PARALLEL_BLOCKS; nbytes -= bsize * SERPENT_AVX2_PARALLEL_BLOCKS; } while (nbytes >= SERPENT_PARALLEL_BLOCKS * bsize) { serpent_ecb_enc_8way_avx(ctx->ctx, srcdst, srcdst); srcdst += bsize * SERPENT_PARALLEL_BLOCKS; nbytes -= bsize * SERPENT_PARALLEL_BLOCKS; } for (i = 0; i < nbytes / bsize; i++, srcdst += bsize) __serpent_encrypt(ctx->ctx, srcdst, srcdst); } static void decrypt_callback(void *priv, u8 *srcdst, unsigned int nbytes) { const unsigned int bsize = SERPENT_BLOCK_SIZE; struct crypt_priv *ctx = priv; int i; ctx->fpu_enabled = serpent_fpu_begin(ctx->fpu_enabled, nbytes); if (nbytes >= SERPENT_AVX2_PARALLEL_BLOCKS * bsize) { serpent_ecb_dec_16way(ctx->ctx, srcdst, srcdst); srcdst += bsize * SERPENT_AVX2_PARALLEL_BLOCKS; nbytes -= bsize * SERPENT_AVX2_PARALLEL_BLOCKS; } while (nbytes >= SERPENT_PARALLEL_BLOCKS * bsize) { serpent_ecb_dec_8way_avx(ctx->ctx, srcdst, srcdst); srcdst += bsize * SERPENT_PARALLEL_BLOCKS; nbytes -= bsize * SERPENT_PARALLEL_BLOCKS; } for (i = 0; i < nbytes / bsize; i++, srcdst += bsize) __serpent_decrypt(ctx->ctx, srcdst, srcdst); } static int lrw_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes) { struct serpent_lrw_ctx *ctx = crypto_blkcipher_ctx(desc->tfm); be128 buf[SERPENT_AVX2_PARALLEL_BLOCKS]; struct crypt_priv crypt_ctx = { .ctx = &ctx->serpent_ctx, .fpu_enabled = false, }; struct lrw_crypt_req req = { .tbuf = buf, .tbuflen = sizeof(buf), .table_ctx = &ctx->lrw_table, .crypt_ctx = &crypt_ctx, .crypt_fn = encrypt_callback, }; int ret; desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP; ret = lrw_crypt(desc, dst, src, nbytes, &req); serpent_fpu_end(crypt_ctx.fpu_enabled); return ret; } static int lrw_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes) { struct serpent_lrw_ctx *ctx = crypto_blkcipher_ctx(desc->tfm); be128 buf[SERPENT_AVX2_PARALLEL_BLOCKS]; struct crypt_priv crypt_ctx = { .ctx = &ctx->serpent_ctx, .fpu_enabled = false, }; struct lrw_crypt_req req = { .tbuf = buf, .tbuflen = sizeof(buf), .table_ctx = &ctx->lrw_table, .crypt_ctx = &crypt_ctx, .crypt_fn = decrypt_callback, }; int ret; desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP; ret = lrw_crypt(desc, dst, src, nbytes, &req); serpent_fpu_end(crypt_ctx.fpu_enabled); return ret; } static int xts_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes) { struct serpent_xts_ctx *ctx = crypto_blkcipher_ctx(desc->tfm); return glue_xts_crypt_128bit(&serpent_enc_xts, desc, dst, src, nbytes, XTS_TWEAK_CAST(__serpent_encrypt), &ctx->tweak_ctx, &ctx->crypt_ctx); } static int xts_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes) { struct serpent_xts_ctx *ctx = crypto_blkcipher_ctx(desc->tfm); return glue_xts_crypt_128bit(&serpent_dec_xts, desc, dst, src, nbytes, XTS_TWEAK_CAST(__serpent_encrypt), &ctx->tweak_ctx, &ctx->crypt_ctx); } static struct crypto_alg srp_algs[10] = { { .cra_name = "__ecb-serpent-avx2", .cra_driver_name = "__driver-ecb-serpent-avx2", .cra_priority = 0, .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER, .cra_blocksize = SERPENT_BLOCK_SIZE, .cra_ctxsize = sizeof(struct serpent_ctx), .cra_alignmask = 0, .cra_type = &crypto_blkcipher_type, .cra_module = THIS_MODULE, .cra_list = LIST_HEAD_INIT(srp_algs[0].cra_list), .cra_u = { .blkcipher = { .min_keysize = SERPENT_MIN_KEY_SIZE, .max_keysize = SERPENT_MAX_KEY_SIZE, .setkey = serpent_setkey, .encrypt = ecb_encrypt, .decrypt = ecb_decrypt, }, }, }, { .cra_name = "__cbc-serpent-avx2", .cra_driver_name = "__driver-cbc-serpent-avx2", .cra_priority = 0, .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER, .cra_blocksize = SERPENT_BLOCK_SIZE, .cra_ctxsize = sizeof(struct serpent_ctx), .cra_alignmask = 0, .cra_type = &crypto_blkcipher_type, .cra_module = THIS_MODULE, .cra_list = LIST_HEAD_INIT(srp_algs[1].cra_list), .cra_u = { .blkcipher = { .min_keysize = SERPENT_MIN_KEY_SIZE, .max_keysize = SERPENT_MAX_KEY_SIZE, .setkey = serpent_setkey, .encrypt = cbc_encrypt, .decrypt = cbc_decrypt, }, }, }, { .cra_name = "__ctr-serpent-avx2", .cra_driver_name = "__driver-ctr-serpent-avx2", .cra_priority = 0, .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER, .cra_blocksize = 1, .cra_ctxsize = sizeof(struct serpent_ctx), .cra_alignmask = 0, .cra_type = &crypto_blkcipher_type, .cra_module = THIS_MODULE, .cra_list = LIST_HEAD_INIT(srp_algs[2].cra_list), .cra_u = { .blkcipher = { .min_keysize = SERPENT_MIN_KEY_SIZE, .max_keysize = SERPENT_MAX_KEY_SIZE, .ivsize = SERPENT_BLOCK_SIZE, .setkey = serpent_setkey, .encrypt = ctr_crypt, .decrypt = ctr_crypt, }, }, }, { .cra_name = "__lrw-serpent-avx2", .cra_driver_name = "__driver-lrw-serpent-avx2", .cra_priority = 0, .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER, .cra_blocksize = SERPENT_BLOCK_SIZE, .cra_ctxsize = sizeof(struct serpent_lrw_ctx), .cra_alignmask = 0, .cra_type = &crypto_blkcipher_type, .cra_module = THIS_MODULE, .cra_list = LIST_HEAD_INIT(srp_algs[3].cra_list), .cra_exit = lrw_serpent_exit_tfm, .cra_u = { .blkcipher = { .min_keysize = SERPENT_MIN_KEY_SIZE + SERPENT_BLOCK_SIZE, .max_keysize = SERPENT_MAX_KEY_SIZE + SERPENT_BLOCK_SIZE, .ivsize = SERPENT_BLOCK_SIZE, .setkey = lrw_serpent_setkey, .encrypt = lrw_encrypt, .decrypt = lrw_decrypt, }, }, }, { .cra_name = "__xts-serpent-avx2", .cra_driver_name = "__driver-xts-serpent-avx2", .cra_priority = 0, .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER, .cra_blocksize = SERPENT_BLOCK_SIZE, .cra_ctxsize = sizeof(struct serpent_xts_ctx), .cra_alignmask = 0, .cra_type = &crypto_blkcipher_type, .cra_module = THIS_MODULE, .cra_list = LIST_HEAD_INIT(srp_algs[4].cra_list), .cra_u = { .blkcipher = { .min_keysize = SERPENT_MIN_KEY_SIZE * 2, .max_keysize = SERPENT_MAX_KEY_SIZE * 2, .ivsize = SERPENT_BLOCK_SIZE, .setkey = xts_serpent_setkey, .encrypt = xts_encrypt, .decrypt = xts_decrypt, }, }, }, { .cra_name = "ecb(serpent)", .cra_driver_name = "ecb-serpent-avx2", .cra_priority = 600, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, .cra_blocksize = SERPENT_BLOCK_SIZE, .cra_ctxsize = sizeof(struct async_helper_ctx), .cra_alignmask = 0, .cra_type = &crypto_ablkcipher_type, .cra_module = THIS_MODULE, .cra_list = LIST_HEAD_INIT(srp_algs[5].cra_list), .cra_init = ablk_init, .cra_exit = ablk_exit, .cra_u = { .ablkcipher = { .min_keysize = SERPENT_MIN_KEY_SIZE, .max_keysize = SERPENT_MAX_KEY_SIZE, .setkey = ablk_set_key, .encrypt = ablk_encrypt, .decrypt = ablk_decrypt, }, }, }, { .cra_name = "cbc(serpent)", .cra_driver_name = "cbc-serpent-avx2", .cra_priority = 600, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, .cra_blocksize = SERPENT_BLOCK_SIZE, .cra_ctxsize = sizeof(struct async_helper_ctx), .cra_alignmask = 0, .cra_type = &crypto_ablkcipher_type, .cra_module = THIS_MODULE, .cra_list = LIST_HEAD_INIT(srp_algs[6].cra_list), .cra_init = ablk_init, .cra_exit = ablk_exit, .cra_u = { .ablkcipher = { .min_keysize = SERPENT_MIN_KEY_SIZE, .max_keysize = SERPENT_MAX_KEY_SIZE, .ivsize = SERPENT_BLOCK_SIZE, .setkey = ablk_set_key, .encrypt = __ablk_encrypt, .decrypt = ablk_decrypt, }, }, }, { .cra_name = "ctr(serpent)", .cra_driver_name = "ctr-serpent-avx2", .cra_priority = 600, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, .cra_blocksize = 1, .cra_ctxsize = sizeof(struct async_helper_ctx), .cra_alignmask = 0, .cra_type = &crypto_ablkcipher_type, .cra_module = THIS_MODULE, .cra_list = LIST_HEAD_INIT(srp_algs[7].cra_list), .cra_init = ablk_init, .cra_exit = ablk_exit, .cra_u = { .ablkcipher = { .min_keysize = SERPENT_MIN_KEY_SIZE, .max_keysize = SERPENT_MAX_KEY_SIZE, .ivsize = SERPENT_BLOCK_SIZE, .setkey = ablk_set_key, .encrypt = ablk_encrypt, .decrypt = ablk_encrypt, .geniv = "chainiv", }, }, }, { .cra_name = "lrw(serpent)", .cra_driver_name = "lrw-serpent-avx2", .cra_priority = 600, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, .cra_blocksize = SERPENT_BLOCK_SIZE, .cra_ctxsize = sizeof(struct async_helper_ctx), .cra_alignmask = 0, .cra_type = &crypto_ablkcipher_type, .cra_module = THIS_MODULE, .cra_list = LIST_HEAD_INIT(srp_algs[8].cra_list), .cra_init = ablk_init, .cra_exit = ablk_exit, .cra_u = { .ablkcipher = { .min_keysize = SERPENT_MIN_KEY_SIZE + SERPENT_BLOCK_SIZE, .max_keysize = SERPENT_MAX_KEY_SIZE + SERPENT_BLOCK_SIZE, .ivsize = SERPENT_BLOCK_SIZE, .setkey = ablk_set_key, .encrypt = ablk_encrypt, .decrypt = ablk_decrypt, }, }, }, { .cra_name = "xts(serpent)", .cra_driver_name = "xts-serpent-avx2", .cra_priority = 600, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, .cra_blocksize = SERPENT_BLOCK_SIZE, .cra_ctxsize = sizeof(struct async_helper_ctx), .cra_alignmask = 0, .cra_type = &crypto_ablkcipher_type, .cra_module = THIS_MODULE, .cra_list = LIST_HEAD_INIT(srp_algs[9].cra_list), .cra_init = ablk_init, .cra_exit = ablk_exit, .cra_u = { .ablkcipher = { .min_keysize = SERPENT_MIN_KEY_SIZE * 2, .max_keysize = SERPENT_MAX_KEY_SIZE * 2, .ivsize = SERPENT_BLOCK_SIZE, .setkey = ablk_set_key, .encrypt = ablk_encrypt, .decrypt = ablk_decrypt, }, }, } }; static int __init init(void) { u64 xcr0; if (!cpu_has_avx2 || !cpu_has_osxsave) { pr_info("AVX2 instructions are not detected.\n"); return -ENODEV; } xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); if ((xcr0 & (XSTATE_SSE | XSTATE_YMM)) != (XSTATE_SSE | XSTATE_YMM)) { pr_info("AVX detected but unusable.\n"); return -ENODEV; } return crypto_register_algs(srp_algs, ARRAY_SIZE(srp_algs)); } static void __exit fini(void) { crypto_unregister_algs(srp_algs, ARRAY_SIZE(srp_algs)); } module_init(init); module_exit(fini); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Serpent Cipher Algorithm, AVX2 optimized"); MODULE_ALIAS("serpent"); MODULE_ALIAS("serpent-asm");