/* arch/sparc64/kernel/process.c * * Copyright (C) 1995, 1996, 2008 David S. Miller (davem@davemloft.net) * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be) * Copyright (C) 1997, 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz) */ /* * This file handles the architecture-dependent parts of process handling.. */ #include <stdarg.h> #include <linux/errno.h> #include <linux/export.h> #include <linux/sched.h> #include <linux/kernel.h> #include <linux/mm.h> #include <linux/fs.h> #include <linux/smp.h> #include <linux/stddef.h> #include <linux/ptrace.h> #include <linux/slab.h> #include <linux/user.h> #include <linux/delay.h> #include <linux/compat.h> #include <linux/tick.h> #include <linux/init.h> #include <linux/cpu.h> #include <linux/perf_event.h> #include <linux/elfcore.h> #include <linux/sysrq.h> #include <linux/nmi.h> #include <linux/context_tracking.h> #include <asm/uaccess.h> #include <asm/page.h> #include <asm/pgalloc.h> #include <asm/pgtable.h> #include <asm/processor.h> #include <asm/pstate.h> #include <asm/elf.h> #include <asm/fpumacro.h> #include <asm/head.h> #include <asm/cpudata.h> #include <asm/mmu_context.h> #include <asm/unistd.h> #include <asm/hypervisor.h> #include <asm/syscalls.h> #include <asm/irq_regs.h> #include <asm/smp.h> #include <asm/pcr.h> #include "kstack.h" /* Idle loop support on sparc64. */ void arch_cpu_idle(void) { if (tlb_type != hypervisor) { touch_nmi_watchdog(); local_irq_enable(); } else { unsigned long pstate; local_irq_enable(); /* The sun4v sleeping code requires that we have PSTATE.IE cleared over * the cpu sleep hypervisor call. */ __asm__ __volatile__( "rdpr %%pstate, %0\n\t" "andn %0, %1, %0\n\t" "wrpr %0, %%g0, %%pstate" : "=&r" (pstate) : "i" (PSTATE_IE)); if (!need_resched() && !cpu_is_offline(smp_processor_id())) sun4v_cpu_yield(); /* Re-enable interrupts. */ __asm__ __volatile__( "rdpr %%pstate, %0\n\t" "or %0, %1, %0\n\t" "wrpr %0, %%g0, %%pstate" : "=&r" (pstate) : "i" (PSTATE_IE)); } } #ifdef CONFIG_HOTPLUG_CPU void arch_cpu_idle_dead(void) { sched_preempt_enable_no_resched(); cpu_play_dead(); } #endif #ifdef CONFIG_COMPAT static void show_regwindow32(struct pt_regs *regs) { struct reg_window32 __user *rw; struct reg_window32 r_w; mm_segment_t old_fs; __asm__ __volatile__ ("flushw"); rw = compat_ptr((unsigned)regs->u_regs[14]); old_fs = get_fs(); set_fs (USER_DS); if (copy_from_user (&r_w, rw, sizeof(r_w))) { set_fs (old_fs); return; } set_fs (old_fs); printk("l0: %08x l1: %08x l2: %08x l3: %08x " "l4: %08x l5: %08x l6: %08x l7: %08x\n", r_w.locals[0], r_w.locals[1], r_w.locals[2], r_w.locals[3], r_w.locals[4], r_w.locals[5], r_w.locals[6], r_w.locals[7]); printk("i0: %08x i1: %08x i2: %08x i3: %08x " "i4: %08x i5: %08x i6: %08x i7: %08x\n", r_w.ins[0], r_w.ins[1], r_w.ins[2], r_w.ins[3], r_w.ins[4], r_w.ins[5], r_w.ins[6], r_w.ins[7]); } #else #define show_regwindow32(regs) do { } while (0) #endif static void show_regwindow(struct pt_regs *regs) { struct reg_window __user *rw; struct reg_window *rwk; struct reg_window r_w; mm_segment_t old_fs; if ((regs->tstate & TSTATE_PRIV) || !(test_thread_flag(TIF_32BIT))) { __asm__ __volatile__ ("flushw"); rw = (struct reg_window __user *) (regs->u_regs[14] + STACK_BIAS); rwk = (struct reg_window *) (regs->u_regs[14] + STACK_BIAS); if (!(regs->tstate & TSTATE_PRIV)) { old_fs = get_fs(); set_fs (USER_DS); if (copy_from_user (&r_w, rw, sizeof(r_w))) { set_fs (old_fs); return; } rwk = &r_w; set_fs (old_fs); } } else { show_regwindow32(regs); return; } printk("l0: %016lx l1: %016lx l2: %016lx l3: %016lx\n", rwk->locals[0], rwk->locals[1], rwk->locals[2], rwk->locals[3]); printk("l4: %016lx l5: %016lx l6: %016lx l7: %016lx\n", rwk->locals[4], rwk->locals[5], rwk->locals[6], rwk->locals[7]); printk("i0: %016lx i1: %016lx i2: %016lx i3: %016lx\n", rwk->ins[0], rwk->ins[1], rwk->ins[2], rwk->ins[3]); printk("i4: %016lx i5: %016lx i6: %016lx i7: %016lx\n", rwk->ins[4], rwk->ins[5], rwk->ins[6], rwk->ins[7]); if (regs->tstate & TSTATE_PRIV) printk("I7: <%pS>\n", (void *) rwk->ins[7]); } void show_regs(struct pt_regs *regs) { show_regs_print_info(KERN_DEFAULT); printk("TSTATE: %016lx TPC: %016lx TNPC: %016lx Y: %08x %s\n", regs->tstate, regs->tpc, regs->tnpc, regs->y, print_tainted()); printk("TPC: <%pS>\n", (void *) regs->tpc); printk("g0: %016lx g1: %016lx g2: %016lx g3: %016lx\n", regs->u_regs[0], regs->u_regs[1], regs->u_regs[2], regs->u_regs[3]); printk("g4: %016lx g5: %016lx g6: %016lx g7: %016lx\n", regs->u_regs[4], regs->u_regs[5], regs->u_regs[6], regs->u_regs[7]); printk("o0: %016lx o1: %016lx o2: %016lx o3: %016lx\n", regs->u_regs[8], regs->u_regs[9], regs->u_regs[10], regs->u_regs[11]); printk("o4: %016lx o5: %016lx sp: %016lx ret_pc: %016lx\n", regs->u_regs[12], regs->u_regs[13], regs->u_regs[14], regs->u_regs[15]); printk("RPC: <%pS>\n", (void *) regs->u_regs[15]); show_regwindow(regs); show_stack(current, (unsigned long *) regs->u_regs[UREG_FP]); } union global_cpu_snapshot global_cpu_snapshot[NR_CPUS]; static DEFINE_SPINLOCK(global_cpu_snapshot_lock); static void __global_reg_self(struct thread_info *tp, struct pt_regs *regs, int this_cpu) { struct global_reg_snapshot *rp; flushw_all(); rp = &global_cpu_snapshot[this_cpu].reg; rp->tstate = regs->tstate; rp->tpc = regs->tpc; rp->tnpc = regs->tnpc; rp->o7 = regs->u_regs[UREG_I7]; if (regs->tstate & TSTATE_PRIV) { struct reg_window *rw; rw = (struct reg_window *) (regs->u_regs[UREG_FP] + STACK_BIAS); if (kstack_valid(tp, (unsigned long) rw)) { rp->i7 = rw->ins[7]; rw = (struct reg_window *) (rw->ins[6] + STACK_BIAS); if (kstack_valid(tp, (unsigned long) rw)) rp->rpc = rw->ins[7]; } } else { rp->i7 = 0; rp->rpc = 0; } rp->thread = tp; } /* In order to avoid hangs we do not try to synchronize with the * global register dump client cpus. The last store they make is to * the thread pointer, so do a short poll waiting for that to become * non-NULL. */ static void __global_reg_poll(struct global_reg_snapshot *gp) { int limit = 0; while (!gp->thread && ++limit < 100) { barrier(); udelay(1); } } void arch_trigger_all_cpu_backtrace(bool include_self) { struct thread_info *tp = current_thread_info(); struct pt_regs *regs = get_irq_regs(); unsigned long flags; int this_cpu, cpu; if (!regs) regs = tp->kregs; spin_lock_irqsave(&global_cpu_snapshot_lock, flags); this_cpu = raw_smp_processor_id(); memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot)); if (include_self) __global_reg_self(tp, regs, this_cpu); smp_fetch_global_regs(); for_each_online_cpu(cpu) { struct global_reg_snapshot *gp; if (!include_self && cpu == this_cpu) continue; gp = &global_cpu_snapshot[cpu].reg; __global_reg_poll(gp); tp = gp->thread; printk("%c CPU[%3d]: TSTATE[%016lx] TPC[%016lx] TNPC[%016lx] TASK[%s:%d]\n", (cpu == this_cpu ? '*' : ' '), cpu, gp->tstate, gp->tpc, gp->tnpc, ((tp && tp->task) ? tp->task->comm : "NULL"), ((tp && tp->task) ? tp->task->pid : -1)); if (gp->tstate & TSTATE_PRIV) { printk(" TPC[%pS] O7[%pS] I7[%pS] RPC[%pS]\n", (void *) gp->tpc, (void *) gp->o7, (void *) gp->i7, (void *) gp->rpc); } else { printk(" TPC[%lx] O7[%lx] I7[%lx] RPC[%lx]\n", gp->tpc, gp->o7, gp->i7, gp->rpc); } } memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot)); spin_unlock_irqrestore(&global_cpu_snapshot_lock, flags); } #ifdef CONFIG_MAGIC_SYSRQ static void sysrq_handle_globreg(int key) { arch_trigger_all_cpu_backtrace(true); } static struct sysrq_key_op sparc_globalreg_op = { .handler = sysrq_handle_globreg, .help_msg = "global-regs(y)", .action_msg = "Show Global CPU Regs", }; static void __global_pmu_self(int this_cpu) { struct global_pmu_snapshot *pp; int i, num; if (!pcr_ops) return; pp = &global_cpu_snapshot[this_cpu].pmu; num = 1; if (tlb_type == hypervisor && sun4v_chip_type >= SUN4V_CHIP_NIAGARA4) num = 4; for (i = 0; i < num; i++) { pp->pcr[i] = pcr_ops->read_pcr(i); pp->pic[i] = pcr_ops->read_pic(i); } } static void __global_pmu_poll(struct global_pmu_snapshot *pp) { int limit = 0; while (!pp->pcr[0] && ++limit < 100) { barrier(); udelay(1); } } static void pmu_snapshot_all_cpus(void) { unsigned long flags; int this_cpu, cpu; spin_lock_irqsave(&global_cpu_snapshot_lock, flags); memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot)); this_cpu = raw_smp_processor_id(); __global_pmu_self(this_cpu); smp_fetch_global_pmu(); for_each_online_cpu(cpu) { struct global_pmu_snapshot *pp = &global_cpu_snapshot[cpu].pmu; __global_pmu_poll(pp); printk("%c CPU[%3d]: PCR[%08lx:%08lx:%08lx:%08lx] PIC[%08lx:%08lx:%08lx:%08lx]\n", (cpu == this_cpu ? '*' : ' '), cpu, pp->pcr[0], pp->pcr[1], pp->pcr[2], pp->pcr[3], pp->pic[0], pp->pic[1], pp->pic[2], pp->pic[3]); } memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot)); spin_unlock_irqrestore(&global_cpu_snapshot_lock, flags); } static void sysrq_handle_globpmu(int key) { pmu_snapshot_all_cpus(); } static struct sysrq_key_op sparc_globalpmu_op = { .handler = sysrq_handle_globpmu, .help_msg = "global-pmu(x)", .action_msg = "Show Global PMU Regs", }; static int __init sparc_sysrq_init(void) { int ret = register_sysrq_key('y', &sparc_globalreg_op); if (!ret) ret = register_sysrq_key('x', &sparc_globalpmu_op); return ret; } core_initcall(sparc_sysrq_init); #endif unsigned long thread_saved_pc(struct task_struct *tsk) { struct thread_info *ti = task_thread_info(tsk); unsigned long ret = 0xdeadbeefUL; if (ti && ti->ksp) { unsigned long *sp; sp = (unsigned long *)(ti->ksp + STACK_BIAS); if (((unsigned long)sp & (sizeof(long) - 1)) == 0UL && sp[14]) { unsigned long *fp; fp = (unsigned long *)(sp[14] + STACK_BIAS); if (((unsigned long)fp & (sizeof(long) - 1)) == 0UL) ret = fp[15]; } } return ret; } /* Free current thread data structures etc.. */ void exit_thread(void) { struct thread_info *t = current_thread_info(); if (t->utraps) { if (t->utraps[0] < 2) kfree (t->utraps); else t->utraps[0]--; } } void flush_thread(void) { struct thread_info *t = current_thread_info(); struct mm_struct *mm; mm = t->task->mm; if (mm) tsb_context_switch(mm); set_thread_wsaved(0); /* Clear FPU register state. */ t->fpsaved[0] = 0; } /* It's a bit more tricky when 64-bit tasks are involved... */ static unsigned long clone_stackframe(unsigned long csp, unsigned long psp) { bool stack_64bit = test_thread_64bit_stack(psp); unsigned long fp, distance, rval; if (stack_64bit) { csp += STACK_BIAS; psp += STACK_BIAS; __get_user(fp, &(((struct reg_window __user *)psp)->ins[6])); fp += STACK_BIAS; if (test_thread_flag(TIF_32BIT)) fp &= 0xffffffff; } else __get_user(fp, &(((struct reg_window32 __user *)psp)->ins[6])); /* Now align the stack as this is mandatory in the Sparc ABI * due to how register windows work. This hides the * restriction from thread libraries etc. */ csp &= ~15UL; distance = fp - psp; rval = (csp - distance); if (copy_in_user((void __user *) rval, (void __user *) psp, distance)) rval = 0; else if (!stack_64bit) { if (put_user(((u32)csp), &(((struct reg_window32 __user *)rval)->ins[6]))) rval = 0; } else { if (put_user(((u64)csp - STACK_BIAS), &(((struct reg_window __user *)rval)->ins[6]))) rval = 0; else rval = rval - STACK_BIAS; } return rval; } /* Standard stuff. */ static inline void shift_window_buffer(int first_win, int last_win, struct thread_info *t) { int i; for (i = first_win; i < last_win; i++) { t->rwbuf_stkptrs[i] = t->rwbuf_stkptrs[i+1]; memcpy(&t->reg_window[i], &t->reg_window[i+1], sizeof(struct reg_window)); } } void synchronize_user_stack(void) { struct thread_info *t = current_thread_info(); unsigned long window; flush_user_windows(); if ((window = get_thread_wsaved()) != 0) { window -= 1; do { struct reg_window *rwin = &t->reg_window[window]; int winsize = sizeof(struct reg_window); unsigned long sp; sp = t->rwbuf_stkptrs[window]; if (test_thread_64bit_stack(sp)) sp += STACK_BIAS; else winsize = sizeof(struct reg_window32); if (!copy_to_user((char __user *)sp, rwin, winsize)) { shift_window_buffer(window, get_thread_wsaved() - 1, t); set_thread_wsaved(get_thread_wsaved() - 1); } } while (window--); } } static void stack_unaligned(unsigned long sp) { siginfo_t info; info.si_signo = SIGBUS; info.si_errno = 0; info.si_code = BUS_ADRALN; info.si_addr = (void __user *) sp; info.si_trapno = 0; force_sig_info(SIGBUS, &info, current); } void fault_in_user_windows(void) { struct thread_info *t = current_thread_info(); unsigned long window; flush_user_windows(); window = get_thread_wsaved(); if (likely(window != 0)) { window -= 1; do { struct reg_window *rwin = &t->reg_window[window]; int winsize = sizeof(struct reg_window); unsigned long sp; sp = t->rwbuf_stkptrs[window]; if (test_thread_64bit_stack(sp)) sp += STACK_BIAS; else winsize = sizeof(struct reg_window32); if (unlikely(sp & 0x7UL)) stack_unaligned(sp); if (unlikely(copy_to_user((char __user *)sp, rwin, winsize))) goto barf; } while (window--); } set_thread_wsaved(0); return; barf: set_thread_wsaved(window + 1); user_exit(); do_exit(SIGILL); } asmlinkage long sparc_do_fork(unsigned long clone_flags, unsigned long stack_start, struct pt_regs *regs, unsigned long stack_size) { int __user *parent_tid_ptr, *child_tid_ptr; unsigned long orig_i1 = regs->u_regs[UREG_I1]; long ret; #ifdef CONFIG_COMPAT if (test_thread_flag(TIF_32BIT)) { parent_tid_ptr = compat_ptr(regs->u_regs[UREG_I2]); child_tid_ptr = compat_ptr(regs->u_regs[UREG_I4]); } else #endif { parent_tid_ptr = (int __user *) regs->u_regs[UREG_I2]; child_tid_ptr = (int __user *) regs->u_regs[UREG_I4]; } ret = do_fork(clone_flags, stack_start, stack_size, parent_tid_ptr, child_tid_ptr); /* If we get an error and potentially restart the system * call, we're screwed because copy_thread() clobbered * the parent's %o1. So detect that case and restore it * here. */ if ((unsigned long)ret >= -ERESTART_RESTARTBLOCK) regs->u_regs[UREG_I1] = orig_i1; return ret; } /* Copy a Sparc thread. The fork() return value conventions * under SunOS are nothing short of bletcherous: * Parent --> %o0 == childs pid, %o1 == 0 * Child --> %o0 == parents pid, %o1 == 1 */ int copy_thread(unsigned long clone_flags, unsigned long sp, unsigned long arg, struct task_struct *p) { struct thread_info *t = task_thread_info(p); struct pt_regs *regs = current_pt_regs(); struct sparc_stackf *parent_sf; unsigned long child_stack_sz; char *child_trap_frame; /* Calculate offset to stack_frame & pt_regs */ child_stack_sz = (STACKFRAME_SZ + TRACEREG_SZ); child_trap_frame = (task_stack_page(p) + (THREAD_SIZE - child_stack_sz)); t->new_child = 1; t->ksp = ((unsigned long) child_trap_frame) - STACK_BIAS; t->kregs = (struct pt_regs *) (child_trap_frame + sizeof(struct sparc_stackf)); t->fpsaved[0] = 0; if (unlikely(p->flags & PF_KTHREAD)) { memset(child_trap_frame, 0, child_stack_sz); __thread_flag_byte_ptr(t)[TI_FLAG_BYTE_CWP] = (current_pt_regs()->tstate + 1) & TSTATE_CWP; t->current_ds = ASI_P; t->kregs->u_regs[UREG_G1] = sp; /* function */ t->kregs->u_regs[UREG_G2] = arg; return 0; } parent_sf = ((struct sparc_stackf *) regs) - 1; memcpy(child_trap_frame, parent_sf, child_stack_sz); if (t->flags & _TIF_32BIT) { sp &= 0x00000000ffffffffUL; regs->u_regs[UREG_FP] &= 0x00000000ffffffffUL; } t->kregs->u_regs[UREG_FP] = sp; __thread_flag_byte_ptr(t)[TI_FLAG_BYTE_CWP] = (regs->tstate + 1) & TSTATE_CWP; t->current_ds = ASI_AIUS; if (sp != regs->u_regs[UREG_FP]) { unsigned long csp; csp = clone_stackframe(sp, regs->u_regs[UREG_FP]); if (!csp) return -EFAULT; t->kregs->u_regs[UREG_FP] = csp; } if (t->utraps) t->utraps[0]++; /* Set the return value for the child. */ t->kregs->u_regs[UREG_I0] = current->pid; t->kregs->u_regs[UREG_I1] = 1; /* Set the second return value for the parent. */ regs->u_regs[UREG_I1] = 0; if (clone_flags & CLONE_SETTLS) t->kregs->u_regs[UREG_G7] = regs->u_regs[UREG_I3]; return 0; } typedef struct { union { unsigned int pr_regs[32]; unsigned long pr_dregs[16]; } pr_fr; unsigned int __unused; unsigned int pr_fsr; unsigned char pr_qcnt; unsigned char pr_q_entrysize; unsigned char pr_en; unsigned int pr_q[64]; } elf_fpregset_t32; /* * fill in the fpu structure for a core dump. */ int dump_fpu (struct pt_regs * regs, elf_fpregset_t * fpregs) { unsigned long *kfpregs = current_thread_info()->fpregs; unsigned long fprs = current_thread_info()->fpsaved[0]; if (test_thread_flag(TIF_32BIT)) { elf_fpregset_t32 *fpregs32 = (elf_fpregset_t32 *)fpregs; if (fprs & FPRS_DL) memcpy(&fpregs32->pr_fr.pr_regs[0], kfpregs, sizeof(unsigned int) * 32); else memset(&fpregs32->pr_fr.pr_regs[0], 0, sizeof(unsigned int) * 32); fpregs32->pr_qcnt = 0; fpregs32->pr_q_entrysize = 8; memset(&fpregs32->pr_q[0], 0, (sizeof(unsigned int) * 64)); if (fprs & FPRS_FEF) { fpregs32->pr_fsr = (unsigned int) current_thread_info()->xfsr[0]; fpregs32->pr_en = 1; } else { fpregs32->pr_fsr = 0; fpregs32->pr_en = 0; } } else { if(fprs & FPRS_DL) memcpy(&fpregs->pr_regs[0], kfpregs, sizeof(unsigned int) * 32); else memset(&fpregs->pr_regs[0], 0, sizeof(unsigned int) * 32); if(fprs & FPRS_DU) memcpy(&fpregs->pr_regs[16], kfpregs+16, sizeof(unsigned int) * 32); else memset(&fpregs->pr_regs[16], 0, sizeof(unsigned int) * 32); if(fprs & FPRS_FEF) { fpregs->pr_fsr = current_thread_info()->xfsr[0]; fpregs->pr_gsr = current_thread_info()->gsr[0]; } else { fpregs->pr_fsr = fpregs->pr_gsr = 0; } fpregs->pr_fprs = fprs; } return 1; } EXPORT_SYMBOL(dump_fpu); unsigned long get_wchan(struct task_struct *task) { unsigned long pc, fp, bias = 0; struct thread_info *tp; struct reg_window *rw; unsigned long ret = 0; int count = 0; if (!task || task == current || task->state == TASK_RUNNING) goto out; tp = task_thread_info(task); bias = STACK_BIAS; fp = task_thread_info(task)->ksp + bias; do { if (!kstack_valid(tp, fp)) break; rw = (struct reg_window *) fp; pc = rw->ins[7]; if (!in_sched_functions(pc)) { ret = pc; goto out; } fp = rw->ins[6] + bias; } while (++count < 16); out: return ret; }