/* * Procedures for creating, accessing and interpreting the device tree. * * Paul Mackerras August 1996. * Copyright (C) 1996-2005 Paul Mackerras. * * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner. * {engebret|bergner}@us.ibm.com * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #undef DEBUG #include <stdarg.h> #include <linux/kernel.h> #include <linux/string.h> #include <linux/init.h> #include <linux/threads.h> #include <linux/spinlock.h> #include <linux/types.h> #include <linux/pci.h> #include <linux/stringify.h> #include <linux/delay.h> #include <linux/initrd.h> #include <linux/bitops.h> #include <linux/export.h> #include <linux/kexec.h> #include <linux/irq.h> #include <linux/memblock.h> #include <linux/of.h> #include <linux/of_fdt.h> #include <linux/libfdt.h> #include <asm/prom.h> #include <asm/rtas.h> #include <asm/page.h> #include <asm/processor.h> #include <asm/irq.h> #include <asm/io.h> #include <asm/kdump.h> #include <asm/smp.h> #include <asm/mmu.h> #include <asm/paca.h> #include <asm/pgtable.h> #include <asm/pci.h> #include <asm/iommu.h> #include <asm/btext.h> #include <asm/sections.h> #include <asm/machdep.h> #include <asm/pci-bridge.h> #include <asm/kexec.h> #include <asm/opal.h> #include <asm/fadump.h> #include <asm/debug.h> #include <mm/mmu_decl.h> #ifdef DEBUG #define DBG(fmt...) printk(KERN_ERR fmt) #else #define DBG(fmt...) #endif #ifdef CONFIG_PPC64 int __initdata iommu_is_off; int __initdata iommu_force_on; unsigned long tce_alloc_start, tce_alloc_end; u64 ppc64_rma_size; #endif static phys_addr_t first_memblock_size; static int __initdata boot_cpu_count; static int __init early_parse_mem(char *p) { if (!p) return 1; memory_limit = PAGE_ALIGN(memparse(p, &p)); DBG("memory limit = 0x%llx\n", memory_limit); return 0; } early_param("mem", early_parse_mem); /* * overlaps_initrd - check for overlap with page aligned extension of * initrd. */ static inline int overlaps_initrd(unsigned long start, unsigned long size) { #ifdef CONFIG_BLK_DEV_INITRD if (!initrd_start) return 0; return (start + size) > _ALIGN_DOWN(initrd_start, PAGE_SIZE) && start <= _ALIGN_UP(initrd_end, PAGE_SIZE); #else return 0; #endif } /** * move_device_tree - move tree to an unused area, if needed. * * The device tree may be allocated beyond our memory limit, or inside the * crash kernel region for kdump, or within the page aligned range of initrd. * If so, move it out of the way. */ static void __init move_device_tree(void) { unsigned long start, size; void *p; DBG("-> move_device_tree\n"); start = __pa(initial_boot_params); size = fdt_totalsize(initial_boot_params); if ((memory_limit && (start + size) > PHYSICAL_START + memory_limit) || overlaps_crashkernel(start, size) || overlaps_initrd(start, size)) { p = __va(memblock_alloc(size, PAGE_SIZE)); memcpy(p, initial_boot_params, size); initial_boot_params = p; DBG("Moved device tree to 0x%p\n", p); } DBG("<- move_device_tree\n"); } /* * ibm,pa-features is a per-cpu property that contains a string of * attribute descriptors, each of which has a 2 byte header plus up * to 254 bytes worth of processor attribute bits. First header * byte specifies the number of bytes following the header. * Second header byte is an "attribute-specifier" type, of which * zero is the only currently-defined value. * Implementation: Pass in the byte and bit offset for the feature * that we are interested in. The function will return -1 if the * pa-features property is missing, or a 1/0 to indicate if the feature * is supported/not supported. Note that the bit numbers are * big-endian to match the definition in PAPR. */ static struct ibm_pa_feature { unsigned long cpu_features; /* CPU_FTR_xxx bit */ unsigned long mmu_features; /* MMU_FTR_xxx bit */ unsigned int cpu_user_ftrs; /* PPC_FEATURE_xxx bit */ unsigned char pabyte; /* byte number in ibm,pa-features */ unsigned char pabit; /* bit number (big-endian) */ unsigned char invert; /* if 1, pa bit set => clear feature */ } ibm_pa_features[] __initdata = { {0, 0, PPC_FEATURE_HAS_MMU, 0, 0, 0}, {0, 0, PPC_FEATURE_HAS_FPU, 0, 1, 0}, {CPU_FTR_CTRL, 0, 0, 0, 3, 0}, {CPU_FTR_NOEXECUTE, 0, 0, 0, 6, 0}, {CPU_FTR_NODSISRALIGN, 0, 0, 1, 1, 1}, {0, MMU_FTR_CI_LARGE_PAGE, 0, 1, 2, 0}, {CPU_FTR_REAL_LE, PPC_FEATURE_TRUE_LE, 5, 0, 0}, }; static void __init scan_features(unsigned long node, const unsigned char *ftrs, unsigned long tablelen, struct ibm_pa_feature *fp, unsigned long ft_size) { unsigned long i, len, bit; /* find descriptor with type == 0 */ for (;;) { if (tablelen < 3) return; len = 2 + ftrs[0]; if (tablelen < len) return; /* descriptor 0 not found */ if (ftrs[1] == 0) break; tablelen -= len; ftrs += len; } /* loop over bits we know about */ for (i = 0; i < ft_size; ++i, ++fp) { if (fp->pabyte >= ftrs[0]) continue; bit = (ftrs[2 + fp->pabyte] >> (7 - fp->pabit)) & 1; if (bit ^ fp->invert) { cur_cpu_spec->cpu_features |= fp->cpu_features; cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftrs; cur_cpu_spec->mmu_features |= fp->mmu_features; } else { cur_cpu_spec->cpu_features &= ~fp->cpu_features; cur_cpu_spec->cpu_user_features &= ~fp->cpu_user_ftrs; cur_cpu_spec->mmu_features &= ~fp->mmu_features; } } } static void __init check_cpu_pa_features(unsigned long node) { const unsigned char *pa_ftrs; int tablelen; pa_ftrs = of_get_flat_dt_prop(node, "ibm,pa-features", &tablelen); if (pa_ftrs == NULL) return; scan_features(node, pa_ftrs, tablelen, ibm_pa_features, ARRAY_SIZE(ibm_pa_features)); } #ifdef CONFIG_PPC_STD_MMU_64 static void __init check_cpu_slb_size(unsigned long node) { const __be32 *slb_size_ptr; slb_size_ptr = of_get_flat_dt_prop(node, "slb-size", NULL); if (slb_size_ptr != NULL) { mmu_slb_size = be32_to_cpup(slb_size_ptr); return; } slb_size_ptr = of_get_flat_dt_prop(node, "ibm,slb-size", NULL); if (slb_size_ptr != NULL) { mmu_slb_size = be32_to_cpup(slb_size_ptr); } } #else #define check_cpu_slb_size(node) do { } while(0) #endif static struct feature_property { const char *name; u32 min_value; unsigned long cpu_feature; unsigned long cpu_user_ftr; } feature_properties[] __initdata = { #ifdef CONFIG_ALTIVEC {"altivec", 0, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC}, {"ibm,vmx", 1, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC}, #endif /* CONFIG_ALTIVEC */ #ifdef CONFIG_VSX /* Yes, this _really_ is ibm,vmx == 2 to enable VSX */ {"ibm,vmx", 2, CPU_FTR_VSX, PPC_FEATURE_HAS_VSX}, #endif /* CONFIG_VSX */ #ifdef CONFIG_PPC64 {"ibm,dfp", 1, 0, PPC_FEATURE_HAS_DFP}, {"ibm,purr", 1, CPU_FTR_PURR, 0}, {"ibm,spurr", 1, CPU_FTR_SPURR, 0}, #endif /* CONFIG_PPC64 */ }; #if defined(CONFIG_44x) && defined(CONFIG_PPC_FPU) static inline void identical_pvr_fixup(unsigned long node) { unsigned int pvr; const char *model = of_get_flat_dt_prop(node, "model", NULL); /* * Since 440GR(x)/440EP(x) processors have the same pvr, * we check the node path and set bit 28 in the cur_cpu_spec * pvr for EP(x) processor version. This bit is always 0 in * the "real" pvr. Then we call identify_cpu again with * the new logical pvr to enable FPU support. */ if (model && strstr(model, "440EP")) { pvr = cur_cpu_spec->pvr_value | 0x8; identify_cpu(0, pvr); DBG("Using logical pvr %x for %s\n", pvr, model); } } #else #define identical_pvr_fixup(node) do { } while(0) #endif static void __init check_cpu_feature_properties(unsigned long node) { unsigned long i; struct feature_property *fp = feature_properties; const __be32 *prop; for (i = 0; i < ARRAY_SIZE(feature_properties); ++i, ++fp) { prop = of_get_flat_dt_prop(node, fp->name, NULL); if (prop && be32_to_cpup(prop) >= fp->min_value) { cur_cpu_spec->cpu_features |= fp->cpu_feature; cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftr; } } } static int __init early_init_dt_scan_cpus(unsigned long node, const char *uname, int depth, void *data) { const char *type = of_get_flat_dt_prop(node, "device_type", NULL); const __be32 *prop; const __be32 *intserv; int i, nthreads; int len; int found = -1; int found_thread = 0; /* We are scanning "cpu" nodes only */ if (type == NULL || strcmp(type, "cpu") != 0) return 0; /* Get physical cpuid */ intserv = of_get_flat_dt_prop(node, "ibm,ppc-interrupt-server#s", &len); if (!intserv) intserv = of_get_flat_dt_prop(node, "reg", &len); nthreads = len / sizeof(int); /* * Now see if any of these threads match our boot cpu. * NOTE: This must match the parsing done in smp_setup_cpu_maps. */ for (i = 0; i < nthreads; i++) { /* * version 2 of the kexec param format adds the phys cpuid of * booted proc. */ if (fdt_version(initial_boot_params) >= 2) { if (be32_to_cpu(intserv[i]) == fdt_boot_cpuid_phys(initial_boot_params)) { found = boot_cpu_count; found_thread = i; } } else { /* * Check if it's the boot-cpu, set it's hw index now, * unfortunately this format did not support booting * off secondary threads. */ if (of_get_flat_dt_prop(node, "linux,boot-cpu", NULL) != NULL) found = boot_cpu_count; } #ifdef CONFIG_SMP /* logical cpu id is always 0 on UP kernels */ boot_cpu_count++; #endif } /* Not the boot CPU */ if (found < 0) return 0; DBG("boot cpu: logical %d physical %d\n", found, be32_to_cpu(intserv[found_thread])); boot_cpuid = found; set_hard_smp_processor_id(found, be32_to_cpu(intserv[found_thread])); /* * PAPR defines "logical" PVR values for cpus that * meet various levels of the architecture: * 0x0f000001 Architecture version 2.04 * 0x0f000002 Architecture version 2.05 * If the cpu-version property in the cpu node contains * such a value, we call identify_cpu again with the * logical PVR value in order to use the cpu feature * bits appropriate for the architecture level. * * A POWER6 partition in "POWER6 architected" mode * uses the 0x0f000002 PVR value; in POWER5+ mode * it uses 0x0f000001. */ prop = of_get_flat_dt_prop(node, "cpu-version", NULL); if (prop && (be32_to_cpup(prop) & 0xff000000) == 0x0f000000) identify_cpu(0, be32_to_cpup(prop)); identical_pvr_fixup(node); check_cpu_feature_properties(node); check_cpu_pa_features(node); check_cpu_slb_size(node); #ifdef CONFIG_PPC64 if (nthreads > 1) cur_cpu_spec->cpu_features |= CPU_FTR_SMT; else cur_cpu_spec->cpu_features &= ~CPU_FTR_SMT; #endif return 0; } static int __init early_init_dt_scan_chosen_ppc(unsigned long node, const char *uname, int depth, void *data) { const unsigned long *lprop; /* All these set by kernel, so no need to convert endian */ /* Use common scan routine to determine if this is the chosen node */ if (early_init_dt_scan_chosen(node, uname, depth, data) == 0) return 0; #ifdef CONFIG_PPC64 /* check if iommu is forced on or off */ if (of_get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL) iommu_is_off = 1; if (of_get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL) iommu_force_on = 1; #endif /* mem=x on the command line is the preferred mechanism */ lprop = of_get_flat_dt_prop(node, "linux,memory-limit", NULL); if (lprop) memory_limit = *lprop; #ifdef CONFIG_PPC64 lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-start", NULL); if (lprop) tce_alloc_start = *lprop; lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-end", NULL); if (lprop) tce_alloc_end = *lprop; #endif #ifdef CONFIG_KEXEC lprop = of_get_flat_dt_prop(node, "linux,crashkernel-base", NULL); if (lprop) crashk_res.start = *lprop; lprop = of_get_flat_dt_prop(node, "linux,crashkernel-size", NULL); if (lprop) crashk_res.end = crashk_res.start + *lprop - 1; #endif /* break now */ return 1; } #ifdef CONFIG_PPC_PSERIES /* * Interpret the ibm,dynamic-memory property in the * /ibm,dynamic-reconfiguration-memory node. * This contains a list of memory blocks along with NUMA affinity * information. */ static int __init early_init_dt_scan_drconf_memory(unsigned long node) { const __be32 *dm, *ls, *usm; int l; unsigned long n, flags; u64 base, size, memblock_size; unsigned int is_kexec_kdump = 0, rngs; ls = of_get_flat_dt_prop(node, "ibm,lmb-size", &l); if (ls == NULL || l < dt_root_size_cells * sizeof(__be32)) return 0; memblock_size = dt_mem_next_cell(dt_root_size_cells, &ls); dm = of_get_flat_dt_prop(node, "ibm,dynamic-memory", &l); if (dm == NULL || l < sizeof(__be32)) return 0; n = of_read_number(dm++, 1); /* number of entries */ if (l < (n * (dt_root_addr_cells + 4) + 1) * sizeof(__be32)) return 0; /* check if this is a kexec/kdump kernel. */ usm = of_get_flat_dt_prop(node, "linux,drconf-usable-memory", &l); if (usm != NULL) is_kexec_kdump = 1; for (; n != 0; --n) { base = dt_mem_next_cell(dt_root_addr_cells, &dm); flags = of_read_number(&dm[3], 1); /* skip DRC index, pad, assoc. list index, flags */ dm += 4; /* skip this block if the reserved bit is set in flags (0x80) or if the block is not assigned to this partition (0x8) */ if ((flags & 0x80) || !(flags & 0x8)) continue; size = memblock_size; rngs = 1; if (is_kexec_kdump) { /* * For each memblock in ibm,dynamic-memory, a corresponding * entry in linux,drconf-usable-memory property contains * a counter 'p' followed by 'p' (base, size) duple. * Now read the counter from * linux,drconf-usable-memory property */ rngs = dt_mem_next_cell(dt_root_size_cells, &usm); if (!rngs) /* there are no (base, size) duple */ continue; } do { if (is_kexec_kdump) { base = dt_mem_next_cell(dt_root_addr_cells, &usm); size = dt_mem_next_cell(dt_root_size_cells, &usm); } if (iommu_is_off) { if (base >= 0x80000000ul) continue; if ((base + size) > 0x80000000ul) size = 0x80000000ul - base; } memblock_add(base, size); } while (--rngs); } memblock_dump_all(); return 0; } #else #define early_init_dt_scan_drconf_memory(node) 0 #endif /* CONFIG_PPC_PSERIES */ static int __init early_init_dt_scan_memory_ppc(unsigned long node, const char *uname, int depth, void *data) { if (depth == 1 && strcmp(uname, "ibm,dynamic-reconfiguration-memory") == 0) return early_init_dt_scan_drconf_memory(node); return early_init_dt_scan_memory(node, uname, depth, data); } /* * For a relocatable kernel, we need to get the memstart_addr first, * then use it to calculate the virtual kernel start address. This has * to happen at a very early stage (before machine_init). In this case, * we just want to get the memstart_address and would not like to mess the * memblock at this stage. So introduce a variable to skip the memblock_add() * for this reason. */ #ifdef CONFIG_RELOCATABLE static int add_mem_to_memblock = 1; #else #define add_mem_to_memblock 1 #endif void __init early_init_dt_add_memory_arch(u64 base, u64 size) { #ifdef CONFIG_PPC64 if (iommu_is_off) { if (base >= 0x80000000ul) return; if ((base + size) > 0x80000000ul) size = 0x80000000ul - base; } #endif /* Keep track of the beginning of memory -and- the size of * the very first block in the device-tree as it represents * the RMA on ppc64 server */ if (base < memstart_addr) { memstart_addr = base; first_memblock_size = size; } /* Add the chunk to the MEMBLOCK list */ if (add_mem_to_memblock) memblock_add(base, size); } static void __init early_reserve_mem_dt(void) { unsigned long i, dt_root; int len; const __be32 *prop; early_init_fdt_scan_reserved_mem(); dt_root = of_get_flat_dt_root(); prop = of_get_flat_dt_prop(dt_root, "reserved-ranges", &len); if (!prop) return; DBG("Found new-style reserved-ranges\n"); /* Each reserved range is an (address,size) pair, 2 cells each, * totalling 4 cells per range. */ for (i = 0; i < len / (sizeof(*prop) * 4); i++) { u64 base, size; base = of_read_number(prop + (i * 4) + 0, 2); size = of_read_number(prop + (i * 4) + 2, 2); if (size) { DBG("reserving: %llx -> %llx\n", base, size); memblock_reserve(base, size); } } } static void __init early_reserve_mem(void) { __be64 *reserve_map; reserve_map = (__be64 *)(((unsigned long)initial_boot_params) + fdt_off_mem_rsvmap(initial_boot_params)); /* Look for the new "reserved-regions" property in the DT */ early_reserve_mem_dt(); #ifdef CONFIG_BLK_DEV_INITRD /* Then reserve the initrd, if any */ if (initrd_start && (initrd_end > initrd_start)) { memblock_reserve(_ALIGN_DOWN(__pa(initrd_start), PAGE_SIZE), _ALIGN_UP(initrd_end, PAGE_SIZE) - _ALIGN_DOWN(initrd_start, PAGE_SIZE)); } #endif /* CONFIG_BLK_DEV_INITRD */ #ifdef CONFIG_PPC32 /* * Handle the case where we might be booting from an old kexec * image that setup the mem_rsvmap as pairs of 32-bit values */ if (be64_to_cpup(reserve_map) > 0xffffffffull) { u32 base_32, size_32; __be32 *reserve_map_32 = (__be32 *)reserve_map; DBG("Found old 32-bit reserve map\n"); while (1) { base_32 = be32_to_cpup(reserve_map_32++); size_32 = be32_to_cpup(reserve_map_32++); if (size_32 == 0) break; DBG("reserving: %x -> %x\n", base_32, size_32); memblock_reserve(base_32, size_32); } return; } #endif } void __init early_init_devtree(void *params) { phys_addr_t limit; DBG(" -> early_init_devtree(%p)\n", params); /* Too early to BUG_ON(), do it by hand */ if (!early_init_dt_verify(params)) panic("BUG: Failed verifying flat device tree, bad version?"); /* Setup flat device-tree pointer */ initial_boot_params = params; #ifdef CONFIG_PPC_RTAS /* Some machines might need RTAS info for debugging, grab it now. */ of_scan_flat_dt(early_init_dt_scan_rtas, NULL); #endif #ifdef CONFIG_PPC_POWERNV /* Some machines might need OPAL info for debugging, grab it now. */ of_scan_flat_dt(early_init_dt_scan_opal, NULL); #endif #ifdef CONFIG_FA_DUMP /* scan tree to see if dump is active during last boot */ of_scan_flat_dt(early_init_dt_scan_fw_dump, NULL); #endif /* Retrieve various informations from the /chosen node of the * device-tree, including the platform type, initrd location and * size, TCE reserve, and more ... */ of_scan_flat_dt(early_init_dt_scan_chosen_ppc, boot_command_line); /* Scan memory nodes and rebuild MEMBLOCKs */ of_scan_flat_dt(early_init_dt_scan_root, NULL); of_scan_flat_dt(early_init_dt_scan_memory_ppc, NULL); parse_early_param(); /* make sure we've parsed cmdline for mem= before this */ if (memory_limit) first_memblock_size = min_t(u64, first_memblock_size, memory_limit); setup_initial_memory_limit(memstart_addr, first_memblock_size); /* Reserve MEMBLOCK regions used by kernel, initrd, dt, etc... */ memblock_reserve(PHYSICAL_START, __pa(klimit) - PHYSICAL_START); /* If relocatable, reserve first 32k for interrupt vectors etc. */ if (PHYSICAL_START > MEMORY_START) memblock_reserve(MEMORY_START, 0x8000); reserve_kdump_trampoline(); #ifdef CONFIG_FA_DUMP /* * If we fail to reserve memory for firmware-assisted dump then * fallback to kexec based kdump. */ if (fadump_reserve_mem() == 0) #endif reserve_crashkernel(); early_reserve_mem(); /* * Ensure that total memory size is page-aligned, because otherwise * mark_bootmem() gets upset. */ limit = ALIGN(memory_limit ?: memblock_phys_mem_size(), PAGE_SIZE); memblock_enforce_memory_limit(limit); memblock_allow_resize(); memblock_dump_all(); DBG("Phys. mem: %llx\n", memblock_phys_mem_size()); /* We may need to relocate the flat tree, do it now. * FIXME .. and the initrd too? */ move_device_tree(); allocate_pacas(); DBG("Scanning CPUs ...\n"); /* Retrieve CPU related informations from the flat tree * (altivec support, boot CPU ID, ...) */ of_scan_flat_dt(early_init_dt_scan_cpus, NULL); if (boot_cpuid < 0) { printk("Failed to indentify boot CPU !\n"); BUG(); } #if defined(CONFIG_SMP) && defined(CONFIG_PPC64) /* We'll later wait for secondaries to check in; there are * NCPUS-1 non-boot CPUs :-) */ spinning_secondaries = boot_cpu_count - 1; #endif #ifdef CONFIG_PPC_POWERNV /* Scan and build the list of machine check recoverable ranges */ of_scan_flat_dt(early_init_dt_scan_recoverable_ranges, NULL); #endif DBG(" <- early_init_devtree()\n"); } #ifdef CONFIG_RELOCATABLE /* * This function run before early_init_devtree, so we have to init * initial_boot_params. */ void __init early_get_first_memblock_info(void *params, phys_addr_t *size) { /* Setup flat device-tree pointer */ initial_boot_params = params; /* * Scan the memory nodes and set add_mem_to_memblock to 0 to avoid * mess the memblock. */ add_mem_to_memblock = 0; of_scan_flat_dt(early_init_dt_scan_root, NULL); of_scan_flat_dt(early_init_dt_scan_memory_ppc, NULL); add_mem_to_memblock = 1; if (size) *size = first_memblock_size; } #endif /******* * * New implementation of the OF "find" APIs, return a refcounted * object, call of_node_put() when done. The device tree and list * are protected by a rw_lock. * * Note that property management will need some locking as well, * this isn't dealt with yet. * *******/ /** * of_get_ibm_chip_id - Returns the IBM "chip-id" of a device * @np: device node of the device * * This looks for a property "ibm,chip-id" in the node or any * of its parents and returns its content, or -1 if it cannot * be found. */ int of_get_ibm_chip_id(struct device_node *np) { of_node_get(np); while(np) { struct device_node *old = np; const __be32 *prop; prop = of_get_property(np, "ibm,chip-id", NULL); if (prop) { of_node_put(np); return be32_to_cpup(prop); } np = of_get_parent(np); of_node_put(old); } return -1; } /** * cpu_to_chip_id - Return the cpus chip-id * @cpu: The logical cpu number. * * Return the value of the ibm,chip-id property corresponding to the given * logical cpu number. If the chip-id can not be found, returns -1. */ int cpu_to_chip_id(int cpu) { struct device_node *np; np = of_get_cpu_node(cpu, NULL); if (!np) return -1; of_node_put(np); return of_get_ibm_chip_id(np); } EXPORT_SYMBOL(cpu_to_chip_id); bool arch_match_cpu_phys_id(int cpu, u64 phys_id) { return (int)phys_id == get_hard_smp_processor_id(cpu); }