#ifndef _ASM_POWERPC_PROCESSOR_H #define _ASM_POWERPC_PROCESSOR_H /* * Copyright (C) 2001 PPC 64 Team, IBM Corp * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #include <asm/reg.h> #ifdef CONFIG_VSX #define TS_FPRWIDTH 2 #ifdef __BIG_ENDIAN__ #define TS_FPROFFSET 0 #define TS_VSRLOWOFFSET 1 #else #define TS_FPROFFSET 1 #define TS_VSRLOWOFFSET 0 #endif #else #define TS_FPRWIDTH 1 #define TS_FPROFFSET 0 #endif #ifdef CONFIG_PPC64 /* Default SMT priority is set to 3. Use 11- 13bits to save priority. */ #define PPR_PRIORITY 3 #ifdef __ASSEMBLY__ #define INIT_PPR (PPR_PRIORITY << 50) #else #define INIT_PPR ((u64)PPR_PRIORITY << 50) #endif /* __ASSEMBLY__ */ #endif /* CONFIG_PPC64 */ #ifndef __ASSEMBLY__ #include <linux/compiler.h> #include <linux/cache.h> #include <asm/ptrace.h> #include <asm/types.h> #include <asm/hw_breakpoint.h> /* We do _not_ want to define new machine types at all, those must die * in favor of using the device-tree * -- BenH. */ /* PREP sub-platform types. Unused */ #define _PREP_Motorola 0x01 /* motorola prep */ #define _PREP_Firm 0x02 /* firmworks prep */ #define _PREP_IBM 0x00 /* ibm prep */ #define _PREP_Bull 0x03 /* bull prep */ /* CHRP sub-platform types. These are arbitrary */ #define _CHRP_Motorola 0x04 /* motorola chrp, the cobra */ #define _CHRP_IBM 0x05 /* IBM chrp, the longtrail and longtrail 2 */ #define _CHRP_Pegasos 0x06 /* Genesi/bplan's Pegasos and Pegasos2 */ #define _CHRP_briq 0x07 /* TotalImpact's briQ */ #if defined(__KERNEL__) && defined(CONFIG_PPC32) extern int _chrp_type; #endif /* defined(__KERNEL__) && defined(CONFIG_PPC32) */ /* * Default implementation of macro that returns current * instruction pointer ("program counter"). */ #define current_text_addr() ({ __label__ _l; _l: &&_l;}) /* Macros for adjusting thread priority (hardware multi-threading) */ #define HMT_very_low() asm volatile("or 31,31,31 # very low priority") #define HMT_low() asm volatile("or 1,1,1 # low priority") #define HMT_medium_low() asm volatile("or 6,6,6 # medium low priority") #define HMT_medium() asm volatile("or 2,2,2 # medium priority") #define HMT_medium_high() asm volatile("or 5,5,5 # medium high priority") #define HMT_high() asm volatile("or 3,3,3 # high priority") #ifdef __KERNEL__ struct task_struct; void start_thread(struct pt_regs *regs, unsigned long fdptr, unsigned long sp); void release_thread(struct task_struct *); /* Lazy FPU handling on uni-processor */ extern struct task_struct *last_task_used_math; extern struct task_struct *last_task_used_altivec; extern struct task_struct *last_task_used_vsx; extern struct task_struct *last_task_used_spe; #ifdef CONFIG_PPC32 #if CONFIG_TASK_SIZE > CONFIG_KERNEL_START #error User TASK_SIZE overlaps with KERNEL_START address #endif #define TASK_SIZE (CONFIG_TASK_SIZE) /* This decides where the kernel will search for a free chunk of vm * space during mmap's. */ #define TASK_UNMAPPED_BASE (TASK_SIZE / 8 * 3) #endif #ifdef CONFIG_PPC64 /* 64-bit user address space is 46-bits (64TB user VM) */ #define TASK_SIZE_USER64 (0x0000400000000000UL) /* * 32-bit user address space is 4GB - 1 page * (this 1 page is needed so referencing of 0xFFFFFFFF generates EFAULT */ #define TASK_SIZE_USER32 (0x0000000100000000UL - (1*PAGE_SIZE)) #define TASK_SIZE_OF(tsk) (test_tsk_thread_flag(tsk, TIF_32BIT) ? \ TASK_SIZE_USER32 : TASK_SIZE_USER64) #define TASK_SIZE TASK_SIZE_OF(current) /* This decides where the kernel will search for a free chunk of vm * space during mmap's. */ #define TASK_UNMAPPED_BASE_USER32 (PAGE_ALIGN(TASK_SIZE_USER32 / 4)) #define TASK_UNMAPPED_BASE_USER64 (PAGE_ALIGN(TASK_SIZE_USER64 / 4)) #define TASK_UNMAPPED_BASE ((is_32bit_task()) ? \ TASK_UNMAPPED_BASE_USER32 : TASK_UNMAPPED_BASE_USER64 ) #endif #ifdef __powerpc64__ #define STACK_TOP_USER64 TASK_SIZE_USER64 #define STACK_TOP_USER32 TASK_SIZE_USER32 #define STACK_TOP (is_32bit_task() ? \ STACK_TOP_USER32 : STACK_TOP_USER64) #define STACK_TOP_MAX STACK_TOP_USER64 #else /* __powerpc64__ */ #define STACK_TOP TASK_SIZE #define STACK_TOP_MAX STACK_TOP #endif /* __powerpc64__ */ typedef struct { unsigned long seg; } mm_segment_t; #define TS_FPR(i) fp_state.fpr[i][TS_FPROFFSET] #define TS_TRANS_FPR(i) transact_fp.fpr[i][TS_FPROFFSET] /* FP and VSX 0-31 register set */ struct thread_fp_state { u64 fpr[32][TS_FPRWIDTH] __attribute__((aligned(16))); u64 fpscr; /* Floating point status */ }; /* Complete AltiVec register set including VSCR */ struct thread_vr_state { vector128 vr[32] __attribute__((aligned(16))); vector128 vscr __attribute__((aligned(16))); }; struct debug_reg { #ifdef CONFIG_PPC_ADV_DEBUG_REGS /* * The following help to manage the use of Debug Control Registers * om the BookE platforms. */ uint32_t dbcr0; uint32_t dbcr1; #ifdef CONFIG_BOOKE uint32_t dbcr2; #endif /* * The stored value of the DBSR register will be the value at the * last debug interrupt. This register can only be read from the * user (will never be written to) and has value while helping to * describe the reason for the last debug trap. Torez */ uint32_t dbsr; /* * The following will contain addresses used by debug applications * to help trace and trap on particular address locations. * The bits in the Debug Control Registers above help define which * of the following registers will contain valid data and/or addresses. */ unsigned long iac1; unsigned long iac2; #if CONFIG_PPC_ADV_DEBUG_IACS > 2 unsigned long iac3; unsigned long iac4; #endif unsigned long dac1; unsigned long dac2; #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 unsigned long dvc1; unsigned long dvc2; #endif #endif }; struct thread_struct { unsigned long ksp; /* Kernel stack pointer */ #ifdef CONFIG_PPC64 unsigned long ksp_vsid; #endif struct pt_regs *regs; /* Pointer to saved register state */ mm_segment_t fs; /* for get_fs() validation */ #ifdef CONFIG_BOOKE /* BookE base exception scratch space; align on cacheline */ unsigned long normsave[8] ____cacheline_aligned; #endif #ifdef CONFIG_PPC32 void *pgdir; /* root of page-table tree */ unsigned long ksp_limit; /* if ksp <= ksp_limit stack overflow */ #endif /* Debug Registers */ struct debug_reg debug; struct thread_fp_state fp_state; struct thread_fp_state *fp_save_area; int fpexc_mode; /* floating-point exception mode */ unsigned int align_ctl; /* alignment handling control */ #ifdef CONFIG_PPC64 unsigned long start_tb; /* Start purr when proc switched in */ unsigned long accum_tb; /* Total accumilated purr for process */ #ifdef CONFIG_HAVE_HW_BREAKPOINT struct perf_event *ptrace_bps[HBP_NUM]; /* * Helps identify source of single-step exception and subsequent * hw-breakpoint enablement */ struct perf_event *last_hit_ubp; #endif /* CONFIG_HAVE_HW_BREAKPOINT */ #endif struct arch_hw_breakpoint hw_brk; /* info on the hardware breakpoint */ unsigned long trap_nr; /* last trap # on this thread */ #ifdef CONFIG_ALTIVEC struct thread_vr_state vr_state; struct thread_vr_state *vr_save_area; unsigned long vrsave; int used_vr; /* set if process has used altivec */ #endif /* CONFIG_ALTIVEC */ #ifdef CONFIG_VSX /* VSR status */ int used_vsr; /* set if process has used altivec */ #endif /* CONFIG_VSX */ #ifdef CONFIG_SPE unsigned long evr[32]; /* upper 32-bits of SPE regs */ u64 acc; /* Accumulator */ unsigned long spefscr; /* SPE & eFP status */ unsigned long spefscr_last; /* SPEFSCR value on last prctl call or trap return */ int used_spe; /* set if process has used spe */ #endif /* CONFIG_SPE */ #ifdef CONFIG_PPC_TRANSACTIONAL_MEM u64 tm_tfhar; /* Transaction fail handler addr */ u64 tm_texasr; /* Transaction exception & summary */ u64 tm_tfiar; /* Transaction fail instr address reg */ unsigned long tm_orig_msr; /* Thread's MSR on ctx switch */ struct pt_regs ckpt_regs; /* Checkpointed registers */ unsigned long tm_tar; unsigned long tm_ppr; unsigned long tm_dscr; /* * Transactional FP and VSX 0-31 register set. * NOTE: the sense of these is the opposite of the integer ckpt_regs! * * When a transaction is active/signalled/scheduled etc., *regs is the * most recent set of/speculated GPRs with ckpt_regs being the older * checkpointed regs to which we roll back if transaction aborts. * * However, fpr[] is the checkpointed 'base state' of FP regs, and * transact_fpr[] is the new set of transactional values. * VRs work the same way. */ struct thread_fp_state transact_fp; struct thread_vr_state transact_vr; unsigned long transact_vrsave; #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ #ifdef CONFIG_KVM_BOOK3S_32_HANDLER void* kvm_shadow_vcpu; /* KVM internal data */ #endif /* CONFIG_KVM_BOOK3S_32_HANDLER */ #if defined(CONFIG_KVM) && defined(CONFIG_BOOKE) struct kvm_vcpu *kvm_vcpu; #endif #ifdef CONFIG_PPC64 unsigned long dscr; int dscr_inherit; unsigned long ppr; /* used to save/restore SMT priority */ #endif #ifdef CONFIG_PPC_BOOK3S_64 unsigned long tar; unsigned long ebbrr; unsigned long ebbhr; unsigned long bescr; unsigned long siar; unsigned long sdar; unsigned long sier; unsigned long mmcr2; unsigned mmcr0; unsigned used_ebb; #endif }; #define ARCH_MIN_TASKALIGN 16 #define INIT_SP (sizeof(init_stack) + (unsigned long) &init_stack) #define INIT_SP_LIMIT \ (_ALIGN_UP(sizeof(init_thread_info), 16) + (unsigned long) &init_stack) #ifdef CONFIG_SPE #define SPEFSCR_INIT \ .spefscr = SPEFSCR_FINVE | SPEFSCR_FDBZE | SPEFSCR_FUNFE | SPEFSCR_FOVFE, \ .spefscr_last = SPEFSCR_FINVE | SPEFSCR_FDBZE | SPEFSCR_FUNFE | SPEFSCR_FOVFE, #else #define SPEFSCR_INIT #endif #ifdef CONFIG_PPC32 #define INIT_THREAD { \ .ksp = INIT_SP, \ .ksp_limit = INIT_SP_LIMIT, \ .fs = KERNEL_DS, \ .pgdir = swapper_pg_dir, \ .fpexc_mode = MSR_FE0 | MSR_FE1, \ SPEFSCR_INIT \ } #else #define INIT_THREAD { \ .ksp = INIT_SP, \ .regs = (struct pt_regs *)INIT_SP - 1, /* XXX bogus, I think */ \ .fs = KERNEL_DS, \ .fpexc_mode = 0, \ .ppr = INIT_PPR, \ } #endif /* * Return saved PC of a blocked thread. For now, this is the "user" PC */ #define thread_saved_pc(tsk) \ ((tsk)->thread.regs? (tsk)->thread.regs->nip: 0) #define task_pt_regs(tsk) ((struct pt_regs *)(tsk)->thread.regs) unsigned long get_wchan(struct task_struct *p); #define KSTK_EIP(tsk) ((tsk)->thread.regs? (tsk)->thread.regs->nip: 0) #define KSTK_ESP(tsk) ((tsk)->thread.regs? (tsk)->thread.regs->gpr[1]: 0) /* Get/set floating-point exception mode */ #define GET_FPEXC_CTL(tsk, adr) get_fpexc_mode((tsk), (adr)) #define SET_FPEXC_CTL(tsk, val) set_fpexc_mode((tsk), (val)) extern int get_fpexc_mode(struct task_struct *tsk, unsigned long adr); extern int set_fpexc_mode(struct task_struct *tsk, unsigned int val); #define GET_ENDIAN(tsk, adr) get_endian((tsk), (adr)) #define SET_ENDIAN(tsk, val) set_endian((tsk), (val)) extern int get_endian(struct task_struct *tsk, unsigned long adr); extern int set_endian(struct task_struct *tsk, unsigned int val); #define GET_UNALIGN_CTL(tsk, adr) get_unalign_ctl((tsk), (adr)) #define SET_UNALIGN_CTL(tsk, val) set_unalign_ctl((tsk), (val)) extern int get_unalign_ctl(struct task_struct *tsk, unsigned long adr); extern int set_unalign_ctl(struct task_struct *tsk, unsigned int val); extern void fp_enable(void); extern void vec_enable(void); extern void load_fp_state(struct thread_fp_state *fp); extern void store_fp_state(struct thread_fp_state *fp); extern void load_vr_state(struct thread_vr_state *vr); extern void store_vr_state(struct thread_vr_state *vr); static inline unsigned int __unpack_fe01(unsigned long msr_bits) { return ((msr_bits & MSR_FE0) >> 10) | ((msr_bits & MSR_FE1) >> 8); } static inline unsigned long __pack_fe01(unsigned int fpmode) { return ((fpmode << 10) & MSR_FE0) | ((fpmode << 8) & MSR_FE1); } #ifdef CONFIG_PPC64 #define cpu_relax() do { HMT_low(); HMT_medium(); barrier(); } while (0) #else #define cpu_relax() barrier() #endif #define cpu_relax_lowlatency() cpu_relax() /* Check that a certain kernel stack pointer is valid in task_struct p */ int validate_sp(unsigned long sp, struct task_struct *p, unsigned long nbytes); /* * Prefetch macros. */ #define ARCH_HAS_PREFETCH #define ARCH_HAS_PREFETCHW #define ARCH_HAS_SPINLOCK_PREFETCH static inline void prefetch(const void *x) { if (unlikely(!x)) return; __asm__ __volatile__ ("dcbt 0,%0" : : "r" (x)); } static inline void prefetchw(const void *x) { if (unlikely(!x)) return; __asm__ __volatile__ ("dcbtst 0,%0" : : "r" (x)); } #define spin_lock_prefetch(x) prefetchw(x) #define HAVE_ARCH_PICK_MMAP_LAYOUT #ifdef CONFIG_PPC64 static inline unsigned long get_clean_sp(unsigned long sp, int is_32) { if (is_32) return sp & 0x0ffffffffUL; return sp; } #else static inline unsigned long get_clean_sp(unsigned long sp, int is_32) { return sp; } #endif extern unsigned long cpuidle_disable; enum idle_boot_override {IDLE_NO_OVERRIDE = 0, IDLE_POWERSAVE_OFF}; extern int powersave_nap; /* set if nap mode can be used in idle loop */ extern void power7_nap(int check_irq); extern void power7_sleep(void); extern void flush_instruction_cache(void); extern void hard_reset_now(void); extern void poweroff_now(void); extern int fix_alignment(struct pt_regs *); extern void cvt_fd(float *from, double *to); extern void cvt_df(double *from, float *to); extern void _nmask_and_or_msr(unsigned long nmask, unsigned long or_val); #ifdef CONFIG_PPC64 /* * We handle most unaligned accesses in hardware. On the other hand * unaligned DMA can be very expensive on some ppc64 IO chips (it does * powers of 2 writes until it reaches sufficient alignment). * * Based on this we disable the IP header alignment in network drivers. */ #define NET_IP_ALIGN 0 #endif #endif /* __KERNEL__ */ #endif /* __ASSEMBLY__ */ #endif /* _ASM_POWERPC_PROCESSOR_H */