#ifndef _ASM_POWERPC_PGTABLE_H #define _ASM_POWERPC_PGTABLE_H #ifdef __KERNEL__ #ifndef __ASSEMBLY__ #include <linux/mmdebug.h> #include <linux/mmzone.h> #include <asm/processor.h> /* For TASK_SIZE */ #include <asm/mmu.h> #include <asm/page.h> struct mm_struct; #endif /* !__ASSEMBLY__ */ #if defined(CONFIG_PPC64) # include <asm/pgtable-ppc64.h> #else # include <asm/pgtable-ppc32.h> #endif /* * We save the slot number & secondary bit in the second half of the * PTE page. We use the 8 bytes per each pte entry. */ #define PTE_PAGE_HIDX_OFFSET (PTRS_PER_PTE * 8) #ifndef __ASSEMBLY__ #include <asm/tlbflush.h> /* Generic accessors to PTE bits */ static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW; } static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; } static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; } static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE; } static inline int pte_special(pte_t pte) { return pte_val(pte) & _PAGE_SPECIAL; } static inline int pte_none(pte_t pte) { return (pte_val(pte) & ~_PTE_NONE_MASK) == 0; } static inline pgprot_t pte_pgprot(pte_t pte) { return __pgprot(pte_val(pte) & PAGE_PROT_BITS); } #ifdef CONFIG_NUMA_BALANCING static inline int pte_present(pte_t pte) { return pte_val(pte) & _PAGE_NUMA_MASK; } #define pte_present_nonuma pte_present_nonuma static inline int pte_present_nonuma(pte_t pte) { return pte_val(pte) & (_PAGE_PRESENT); } #define ptep_set_numa ptep_set_numa static inline void ptep_set_numa(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { if ((pte_val(*ptep) & _PAGE_PRESENT) == 0) VM_BUG_ON(1); pte_update(mm, addr, ptep, _PAGE_PRESENT, _PAGE_NUMA, 0); return; } #define pmdp_set_numa pmdp_set_numa static inline void pmdp_set_numa(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp) { if ((pmd_val(*pmdp) & _PAGE_PRESENT) == 0) VM_BUG_ON(1); pmd_hugepage_update(mm, addr, pmdp, _PAGE_PRESENT, _PAGE_NUMA); return; } /* * Generic NUMA pte helpers expect pteval_t and pmdval_t types to exist * which was inherited from x86. For the purposes of powerpc pte_basic_t and * pmd_t are equivalent */ #define pteval_t pte_basic_t #define pmdval_t pmd_t static inline pteval_t ptenuma_flags(pte_t pte) { return pte_val(pte) & _PAGE_NUMA_MASK; } static inline pmdval_t pmdnuma_flags(pmd_t pmd) { return pmd_val(pmd) & _PAGE_NUMA_MASK; } # else static inline int pte_present(pte_t pte) { return pte_val(pte) & _PAGE_PRESENT; } #endif /* CONFIG_NUMA_BALANCING */ /* Conversion functions: convert a page and protection to a page entry, * and a page entry and page directory to the page they refer to. * * Even if PTEs can be unsigned long long, a PFN is always an unsigned * long for now. */ static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot) { return __pte(((pte_basic_t)(pfn) << PTE_RPN_SHIFT) | pgprot_val(pgprot)); } static inline unsigned long pte_pfn(pte_t pte) { return pte_val(pte) >> PTE_RPN_SHIFT; } /* Keep these as a macros to avoid include dependency mess */ #define pte_page(x) pfn_to_page(pte_pfn(x)) #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot)) /* Generic modifiers for PTE bits */ static inline pte_t pte_wrprotect(pte_t pte) { pte_val(pte) &= ~(_PAGE_RW | _PAGE_HWWRITE); return pte; } static inline pte_t pte_mkclean(pte_t pte) { pte_val(pte) &= ~(_PAGE_DIRTY | _PAGE_HWWRITE); return pte; } static inline pte_t pte_mkold(pte_t pte) { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; } static inline pte_t pte_mkwrite(pte_t pte) { pte_val(pte) |= _PAGE_RW; return pte; } static inline pte_t pte_mkdirty(pte_t pte) { pte_val(pte) |= _PAGE_DIRTY; return pte; } static inline pte_t pte_mkyoung(pte_t pte) { pte_val(pte) |= _PAGE_ACCESSED; return pte; } static inline pte_t pte_mkspecial(pte_t pte) { pte_val(pte) |= _PAGE_SPECIAL; return pte; } static inline pte_t pte_mkhuge(pte_t pte) { return pte; } static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) { pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); return pte; } /* Insert a PTE, top-level function is out of line. It uses an inline * low level function in the respective pgtable-* files */ extern void set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep, pte_t pte); /* This low level function performs the actual PTE insertion * Setting the PTE depends on the MMU type and other factors. It's * an horrible mess that I'm not going to try to clean up now but * I'm keeping it in one place rather than spread around */ static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep, pte_t pte, int percpu) { #if defined(CONFIG_PPC_STD_MMU_32) && defined(CONFIG_SMP) && !defined(CONFIG_PTE_64BIT) /* First case is 32-bit Hash MMU in SMP mode with 32-bit PTEs. We use the * helper pte_update() which does an atomic update. We need to do that * because a concurrent invalidation can clear _PAGE_HASHPTE. If it's a * per-CPU PTE such as a kmap_atomic, we do a simple update preserving * the hash bits instead (ie, same as the non-SMP case) */ if (percpu) *ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE) | (pte_val(pte) & ~_PAGE_HASHPTE)); else pte_update(ptep, ~_PAGE_HASHPTE, pte_val(pte)); #elif defined(CONFIG_PPC32) && defined(CONFIG_PTE_64BIT) /* Second case is 32-bit with 64-bit PTE. In this case, we * can just store as long as we do the two halves in the right order * with a barrier in between. This is possible because we take care, * in the hash code, to pre-invalidate if the PTE was already hashed, * which synchronizes us with any concurrent invalidation. * In the percpu case, we also fallback to the simple update preserving * the hash bits */ if (percpu) { *ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE) | (pte_val(pte) & ~_PAGE_HASHPTE)); return; } #if _PAGE_HASHPTE != 0 if (pte_val(*ptep) & _PAGE_HASHPTE) flush_hash_entry(mm, ptep, addr); #endif __asm__ __volatile__("\ stw%U0%X0 %2,%0\n\ eieio\n\ stw%U0%X0 %L2,%1" : "=m" (*ptep), "=m" (*((unsigned char *)ptep+4)) : "r" (pte) : "memory"); #elif defined(CONFIG_PPC_STD_MMU_32) /* Third case is 32-bit hash table in UP mode, we need to preserve * the _PAGE_HASHPTE bit since we may not have invalidated the previous * translation in the hash yet (done in a subsequent flush_tlb_xxx()) * and see we need to keep track that this PTE needs invalidating */ *ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE) | (pte_val(pte) & ~_PAGE_HASHPTE)); #else /* Anything else just stores the PTE normally. That covers all 64-bit * cases, and 32-bit non-hash with 32-bit PTEs. */ *ptep = pte; #endif } #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS extern int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address, pte_t *ptep, pte_t entry, int dirty); /* * Macro to mark a page protection value as "uncacheable". */ #define _PAGE_CACHE_CTL (_PAGE_COHERENT | _PAGE_GUARDED | _PAGE_NO_CACHE | \ _PAGE_WRITETHRU) #define pgprot_noncached(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \ _PAGE_NO_CACHE | _PAGE_GUARDED)) #define pgprot_noncached_wc(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \ _PAGE_NO_CACHE)) #define pgprot_cached(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \ _PAGE_COHERENT)) #define pgprot_cached_wthru(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \ _PAGE_COHERENT | _PAGE_WRITETHRU)) #define pgprot_cached_noncoherent(prot) \ (__pgprot(pgprot_val(prot) & ~_PAGE_CACHE_CTL)) #define pgprot_writecombine pgprot_noncached_wc struct file; extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size, pgprot_t vma_prot); #define __HAVE_PHYS_MEM_ACCESS_PROT /* * ZERO_PAGE is a global shared page that is always zero: used * for zero-mapped memory areas etc.. */ extern unsigned long empty_zero_page[]; #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) extern pgd_t swapper_pg_dir[]; void limit_zone_pfn(enum zone_type zone, unsigned long max_pfn); int dma_pfn_limit_to_zone(u64 pfn_limit); extern void paging_init(void); /* * kern_addr_valid is intended to indicate whether an address is a valid * kernel address. Most 32-bit archs define it as always true (like this) * but most 64-bit archs actually perform a test. What should we do here? */ #define kern_addr_valid(addr) (1) #include <asm-generic/pgtable.h> /* * This gets called at the end of handling a page fault, when * the kernel has put a new PTE into the page table for the process. * We use it to ensure coherency between the i-cache and d-cache * for the page which has just been mapped in. * On machines which use an MMU hash table, we use this to put a * corresponding HPTE into the hash table ahead of time, instead of * waiting for the inevitable extra hash-table miss exception. */ extern void update_mmu_cache(struct vm_area_struct *, unsigned long, pte_t *); extern int gup_hugepd(hugepd_t *hugepd, unsigned pdshift, unsigned long addr, unsigned long end, int write, struct page **pages, int *nr); extern int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr, unsigned long end, int write, struct page **pages, int *nr); #ifndef CONFIG_TRANSPARENT_HUGEPAGE #define pmd_large(pmd) 0 #define has_transparent_hugepage() 0 #endif pte_t *find_linux_pte_or_hugepte(pgd_t *pgdir, unsigned long ea, unsigned *shift); static inline pte_t *lookup_linux_ptep(pgd_t *pgdir, unsigned long hva, unsigned long *pte_sizep) { pte_t *ptep; unsigned long ps = *pte_sizep; unsigned int shift; ptep = find_linux_pte_or_hugepte(pgdir, hva, &shift); if (!ptep) return NULL; if (shift) *pte_sizep = 1ul << shift; else *pte_sizep = PAGE_SIZE; if (ps > *pte_sizep) return NULL; return ptep; } #endif /* __ASSEMBLY__ */ #endif /* __KERNEL__ */ #endif /* _ASM_POWERPC_PGTABLE_H */