/* * This file implements the perfmon-2 subsystem which is used * to program the IA-64 Performance Monitoring Unit (PMU). * * The initial version of perfmon.c was written by * Ganesh Venkitachalam, IBM Corp. * * Then it was modified for perfmon-1.x by Stephane Eranian and * David Mosberger, Hewlett Packard Co. * * Version Perfmon-2.x is a rewrite of perfmon-1.x * by Stephane Eranian, Hewlett Packard Co. * * Copyright (C) 1999-2005 Hewlett Packard Co * Stephane Eranian <eranian@hpl.hp.com> * David Mosberger-Tang <davidm@hpl.hp.com> * * More information about perfmon available at: * http://www.hpl.hp.com/research/linux/perfmon */ #include <linux/module.h> #include <linux/kernel.h> #include <linux/sched.h> #include <linux/interrupt.h> #include <linux/proc_fs.h> #include <linux/seq_file.h> #include <linux/init.h> #include <linux/vmalloc.h> #include <linux/mm.h> #include <linux/sysctl.h> #include <linux/list.h> #include <linux/file.h> #include <linux/poll.h> #include <linux/vfs.h> #include <linux/smp.h> #include <linux/pagemap.h> #include <linux/mount.h> #include <linux/bitops.h> #include <linux/capability.h> #include <linux/rcupdate.h> #include <linux/completion.h> #include <linux/tracehook.h> #include <linux/slab.h> #include <linux/cpu.h> #include <asm/errno.h> #include <asm/intrinsics.h> #include <asm/page.h> #include <asm/perfmon.h> #include <asm/processor.h> #include <asm/signal.h> #include <asm/uaccess.h> #include <asm/delay.h> #ifdef CONFIG_PERFMON /* * perfmon context state */ #define PFM_CTX_UNLOADED 1 /* context is not loaded onto any task */ #define PFM_CTX_LOADED 2 /* context is loaded onto a task */ #define PFM_CTX_MASKED 3 /* context is loaded but monitoring is masked due to overflow */ #define PFM_CTX_ZOMBIE 4 /* owner of the context is closing it */ #define PFM_INVALID_ACTIVATION (~0UL) #define PFM_NUM_PMC_REGS 64 /* PMC save area for ctxsw */ #define PFM_NUM_PMD_REGS 64 /* PMD save area for ctxsw */ /* * depth of message queue */ #define PFM_MAX_MSGS 32 #define PFM_CTXQ_EMPTY(g) ((g)->ctx_msgq_head == (g)->ctx_msgq_tail) /* * type of a PMU register (bitmask). * bitmask structure: * bit0 : register implemented * bit1 : end marker * bit2-3 : reserved * bit4 : pmc has pmc.pm * bit5 : pmc controls a counter (has pmc.oi), pmd is used as counter * bit6-7 : register type * bit8-31: reserved */ #define PFM_REG_NOTIMPL 0x0 /* not implemented at all */ #define PFM_REG_IMPL 0x1 /* register implemented */ #define PFM_REG_END 0x2 /* end marker */ #define PFM_REG_MONITOR (0x1<<4|PFM_REG_IMPL) /* a PMC with a pmc.pm field only */ #define PFM_REG_COUNTING (0x2<<4|PFM_REG_MONITOR) /* a monitor + pmc.oi+ PMD used as a counter */ #define PFM_REG_CONTROL (0x4<<4|PFM_REG_IMPL) /* PMU control register */ #define PFM_REG_CONFIG (0x8<<4|PFM_REG_IMPL) /* configuration register */ #define PFM_REG_BUFFER (0xc<<4|PFM_REG_IMPL) /* PMD used as buffer */ #define PMC_IS_LAST(i) (pmu_conf->pmc_desc[i].type & PFM_REG_END) #define PMD_IS_LAST(i) (pmu_conf->pmd_desc[i].type & PFM_REG_END) #define PMC_OVFL_NOTIFY(ctx, i) ((ctx)->ctx_pmds[i].flags & PFM_REGFL_OVFL_NOTIFY) /* i assumed unsigned */ #define PMC_IS_IMPL(i) (i< PMU_MAX_PMCS && (pmu_conf->pmc_desc[i].type & PFM_REG_IMPL)) #define PMD_IS_IMPL(i) (i< PMU_MAX_PMDS && (pmu_conf->pmd_desc[i].type & PFM_REG_IMPL)) /* XXX: these assume that register i is implemented */ #define PMD_IS_COUNTING(i) ((pmu_conf->pmd_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING) #define PMC_IS_COUNTING(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING) #define PMC_IS_MONITOR(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_MONITOR) == PFM_REG_MONITOR) #define PMC_IS_CONTROL(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_CONTROL) == PFM_REG_CONTROL) #define PMC_DFL_VAL(i) pmu_conf->pmc_desc[i].default_value #define PMC_RSVD_MASK(i) pmu_conf->pmc_desc[i].reserved_mask #define PMD_PMD_DEP(i) pmu_conf->pmd_desc[i].dep_pmd[0] #define PMC_PMD_DEP(i) pmu_conf->pmc_desc[i].dep_pmd[0] #define PFM_NUM_IBRS IA64_NUM_DBG_REGS #define PFM_NUM_DBRS IA64_NUM_DBG_REGS #define CTX_OVFL_NOBLOCK(c) ((c)->ctx_fl_block == 0) #define CTX_HAS_SMPL(c) ((c)->ctx_fl_is_sampling) #define PFM_CTX_TASK(h) (h)->ctx_task #define PMU_PMC_OI 5 /* position of pmc.oi bit */ /* XXX: does not support more than 64 PMDs */ #define CTX_USED_PMD(ctx, mask) (ctx)->ctx_used_pmds[0] |= (mask) #define CTX_IS_USED_PMD(ctx, c) (((ctx)->ctx_used_pmds[0] & (1UL << (c))) != 0UL) #define CTX_USED_MONITOR(ctx, mask) (ctx)->ctx_used_monitors[0] |= (mask) #define CTX_USED_IBR(ctx,n) (ctx)->ctx_used_ibrs[(n)>>6] |= 1UL<< ((n) % 64) #define CTX_USED_DBR(ctx,n) (ctx)->ctx_used_dbrs[(n)>>6] |= 1UL<< ((n) % 64) #define CTX_USES_DBREGS(ctx) (((pfm_context_t *)(ctx))->ctx_fl_using_dbreg==1) #define PFM_CODE_RR 0 /* requesting code range restriction */ #define PFM_DATA_RR 1 /* requestion data range restriction */ #define PFM_CPUINFO_CLEAR(v) pfm_get_cpu_var(pfm_syst_info) &= ~(v) #define PFM_CPUINFO_SET(v) pfm_get_cpu_var(pfm_syst_info) |= (v) #define PFM_CPUINFO_GET() pfm_get_cpu_var(pfm_syst_info) #define RDEP(x) (1UL<<(x)) /* * context protection macros * in SMP: * - we need to protect against CPU concurrency (spin_lock) * - we need to protect against PMU overflow interrupts (local_irq_disable) * in UP: * - we need to protect against PMU overflow interrupts (local_irq_disable) * * spin_lock_irqsave()/spin_unlock_irqrestore(): * in SMP: local_irq_disable + spin_lock * in UP : local_irq_disable * * spin_lock()/spin_lock(): * in UP : removed automatically * in SMP: protect against context accesses from other CPU. interrupts * are not masked. This is useful for the PMU interrupt handler * because we know we will not get PMU concurrency in that code. */ #define PROTECT_CTX(c, f) \ do { \ DPRINT(("spinlock_irq_save ctx %p by [%d]\n", c, task_pid_nr(current))); \ spin_lock_irqsave(&(c)->ctx_lock, f); \ DPRINT(("spinlocked ctx %p by [%d]\n", c, task_pid_nr(current))); \ } while(0) #define UNPROTECT_CTX(c, f) \ do { \ DPRINT(("spinlock_irq_restore ctx %p by [%d]\n", c, task_pid_nr(current))); \ spin_unlock_irqrestore(&(c)->ctx_lock, f); \ } while(0) #define PROTECT_CTX_NOPRINT(c, f) \ do { \ spin_lock_irqsave(&(c)->ctx_lock, f); \ } while(0) #define UNPROTECT_CTX_NOPRINT(c, f) \ do { \ spin_unlock_irqrestore(&(c)->ctx_lock, f); \ } while(0) #define PROTECT_CTX_NOIRQ(c) \ do { \ spin_lock(&(c)->ctx_lock); \ } while(0) #define UNPROTECT_CTX_NOIRQ(c) \ do { \ spin_unlock(&(c)->ctx_lock); \ } while(0) #ifdef CONFIG_SMP #define GET_ACTIVATION() pfm_get_cpu_var(pmu_activation_number) #define INC_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)++ #define SET_ACTIVATION(c) (c)->ctx_last_activation = GET_ACTIVATION() #else /* !CONFIG_SMP */ #define SET_ACTIVATION(t) do {} while(0) #define GET_ACTIVATION(t) do {} while(0) #define INC_ACTIVATION(t) do {} while(0) #endif /* CONFIG_SMP */ #define SET_PMU_OWNER(t, c) do { pfm_get_cpu_var(pmu_owner) = (t); pfm_get_cpu_var(pmu_ctx) = (c); } while(0) #define GET_PMU_OWNER() pfm_get_cpu_var(pmu_owner) #define GET_PMU_CTX() pfm_get_cpu_var(pmu_ctx) #define LOCK_PFS(g) spin_lock_irqsave(&pfm_sessions.pfs_lock, g) #define UNLOCK_PFS(g) spin_unlock_irqrestore(&pfm_sessions.pfs_lock, g) #define PFM_REG_RETFLAG_SET(flags, val) do { flags &= ~PFM_REG_RETFL_MASK; flags |= (val); } while(0) /* * cmp0 must be the value of pmc0 */ #define PMC0_HAS_OVFL(cmp0) (cmp0 & ~0x1UL) #define PFMFS_MAGIC 0xa0b4d889 /* * debugging */ #define PFM_DEBUGGING 1 #ifdef PFM_DEBUGGING #define DPRINT(a) \ do { \ if (unlikely(pfm_sysctl.debug >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \ } while (0) #define DPRINT_ovfl(a) \ do { \ if (unlikely(pfm_sysctl.debug > 0 && pfm_sysctl.debug_ovfl >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \ } while (0) #endif /* * 64-bit software counter structure * * the next_reset_type is applied to the next call to pfm_reset_regs() */ typedef struct { unsigned long val; /* virtual 64bit counter value */ unsigned long lval; /* last reset value */ unsigned long long_reset; /* reset value on sampling overflow */ unsigned long short_reset; /* reset value on overflow */ unsigned long reset_pmds[4]; /* which other pmds to reset when this counter overflows */ unsigned long smpl_pmds[4]; /* which pmds are accessed when counter overflow */ unsigned long seed; /* seed for random-number generator */ unsigned long mask; /* mask for random-number generator */ unsigned int flags; /* notify/do not notify */ unsigned long eventid; /* overflow event identifier */ } pfm_counter_t; /* * context flags */ typedef struct { unsigned int block:1; /* when 1, task will blocked on user notifications */ unsigned int system:1; /* do system wide monitoring */ unsigned int using_dbreg:1; /* using range restrictions (debug registers) */ unsigned int is_sampling:1; /* true if using a custom format */ unsigned int excl_idle:1; /* exclude idle task in system wide session */ unsigned int going_zombie:1; /* context is zombie (MASKED+blocking) */ unsigned int trap_reason:2; /* reason for going into pfm_handle_work() */ unsigned int no_msg:1; /* no message sent on overflow */ unsigned int can_restart:1; /* allowed to issue a PFM_RESTART */ unsigned int reserved:22; } pfm_context_flags_t; #define PFM_TRAP_REASON_NONE 0x0 /* default value */ #define PFM_TRAP_REASON_BLOCK 0x1 /* we need to block on overflow */ #define PFM_TRAP_REASON_RESET 0x2 /* we need to reset PMDs */ /* * perfmon context: encapsulates all the state of a monitoring session */ typedef struct pfm_context { spinlock_t ctx_lock; /* context protection */ pfm_context_flags_t ctx_flags; /* bitmask of flags (block reason incl.) */ unsigned int ctx_state; /* state: active/inactive (no bitfield) */ struct task_struct *ctx_task; /* task to which context is attached */ unsigned long ctx_ovfl_regs[4]; /* which registers overflowed (notification) */ struct completion ctx_restart_done; /* use for blocking notification mode */ unsigned long ctx_used_pmds[4]; /* bitmask of PMD used */ unsigned long ctx_all_pmds[4]; /* bitmask of all accessible PMDs */ unsigned long ctx_reload_pmds[4]; /* bitmask of force reload PMD on ctxsw in */ unsigned long ctx_all_pmcs[4]; /* bitmask of all accessible PMCs */ unsigned long ctx_reload_pmcs[4]; /* bitmask of force reload PMC on ctxsw in */ unsigned long ctx_used_monitors[4]; /* bitmask of monitor PMC being used */ unsigned long ctx_pmcs[PFM_NUM_PMC_REGS]; /* saved copies of PMC values */ unsigned int ctx_used_ibrs[1]; /* bitmask of used IBR (speedup ctxsw in) */ unsigned int ctx_used_dbrs[1]; /* bitmask of used DBR (speedup ctxsw in) */ unsigned long ctx_dbrs[IA64_NUM_DBG_REGS]; /* DBR values (cache) when not loaded */ unsigned long ctx_ibrs[IA64_NUM_DBG_REGS]; /* IBR values (cache) when not loaded */ pfm_counter_t ctx_pmds[PFM_NUM_PMD_REGS]; /* software state for PMDS */ unsigned long th_pmcs[PFM_NUM_PMC_REGS]; /* PMC thread save state */ unsigned long th_pmds[PFM_NUM_PMD_REGS]; /* PMD thread save state */ unsigned long ctx_saved_psr_up; /* only contains psr.up value */ unsigned long ctx_last_activation; /* context last activation number for last_cpu */ unsigned int ctx_last_cpu; /* CPU id of current or last CPU used (SMP only) */ unsigned int ctx_cpu; /* cpu to which perfmon is applied (system wide) */ int ctx_fd; /* file descriptor used my this context */ pfm_ovfl_arg_t ctx_ovfl_arg; /* argument to custom buffer format handler */ pfm_buffer_fmt_t *ctx_buf_fmt; /* buffer format callbacks */ void *ctx_smpl_hdr; /* points to sampling buffer header kernel vaddr */ unsigned long ctx_smpl_size; /* size of sampling buffer */ void *ctx_smpl_vaddr; /* user level virtual address of smpl buffer */ wait_queue_head_t ctx_msgq_wait; pfm_msg_t ctx_msgq[PFM_MAX_MSGS]; int ctx_msgq_head; int ctx_msgq_tail; struct fasync_struct *ctx_async_queue; wait_queue_head_t ctx_zombieq; /* termination cleanup wait queue */ } pfm_context_t; /* * magic number used to verify that structure is really * a perfmon context */ #define PFM_IS_FILE(f) ((f)->f_op == &pfm_file_ops) #define PFM_GET_CTX(t) ((pfm_context_t *)(t)->thread.pfm_context) #ifdef CONFIG_SMP #define SET_LAST_CPU(ctx, v) (ctx)->ctx_last_cpu = (v) #define GET_LAST_CPU(ctx) (ctx)->ctx_last_cpu #else #define SET_LAST_CPU(ctx, v) do {} while(0) #define GET_LAST_CPU(ctx) do {} while(0) #endif #define ctx_fl_block ctx_flags.block #define ctx_fl_system ctx_flags.system #define ctx_fl_using_dbreg ctx_flags.using_dbreg #define ctx_fl_is_sampling ctx_flags.is_sampling #define ctx_fl_excl_idle ctx_flags.excl_idle #define ctx_fl_going_zombie ctx_flags.going_zombie #define ctx_fl_trap_reason ctx_flags.trap_reason #define ctx_fl_no_msg ctx_flags.no_msg #define ctx_fl_can_restart ctx_flags.can_restart #define PFM_SET_WORK_PENDING(t, v) do { (t)->thread.pfm_needs_checking = v; } while(0); #define PFM_GET_WORK_PENDING(t) (t)->thread.pfm_needs_checking /* * global information about all sessions * mostly used to synchronize between system wide and per-process */ typedef struct { spinlock_t pfs_lock; /* lock the structure */ unsigned int pfs_task_sessions; /* number of per task sessions */ unsigned int pfs_sys_sessions; /* number of per system wide sessions */ unsigned int pfs_sys_use_dbregs; /* incremented when a system wide session uses debug regs */ unsigned int pfs_ptrace_use_dbregs; /* incremented when a process uses debug regs */ struct task_struct *pfs_sys_session[NR_CPUS]; /* point to task owning a system-wide session */ } pfm_session_t; /* * information about a PMC or PMD. * dep_pmd[]: a bitmask of dependent PMD registers * dep_pmc[]: a bitmask of dependent PMC registers */ typedef int (*pfm_reg_check_t)(struct task_struct *task, pfm_context_t *ctx, unsigned int cnum, unsigned long *val, struct pt_regs *regs); typedef struct { unsigned int type; int pm_pos; unsigned long default_value; /* power-on default value */ unsigned long reserved_mask; /* bitmask of reserved bits */ pfm_reg_check_t read_check; pfm_reg_check_t write_check; unsigned long dep_pmd[4]; unsigned long dep_pmc[4]; } pfm_reg_desc_t; /* assume cnum is a valid monitor */ #define PMC_PM(cnum, val) (((val) >> (pmu_conf->pmc_desc[cnum].pm_pos)) & 0x1) /* * This structure is initialized at boot time and contains * a description of the PMU main characteristics. * * If the probe function is defined, detection is based * on its return value: * - 0 means recognized PMU * - anything else means not supported * When the probe function is not defined, then the pmu_family field * is used and it must match the host CPU family such that: * - cpu->family & config->pmu_family != 0 */ typedef struct { unsigned long ovfl_val; /* overflow value for counters */ pfm_reg_desc_t *pmc_desc; /* detailed PMC register dependencies descriptions */ pfm_reg_desc_t *pmd_desc; /* detailed PMD register dependencies descriptions */ unsigned int num_pmcs; /* number of PMCS: computed at init time */ unsigned int num_pmds; /* number of PMDS: computed at init time */ unsigned long impl_pmcs[4]; /* bitmask of implemented PMCS */ unsigned long impl_pmds[4]; /* bitmask of implemented PMDS */ char *pmu_name; /* PMU family name */ unsigned int pmu_family; /* cpuid family pattern used to identify pmu */ unsigned int flags; /* pmu specific flags */ unsigned int num_ibrs; /* number of IBRS: computed at init time */ unsigned int num_dbrs; /* number of DBRS: computed at init time */ unsigned int num_counters; /* PMC/PMD counting pairs : computed at init time */ int (*probe)(void); /* customized probe routine */ unsigned int use_rr_dbregs:1; /* set if debug registers used for range restriction */ } pmu_config_t; /* * PMU specific flags */ #define PFM_PMU_IRQ_RESEND 1 /* PMU needs explicit IRQ resend */ /* * debug register related type definitions */ typedef struct { unsigned long ibr_mask:56; unsigned long ibr_plm:4; unsigned long ibr_ig:3; unsigned long ibr_x:1; } ibr_mask_reg_t; typedef struct { unsigned long dbr_mask:56; unsigned long dbr_plm:4; unsigned long dbr_ig:2; unsigned long dbr_w:1; unsigned long dbr_r:1; } dbr_mask_reg_t; typedef union { unsigned long val; ibr_mask_reg_t ibr; dbr_mask_reg_t dbr; } dbreg_t; /* * perfmon command descriptions */ typedef struct { int (*cmd_func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs); char *cmd_name; int cmd_flags; unsigned int cmd_narg; size_t cmd_argsize; int (*cmd_getsize)(void *arg, size_t *sz); } pfm_cmd_desc_t; #define PFM_CMD_FD 0x01 /* command requires a file descriptor */ #define PFM_CMD_ARG_READ 0x02 /* command must read argument(s) */ #define PFM_CMD_ARG_RW 0x04 /* command must read/write argument(s) */ #define PFM_CMD_STOP 0x08 /* command does not work on zombie context */ #define PFM_CMD_NAME(cmd) pfm_cmd_tab[(cmd)].cmd_name #define PFM_CMD_READ_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_READ) #define PFM_CMD_RW_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_RW) #define PFM_CMD_USE_FD(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_FD) #define PFM_CMD_STOPPED(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_STOP) #define PFM_CMD_ARG_MANY -1 /* cannot be zero */ typedef struct { unsigned long pfm_spurious_ovfl_intr_count; /* keep track of spurious ovfl interrupts */ unsigned long pfm_replay_ovfl_intr_count; /* keep track of replayed ovfl interrupts */ unsigned long pfm_ovfl_intr_count; /* keep track of ovfl interrupts */ unsigned long pfm_ovfl_intr_cycles; /* cycles spent processing ovfl interrupts */ unsigned long pfm_ovfl_intr_cycles_min; /* min cycles spent processing ovfl interrupts */ unsigned long pfm_ovfl_intr_cycles_max; /* max cycles spent processing ovfl interrupts */ unsigned long pfm_smpl_handler_calls; unsigned long pfm_smpl_handler_cycles; char pad[SMP_CACHE_BYTES] ____cacheline_aligned; } pfm_stats_t; /* * perfmon internal variables */ static pfm_stats_t pfm_stats[NR_CPUS]; static pfm_session_t pfm_sessions; /* global sessions information */ static DEFINE_SPINLOCK(pfm_alt_install_check); static pfm_intr_handler_desc_t *pfm_alt_intr_handler; static struct proc_dir_entry *perfmon_dir; static pfm_uuid_t pfm_null_uuid = {0,}; static spinlock_t pfm_buffer_fmt_lock; static LIST_HEAD(pfm_buffer_fmt_list); static pmu_config_t *pmu_conf; /* sysctl() controls */ pfm_sysctl_t pfm_sysctl; EXPORT_SYMBOL(pfm_sysctl); static struct ctl_table pfm_ctl_table[] = { { .procname = "debug", .data = &pfm_sysctl.debug, .maxlen = sizeof(int), .mode = 0666, .proc_handler = proc_dointvec, }, { .procname = "debug_ovfl", .data = &pfm_sysctl.debug_ovfl, .maxlen = sizeof(int), .mode = 0666, .proc_handler = proc_dointvec, }, { .procname = "fastctxsw", .data = &pfm_sysctl.fastctxsw, .maxlen = sizeof(int), .mode = 0600, .proc_handler = proc_dointvec, }, { .procname = "expert_mode", .data = &pfm_sysctl.expert_mode, .maxlen = sizeof(int), .mode = 0600, .proc_handler = proc_dointvec, }, {} }; static struct ctl_table pfm_sysctl_dir[] = { { .procname = "perfmon", .mode = 0555, .child = pfm_ctl_table, }, {} }; static struct ctl_table pfm_sysctl_root[] = { { .procname = "kernel", .mode = 0555, .child = pfm_sysctl_dir, }, {} }; static struct ctl_table_header *pfm_sysctl_header; static int pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs); #define pfm_get_cpu_var(v) __ia64_per_cpu_var(v) #define pfm_get_cpu_data(a,b) per_cpu(a, b) static inline void pfm_put_task(struct task_struct *task) { if (task != current) put_task_struct(task); } static inline void pfm_reserve_page(unsigned long a) { SetPageReserved(vmalloc_to_page((void *)a)); } static inline void pfm_unreserve_page(unsigned long a) { ClearPageReserved(vmalloc_to_page((void*)a)); } static inline unsigned long pfm_protect_ctx_ctxsw(pfm_context_t *x) { spin_lock(&(x)->ctx_lock); return 0UL; } static inline void pfm_unprotect_ctx_ctxsw(pfm_context_t *x, unsigned long f) { spin_unlock(&(x)->ctx_lock); } /* forward declaration */ static const struct dentry_operations pfmfs_dentry_operations; static struct dentry * pfmfs_mount(struct file_system_type *fs_type, int flags, const char *dev_name, void *data) { return mount_pseudo(fs_type, "pfm:", NULL, &pfmfs_dentry_operations, PFMFS_MAGIC); } static struct file_system_type pfm_fs_type = { .name = "pfmfs", .mount = pfmfs_mount, .kill_sb = kill_anon_super, }; MODULE_ALIAS_FS("pfmfs"); DEFINE_PER_CPU(unsigned long, pfm_syst_info); DEFINE_PER_CPU(struct task_struct *, pmu_owner); DEFINE_PER_CPU(pfm_context_t *, pmu_ctx); DEFINE_PER_CPU(unsigned long, pmu_activation_number); EXPORT_PER_CPU_SYMBOL_GPL(pfm_syst_info); /* forward declaration */ static const struct file_operations pfm_file_ops; /* * forward declarations */ #ifndef CONFIG_SMP static void pfm_lazy_save_regs (struct task_struct *ta); #endif void dump_pmu_state(const char *); static int pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs); #include "perfmon_itanium.h" #include "perfmon_mckinley.h" #include "perfmon_montecito.h" #include "perfmon_generic.h" static pmu_config_t *pmu_confs[]={ &pmu_conf_mont, &pmu_conf_mck, &pmu_conf_ita, &pmu_conf_gen, /* must be last */ NULL }; static int pfm_end_notify_user(pfm_context_t *ctx); static inline void pfm_clear_psr_pp(void) { ia64_rsm(IA64_PSR_PP); ia64_srlz_i(); } static inline void pfm_set_psr_pp(void) { ia64_ssm(IA64_PSR_PP); ia64_srlz_i(); } static inline void pfm_clear_psr_up(void) { ia64_rsm(IA64_PSR_UP); ia64_srlz_i(); } static inline void pfm_set_psr_up(void) { ia64_ssm(IA64_PSR_UP); ia64_srlz_i(); } static inline unsigned long pfm_get_psr(void) { unsigned long tmp; tmp = ia64_getreg(_IA64_REG_PSR); ia64_srlz_i(); return tmp; } static inline void pfm_set_psr_l(unsigned long val) { ia64_setreg(_IA64_REG_PSR_L, val); ia64_srlz_i(); } static inline void pfm_freeze_pmu(void) { ia64_set_pmc(0,1UL); ia64_srlz_d(); } static inline void pfm_unfreeze_pmu(void) { ia64_set_pmc(0,0UL); ia64_srlz_d(); } static inline void pfm_restore_ibrs(unsigned long *ibrs, unsigned int nibrs) { int i; for (i=0; i < nibrs; i++) { ia64_set_ibr(i, ibrs[i]); ia64_dv_serialize_instruction(); } ia64_srlz_i(); } static inline void pfm_restore_dbrs(unsigned long *dbrs, unsigned int ndbrs) { int i; for (i=0; i < ndbrs; i++) { ia64_set_dbr(i, dbrs[i]); ia64_dv_serialize_data(); } ia64_srlz_d(); } /* * PMD[i] must be a counter. no check is made */ static inline unsigned long pfm_read_soft_counter(pfm_context_t *ctx, int i) { return ctx->ctx_pmds[i].val + (ia64_get_pmd(i) & pmu_conf->ovfl_val); } /* * PMD[i] must be a counter. no check is made */ static inline void pfm_write_soft_counter(pfm_context_t *ctx, int i, unsigned long val) { unsigned long ovfl_val = pmu_conf->ovfl_val; ctx->ctx_pmds[i].val = val & ~ovfl_val; /* * writing to unimplemented part is ignore, so we do not need to * mask off top part */ ia64_set_pmd(i, val & ovfl_val); } static pfm_msg_t * pfm_get_new_msg(pfm_context_t *ctx) { int idx, next; next = (ctx->ctx_msgq_tail+1) % PFM_MAX_MSGS; DPRINT(("ctx_fd=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail)); if (next == ctx->ctx_msgq_head) return NULL; idx = ctx->ctx_msgq_tail; ctx->ctx_msgq_tail = next; DPRINT(("ctx=%p head=%d tail=%d msg=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, idx)); return ctx->ctx_msgq+idx; } static pfm_msg_t * pfm_get_next_msg(pfm_context_t *ctx) { pfm_msg_t *msg; DPRINT(("ctx=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail)); if (PFM_CTXQ_EMPTY(ctx)) return NULL; /* * get oldest message */ msg = ctx->ctx_msgq+ctx->ctx_msgq_head; /* * and move forward */ ctx->ctx_msgq_head = (ctx->ctx_msgq_head+1) % PFM_MAX_MSGS; DPRINT(("ctx=%p head=%d tail=%d type=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, msg->pfm_gen_msg.msg_type)); return msg; } static void pfm_reset_msgq(pfm_context_t *ctx) { ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0; DPRINT(("ctx=%p msgq reset\n", ctx)); } static void * pfm_rvmalloc(unsigned long size) { void *mem; unsigned long addr; size = PAGE_ALIGN(size); mem = vzalloc(size); if (mem) { //printk("perfmon: CPU%d pfm_rvmalloc(%ld)=%p\n", smp_processor_id(), size, mem); addr = (unsigned long)mem; while (size > 0) { pfm_reserve_page(addr); addr+=PAGE_SIZE; size-=PAGE_SIZE; } } return mem; } static void pfm_rvfree(void *mem, unsigned long size) { unsigned long addr; if (mem) { DPRINT(("freeing physical buffer @%p size=%lu\n", mem, size)); addr = (unsigned long) mem; while ((long) size > 0) { pfm_unreserve_page(addr); addr+=PAGE_SIZE; size-=PAGE_SIZE; } vfree(mem); } return; } static pfm_context_t * pfm_context_alloc(int ctx_flags) { pfm_context_t *ctx; /* * allocate context descriptor * must be able to free with interrupts disabled */ ctx = kzalloc(sizeof(pfm_context_t), GFP_KERNEL); if (ctx) { DPRINT(("alloc ctx @%p\n", ctx)); /* * init context protection lock */ spin_lock_init(&ctx->ctx_lock); /* * context is unloaded */ ctx->ctx_state = PFM_CTX_UNLOADED; /* * initialization of context's flags */ ctx->ctx_fl_block = (ctx_flags & PFM_FL_NOTIFY_BLOCK) ? 1 : 0; ctx->ctx_fl_system = (ctx_flags & PFM_FL_SYSTEM_WIDE) ? 1: 0; ctx->ctx_fl_no_msg = (ctx_flags & PFM_FL_OVFL_NO_MSG) ? 1: 0; /* * will move to set properties * ctx->ctx_fl_excl_idle = (ctx_flags & PFM_FL_EXCL_IDLE) ? 1: 0; */ /* * init restart semaphore to locked */ init_completion(&ctx->ctx_restart_done); /* * activation is used in SMP only */ ctx->ctx_last_activation = PFM_INVALID_ACTIVATION; SET_LAST_CPU(ctx, -1); /* * initialize notification message queue */ ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0; init_waitqueue_head(&ctx->ctx_msgq_wait); init_waitqueue_head(&ctx->ctx_zombieq); } return ctx; } static void pfm_context_free(pfm_context_t *ctx) { if (ctx) { DPRINT(("free ctx @%p\n", ctx)); kfree(ctx); } } static void pfm_mask_monitoring(struct task_struct *task) { pfm_context_t *ctx = PFM_GET_CTX(task); unsigned long mask, val, ovfl_mask; int i; DPRINT_ovfl(("masking monitoring for [%d]\n", task_pid_nr(task))); ovfl_mask = pmu_conf->ovfl_val; /* * monitoring can only be masked as a result of a valid * counter overflow. In UP, it means that the PMU still * has an owner. Note that the owner can be different * from the current task. However the PMU state belongs * to the owner. * In SMP, a valid overflow only happens when task is * current. Therefore if we come here, we know that * the PMU state belongs to the current task, therefore * we can access the live registers. * * So in both cases, the live register contains the owner's * state. We can ONLY touch the PMU registers and NOT the PSR. * * As a consequence to this call, the ctx->th_pmds[] array * contains stale information which must be ignored * when context is reloaded AND monitoring is active (see * pfm_restart). */ mask = ctx->ctx_used_pmds[0]; for (i = 0; mask; i++, mask>>=1) { /* skip non used pmds */ if ((mask & 0x1) == 0) continue; val = ia64_get_pmd(i); if (PMD_IS_COUNTING(i)) { /* * we rebuild the full 64 bit value of the counter */ ctx->ctx_pmds[i].val += (val & ovfl_mask); } else { ctx->ctx_pmds[i].val = val; } DPRINT_ovfl(("pmd[%d]=0x%lx hw_pmd=0x%lx\n", i, ctx->ctx_pmds[i].val, val & ovfl_mask)); } /* * mask monitoring by setting the privilege level to 0 * we cannot use psr.pp/psr.up for this, it is controlled by * the user * * if task is current, modify actual registers, otherwise modify * thread save state, i.e., what will be restored in pfm_load_regs() */ mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER; for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) { if ((mask & 0x1) == 0UL) continue; ia64_set_pmc(i, ctx->th_pmcs[i] & ~0xfUL); ctx->th_pmcs[i] &= ~0xfUL; DPRINT_ovfl(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i])); } /* * make all of this visible */ ia64_srlz_d(); } /* * must always be done with task == current * * context must be in MASKED state when calling */ static void pfm_restore_monitoring(struct task_struct *task) { pfm_context_t *ctx = PFM_GET_CTX(task); unsigned long mask, ovfl_mask; unsigned long psr, val; int i, is_system; is_system = ctx->ctx_fl_system; ovfl_mask = pmu_conf->ovfl_val; if (task != current) { printk(KERN_ERR "perfmon.%d: invalid task[%d] current[%d]\n", __LINE__, task_pid_nr(task), task_pid_nr(current)); return; } if (ctx->ctx_state != PFM_CTX_MASKED) { printk(KERN_ERR "perfmon.%d: task[%d] current[%d] invalid state=%d\n", __LINE__, task_pid_nr(task), task_pid_nr(current), ctx->ctx_state); return; } psr = pfm_get_psr(); /* * monitoring is masked via the PMC. * As we restore their value, we do not want each counter to * restart right away. We stop monitoring using the PSR, * restore the PMC (and PMD) and then re-establish the psr * as it was. Note that there can be no pending overflow at * this point, because monitoring was MASKED. * * system-wide session are pinned and self-monitoring */ if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) { /* disable dcr pp */ ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP); pfm_clear_psr_pp(); } else { pfm_clear_psr_up(); } /* * first, we restore the PMD */ mask = ctx->ctx_used_pmds[0]; for (i = 0; mask; i++, mask>>=1) { /* skip non used pmds */ if ((mask & 0x1) == 0) continue; if (PMD_IS_COUNTING(i)) { /* * we split the 64bit value according to * counter width */ val = ctx->ctx_pmds[i].val & ovfl_mask; ctx->ctx_pmds[i].val &= ~ovfl_mask; } else { val = ctx->ctx_pmds[i].val; } ia64_set_pmd(i, val); DPRINT(("pmd[%d]=0x%lx hw_pmd=0x%lx\n", i, ctx->ctx_pmds[i].val, val)); } /* * restore the PMCs */ mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER; for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) { if ((mask & 0x1) == 0UL) continue; ctx->th_pmcs[i] = ctx->ctx_pmcs[i]; ia64_set_pmc(i, ctx->th_pmcs[i]); DPRINT(("[%d] pmc[%d]=0x%lx\n", task_pid_nr(task), i, ctx->th_pmcs[i])); } ia64_srlz_d(); /* * must restore DBR/IBR because could be modified while masked * XXX: need to optimize */ if (ctx->ctx_fl_using_dbreg) { pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs); pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs); } /* * now restore PSR */ if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) { /* enable dcr pp */ ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP); ia64_srlz_i(); } pfm_set_psr_l(psr); } static inline void pfm_save_pmds(unsigned long *pmds, unsigned long mask) { int i; ia64_srlz_d(); for (i=0; mask; i++, mask>>=1) { if (mask & 0x1) pmds[i] = ia64_get_pmd(i); } } /* * reload from thread state (used for ctxw only) */ static inline void pfm_restore_pmds(unsigned long *pmds, unsigned long mask) { int i; unsigned long val, ovfl_val = pmu_conf->ovfl_val; for (i=0; mask; i++, mask>>=1) { if ((mask & 0x1) == 0) continue; val = PMD_IS_COUNTING(i) ? pmds[i] & ovfl_val : pmds[i]; ia64_set_pmd(i, val); } ia64_srlz_d(); } /* * propagate PMD from context to thread-state */ static inline void pfm_copy_pmds(struct task_struct *task, pfm_context_t *ctx) { unsigned long ovfl_val = pmu_conf->ovfl_val; unsigned long mask = ctx->ctx_all_pmds[0]; unsigned long val; int i; DPRINT(("mask=0x%lx\n", mask)); for (i=0; mask; i++, mask>>=1) { val = ctx->ctx_pmds[i].val; /* * We break up the 64 bit value into 2 pieces * the lower bits go to the machine state in the * thread (will be reloaded on ctxsw in). * The upper part stays in the soft-counter. */ if (PMD_IS_COUNTING(i)) { ctx->ctx_pmds[i].val = val & ~ovfl_val; val &= ovfl_val; } ctx->th_pmds[i] = val; DPRINT(("pmd[%d]=0x%lx soft_val=0x%lx\n", i, ctx->th_pmds[i], ctx->ctx_pmds[i].val)); } } /* * propagate PMC from context to thread-state */ static inline void pfm_copy_pmcs(struct task_struct *task, pfm_context_t *ctx) { unsigned long mask = ctx->ctx_all_pmcs[0]; int i; DPRINT(("mask=0x%lx\n", mask)); for (i=0; mask; i++, mask>>=1) { /* masking 0 with ovfl_val yields 0 */ ctx->th_pmcs[i] = ctx->ctx_pmcs[i]; DPRINT(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i])); } } static inline void pfm_restore_pmcs(unsigned long *pmcs, unsigned long mask) { int i; for (i=0; mask; i++, mask>>=1) { if ((mask & 0x1) == 0) continue; ia64_set_pmc(i, pmcs[i]); } ia64_srlz_d(); } static inline int pfm_uuid_cmp(pfm_uuid_t a, pfm_uuid_t b) { return memcmp(a, b, sizeof(pfm_uuid_t)); } static inline int pfm_buf_fmt_exit(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, struct pt_regs *regs) { int ret = 0; if (fmt->fmt_exit) ret = (*fmt->fmt_exit)(task, buf, regs); return ret; } static inline int pfm_buf_fmt_getsize(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags, int cpu, void *arg, unsigned long *size) { int ret = 0; if (fmt->fmt_getsize) ret = (*fmt->fmt_getsize)(task, flags, cpu, arg, size); return ret; } static inline int pfm_buf_fmt_validate(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags, int cpu, void *arg) { int ret = 0; if (fmt->fmt_validate) ret = (*fmt->fmt_validate)(task, flags, cpu, arg); return ret; } static inline int pfm_buf_fmt_init(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, unsigned int flags, int cpu, void *arg) { int ret = 0; if (fmt->fmt_init) ret = (*fmt->fmt_init)(task, buf, flags, cpu, arg); return ret; } static inline int pfm_buf_fmt_restart(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs) { int ret = 0; if (fmt->fmt_restart) ret = (*fmt->fmt_restart)(task, ctrl, buf, regs); return ret; } static inline int pfm_buf_fmt_restart_active(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs) { int ret = 0; if (fmt->fmt_restart_active) ret = (*fmt->fmt_restart_active)(task, ctrl, buf, regs); return ret; } static pfm_buffer_fmt_t * __pfm_find_buffer_fmt(pfm_uuid_t uuid) { struct list_head * pos; pfm_buffer_fmt_t * entry; list_for_each(pos, &pfm_buffer_fmt_list) { entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list); if (pfm_uuid_cmp(uuid, entry->fmt_uuid) == 0) return entry; } return NULL; } /* * find a buffer format based on its uuid */ static pfm_buffer_fmt_t * pfm_find_buffer_fmt(pfm_uuid_t uuid) { pfm_buffer_fmt_t * fmt; spin_lock(&pfm_buffer_fmt_lock); fmt = __pfm_find_buffer_fmt(uuid); spin_unlock(&pfm_buffer_fmt_lock); return fmt; } int pfm_register_buffer_fmt(pfm_buffer_fmt_t *fmt) { int ret = 0; /* some sanity checks */ if (fmt == NULL || fmt->fmt_name == NULL) return -EINVAL; /* we need at least a handler */ if (fmt->fmt_handler == NULL) return -EINVAL; /* * XXX: need check validity of fmt_arg_size */ spin_lock(&pfm_buffer_fmt_lock); if (__pfm_find_buffer_fmt(fmt->fmt_uuid)) { printk(KERN_ERR "perfmon: duplicate sampling format: %s\n", fmt->fmt_name); ret = -EBUSY; goto out; } list_add(&fmt->fmt_list, &pfm_buffer_fmt_list); printk(KERN_INFO "perfmon: added sampling format %s\n", fmt->fmt_name); out: spin_unlock(&pfm_buffer_fmt_lock); return ret; } EXPORT_SYMBOL(pfm_register_buffer_fmt); int pfm_unregister_buffer_fmt(pfm_uuid_t uuid) { pfm_buffer_fmt_t *fmt; int ret = 0; spin_lock(&pfm_buffer_fmt_lock); fmt = __pfm_find_buffer_fmt(uuid); if (!fmt) { printk(KERN_ERR "perfmon: cannot unregister format, not found\n"); ret = -EINVAL; goto out; } list_del_init(&fmt->fmt_list); printk(KERN_INFO "perfmon: removed sampling format: %s\n", fmt->fmt_name); out: spin_unlock(&pfm_buffer_fmt_lock); return ret; } EXPORT_SYMBOL(pfm_unregister_buffer_fmt); static int pfm_reserve_session(struct task_struct *task, int is_syswide, unsigned int cpu) { unsigned long flags; /* * validity checks on cpu_mask have been done upstream */ LOCK_PFS(flags); DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n", pfm_sessions.pfs_sys_sessions, pfm_sessions.pfs_task_sessions, pfm_sessions.pfs_sys_use_dbregs, is_syswide, cpu)); if (is_syswide) { /* * cannot mix system wide and per-task sessions */ if (pfm_sessions.pfs_task_sessions > 0UL) { DPRINT(("system wide not possible, %u conflicting task_sessions\n", pfm_sessions.pfs_task_sessions)); goto abort; } if (pfm_sessions.pfs_sys_session[cpu]) goto error_conflict; DPRINT(("reserving system wide session on CPU%u currently on CPU%u\n", cpu, smp_processor_id())); pfm_sessions.pfs_sys_session[cpu] = task; pfm_sessions.pfs_sys_sessions++ ; } else { if (pfm_sessions.pfs_sys_sessions) goto abort; pfm_sessions.pfs_task_sessions++; } DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n", pfm_sessions.pfs_sys_sessions, pfm_sessions.pfs_task_sessions, pfm_sessions.pfs_sys_use_dbregs, is_syswide, cpu)); /* * Force idle() into poll mode */ cpu_idle_poll_ctrl(true); UNLOCK_PFS(flags); return 0; error_conflict: DPRINT(("system wide not possible, conflicting session [%d] on CPU%d\n", task_pid_nr(pfm_sessions.pfs_sys_session[cpu]), cpu)); abort: UNLOCK_PFS(flags); return -EBUSY; } static int pfm_unreserve_session(pfm_context_t *ctx, int is_syswide, unsigned int cpu) { unsigned long flags; /* * validity checks on cpu_mask have been done upstream */ LOCK_PFS(flags); DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n", pfm_sessions.pfs_sys_sessions, pfm_sessions.pfs_task_sessions, pfm_sessions.pfs_sys_use_dbregs, is_syswide, cpu)); if (is_syswide) { pfm_sessions.pfs_sys_session[cpu] = NULL; /* * would not work with perfmon+more than one bit in cpu_mask */ if (ctx && ctx->ctx_fl_using_dbreg) { if (pfm_sessions.pfs_sys_use_dbregs == 0) { printk(KERN_ERR "perfmon: invalid release for ctx %p sys_use_dbregs=0\n", ctx); } else { pfm_sessions.pfs_sys_use_dbregs--; } } pfm_sessions.pfs_sys_sessions--; } else { pfm_sessions.pfs_task_sessions--; } DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n", pfm_sessions.pfs_sys_sessions, pfm_sessions.pfs_task_sessions, pfm_sessions.pfs_sys_use_dbregs, is_syswide, cpu)); /* Undo forced polling. Last session reenables pal_halt */ cpu_idle_poll_ctrl(false); UNLOCK_PFS(flags); return 0; } /* * removes virtual mapping of the sampling buffer. * IMPORTANT: cannot be called with interrupts disable, e.g. inside * a PROTECT_CTX() section. */ static int pfm_remove_smpl_mapping(void *vaddr, unsigned long size) { struct task_struct *task = current; int r; /* sanity checks */ if (task->mm == NULL || size == 0UL || vaddr == NULL) { printk(KERN_ERR "perfmon: pfm_remove_smpl_mapping [%d] invalid context mm=%p\n", task_pid_nr(task), task->mm); return -EINVAL; } DPRINT(("smpl_vaddr=%p size=%lu\n", vaddr, size)); /* * does the actual unmapping */ r = vm_munmap((unsigned long)vaddr, size); if (r !=0) { printk(KERN_ERR "perfmon: [%d] unable to unmap sampling buffer @%p size=%lu\n", task_pid_nr(task), vaddr, size); } DPRINT(("do_unmap(%p, %lu)=%d\n", vaddr, size, r)); return 0; } /* * free actual physical storage used by sampling buffer */ #if 0 static int pfm_free_smpl_buffer(pfm_context_t *ctx) { pfm_buffer_fmt_t *fmt; if (ctx->ctx_smpl_hdr == NULL) goto invalid_free; /* * we won't use the buffer format anymore */ fmt = ctx->ctx_buf_fmt; DPRINT(("sampling buffer @%p size %lu vaddr=%p\n", ctx->ctx_smpl_hdr, ctx->ctx_smpl_size, ctx->ctx_smpl_vaddr)); pfm_buf_fmt_exit(fmt, current, NULL, NULL); /* * free the buffer */ pfm_rvfree(ctx->ctx_smpl_hdr, ctx->ctx_smpl_size); ctx->ctx_smpl_hdr = NULL; ctx->ctx_smpl_size = 0UL; return 0; invalid_free: printk(KERN_ERR "perfmon: pfm_free_smpl_buffer [%d] no buffer\n", task_pid_nr(current)); return -EINVAL; } #endif static inline void pfm_exit_smpl_buffer(pfm_buffer_fmt_t *fmt) { if (fmt == NULL) return; pfm_buf_fmt_exit(fmt, current, NULL, NULL); } /* * pfmfs should _never_ be mounted by userland - too much of security hassle, * no real gain from having the whole whorehouse mounted. So we don't need * any operations on the root directory. However, we need a non-trivial * d_name - pfm: will go nicely and kill the special-casing in procfs. */ static struct vfsmount *pfmfs_mnt __read_mostly; static int __init init_pfm_fs(void) { int err = register_filesystem(&pfm_fs_type); if (!err) { pfmfs_mnt = kern_mount(&pfm_fs_type); err = PTR_ERR(pfmfs_mnt); if (IS_ERR(pfmfs_mnt)) unregister_filesystem(&pfm_fs_type); else err = 0; } return err; } static ssize_t pfm_read(struct file *filp, char __user *buf, size_t size, loff_t *ppos) { pfm_context_t *ctx; pfm_msg_t *msg; ssize_t ret; unsigned long flags; DECLARE_WAITQUEUE(wait, current); if (PFM_IS_FILE(filp) == 0) { printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current)); return -EINVAL; } ctx = filp->private_data; if (ctx == NULL) { printk(KERN_ERR "perfmon: pfm_read: NULL ctx [%d]\n", task_pid_nr(current)); return -EINVAL; } /* * check even when there is no message */ if (size < sizeof(pfm_msg_t)) { DPRINT(("message is too small ctx=%p (>=%ld)\n", ctx, sizeof(pfm_msg_t))); return -EINVAL; } PROTECT_CTX(ctx, flags); /* * put ourselves on the wait queue */ add_wait_queue(&ctx->ctx_msgq_wait, &wait); for(;;) { /* * check wait queue */ set_current_state(TASK_INTERRUPTIBLE); DPRINT(("head=%d tail=%d\n", ctx->ctx_msgq_head, ctx->ctx_msgq_tail)); ret = 0; if(PFM_CTXQ_EMPTY(ctx) == 0) break; UNPROTECT_CTX(ctx, flags); /* * check non-blocking read */ ret = -EAGAIN; if(filp->f_flags & O_NONBLOCK) break; /* * check pending signals */ if(signal_pending(current)) { ret = -EINTR; break; } /* * no message, so wait */ schedule(); PROTECT_CTX(ctx, flags); } DPRINT(("[%d] back to running ret=%ld\n", task_pid_nr(current), ret)); set_current_state(TASK_RUNNING); remove_wait_queue(&ctx->ctx_msgq_wait, &wait); if (ret < 0) goto abort; ret = -EINVAL; msg = pfm_get_next_msg(ctx); if (msg == NULL) { printk(KERN_ERR "perfmon: pfm_read no msg for ctx=%p [%d]\n", ctx, task_pid_nr(current)); goto abort_locked; } DPRINT(("fd=%d type=%d\n", msg->pfm_gen_msg.msg_ctx_fd, msg->pfm_gen_msg.msg_type)); ret = -EFAULT; if(copy_to_user(buf, msg, sizeof(pfm_msg_t)) == 0) ret = sizeof(pfm_msg_t); abort_locked: UNPROTECT_CTX(ctx, flags); abort: return ret; } static ssize_t pfm_write(struct file *file, const char __user *ubuf, size_t size, loff_t *ppos) { DPRINT(("pfm_write called\n")); return -EINVAL; } static unsigned int pfm_poll(struct file *filp, poll_table * wait) { pfm_context_t *ctx; unsigned long flags; unsigned int mask = 0; if (PFM_IS_FILE(filp) == 0) { printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current)); return 0; } ctx = filp->private_data; if (ctx == NULL) { printk(KERN_ERR "perfmon: pfm_poll: NULL ctx [%d]\n", task_pid_nr(current)); return 0; } DPRINT(("pfm_poll ctx_fd=%d before poll_wait\n", ctx->ctx_fd)); poll_wait(filp, &ctx->ctx_msgq_wait, wait); PROTECT_CTX(ctx, flags); if (PFM_CTXQ_EMPTY(ctx) == 0) mask = POLLIN | POLLRDNORM; UNPROTECT_CTX(ctx, flags); DPRINT(("pfm_poll ctx_fd=%d mask=0x%x\n", ctx->ctx_fd, mask)); return mask; } static long pfm_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { DPRINT(("pfm_ioctl called\n")); return -EINVAL; } /* * interrupt cannot be masked when coming here */ static inline int pfm_do_fasync(int fd, struct file *filp, pfm_context_t *ctx, int on) { int ret; ret = fasync_helper (fd, filp, on, &ctx->ctx_async_queue); DPRINT(("pfm_fasync called by [%d] on ctx_fd=%d on=%d async_queue=%p ret=%d\n", task_pid_nr(current), fd, on, ctx->ctx_async_queue, ret)); return ret; } static int pfm_fasync(int fd, struct file *filp, int on) { pfm_context_t *ctx; int ret; if (PFM_IS_FILE(filp) == 0) { printk(KERN_ERR "perfmon: pfm_fasync bad magic [%d]\n", task_pid_nr(current)); return -EBADF; } ctx = filp->private_data; if (ctx == NULL) { printk(KERN_ERR "perfmon: pfm_fasync NULL ctx [%d]\n", task_pid_nr(current)); return -EBADF; } /* * we cannot mask interrupts during this call because this may * may go to sleep if memory is not readily avalaible. * * We are protected from the conetxt disappearing by the get_fd()/put_fd() * done in caller. Serialization of this function is ensured by caller. */ ret = pfm_do_fasync(fd, filp, ctx, on); DPRINT(("pfm_fasync called on ctx_fd=%d on=%d async_queue=%p ret=%d\n", fd, on, ctx->ctx_async_queue, ret)); return ret; } #ifdef CONFIG_SMP /* * this function is exclusively called from pfm_close(). * The context is not protected at that time, nor are interrupts * on the remote CPU. That's necessary to avoid deadlocks. */ static void pfm_syswide_force_stop(void *info) { pfm_context_t *ctx = (pfm_context_t *)info; struct pt_regs *regs = task_pt_regs(current); struct task_struct *owner; unsigned long flags; int ret; if (ctx->ctx_cpu != smp_processor_id()) { printk(KERN_ERR "perfmon: pfm_syswide_force_stop for CPU%d but on CPU%d\n", ctx->ctx_cpu, smp_processor_id()); return; } owner = GET_PMU_OWNER(); if (owner != ctx->ctx_task) { printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected owner [%d] instead of [%d]\n", smp_processor_id(), task_pid_nr(owner), task_pid_nr(ctx->ctx_task)); return; } if (GET_PMU_CTX() != ctx) { printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected ctx %p instead of %p\n", smp_processor_id(), GET_PMU_CTX(), ctx); return; } DPRINT(("on CPU%d forcing system wide stop for [%d]\n", smp_processor_id(), task_pid_nr(ctx->ctx_task))); /* * the context is already protected in pfm_close(), we simply * need to mask interrupts to avoid a PMU interrupt race on * this CPU */ local_irq_save(flags); ret = pfm_context_unload(ctx, NULL, 0, regs); if (ret) { DPRINT(("context_unload returned %d\n", ret)); } /* * unmask interrupts, PMU interrupts are now spurious here */ local_irq_restore(flags); } static void pfm_syswide_cleanup_other_cpu(pfm_context_t *ctx) { int ret; DPRINT(("calling CPU%d for cleanup\n", ctx->ctx_cpu)); ret = smp_call_function_single(ctx->ctx_cpu, pfm_syswide_force_stop, ctx, 1); DPRINT(("called CPU%d for cleanup ret=%d\n", ctx->ctx_cpu, ret)); } #endif /* CONFIG_SMP */ /* * called for each close(). Partially free resources. * When caller is self-monitoring, the context is unloaded. */ static int pfm_flush(struct file *filp, fl_owner_t id) { pfm_context_t *ctx; struct task_struct *task; struct pt_regs *regs; unsigned long flags; unsigned long smpl_buf_size = 0UL; void *smpl_buf_vaddr = NULL; int state, is_system; if (PFM_IS_FILE(filp) == 0) { DPRINT(("bad magic for\n")); return -EBADF; } ctx = filp->private_data; if (ctx == NULL) { printk(KERN_ERR "perfmon: pfm_flush: NULL ctx [%d]\n", task_pid_nr(current)); return -EBADF; } /* * remove our file from the async queue, if we use this mode. * This can be done without the context being protected. We come * here when the context has become unreachable by other tasks. * * We may still have active monitoring at this point and we may * end up in pfm_overflow_handler(). However, fasync_helper() * operates with interrupts disabled and it cleans up the * queue. If the PMU handler is called prior to entering * fasync_helper() then it will send a signal. If it is * invoked after, it will find an empty queue and no * signal will be sent. In both case, we are safe */ PROTECT_CTX(ctx, flags); state = ctx->ctx_state; is_system = ctx->ctx_fl_system; task = PFM_CTX_TASK(ctx); regs = task_pt_regs(task); DPRINT(("ctx_state=%d is_current=%d\n", state, task == current ? 1 : 0)); /* * if state == UNLOADED, then task is NULL */ /* * we must stop and unload because we are losing access to the context. */ if (task == current) { #ifdef CONFIG_SMP /* * the task IS the owner but it migrated to another CPU: that's bad * but we must handle this cleanly. Unfortunately, the kernel does * not provide a mechanism to block migration (while the context is loaded). * * We need to release the resource on the ORIGINAL cpu. */ if (is_system && ctx->ctx_cpu != smp_processor_id()) { DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu)); /* * keep context protected but unmask interrupt for IPI */ local_irq_restore(flags); pfm_syswide_cleanup_other_cpu(ctx); /* * restore interrupt masking */ local_irq_save(flags); /* * context is unloaded at this point */ } else #endif /* CONFIG_SMP */ { DPRINT(("forcing unload\n")); /* * stop and unload, returning with state UNLOADED * and session unreserved. */ pfm_context_unload(ctx, NULL, 0, regs); DPRINT(("ctx_state=%d\n", ctx->ctx_state)); } } /* * remove virtual mapping, if any, for the calling task. * cannot reset ctx field until last user is calling close(). * * ctx_smpl_vaddr must never be cleared because it is needed * by every task with access to the context * * When called from do_exit(), the mm context is gone already, therefore * mm is NULL, i.e., the VMA is already gone and we do not have to * do anything here */ if (ctx->ctx_smpl_vaddr && current->mm) { smpl_buf_vaddr = ctx->ctx_smpl_vaddr; smpl_buf_size = ctx->ctx_smpl_size; } UNPROTECT_CTX(ctx, flags); /* * if there was a mapping, then we systematically remove it * at this point. Cannot be done inside critical section * because some VM function reenables interrupts. * */ if (smpl_buf_vaddr) pfm_remove_smpl_mapping(smpl_buf_vaddr, smpl_buf_size); return 0; } /* * called either on explicit close() or from exit_files(). * Only the LAST user of the file gets to this point, i.e., it is * called only ONCE. * * IMPORTANT: we get called ONLY when the refcnt on the file gets to zero * (fput()),i.e, last task to access the file. Nobody else can access the * file at this point. * * When called from exit_files(), the VMA has been freed because exit_mm() * is executed before exit_files(). * * When called from exit_files(), the current task is not yet ZOMBIE but we * flush the PMU state to the context. */ static int pfm_close(struct inode *inode, struct file *filp) { pfm_context_t *ctx; struct task_struct *task; struct pt_regs *regs; DECLARE_WAITQUEUE(wait, current); unsigned long flags; unsigned long smpl_buf_size = 0UL; void *smpl_buf_addr = NULL; int free_possible = 1; int state, is_system; DPRINT(("pfm_close called private=%p\n", filp->private_data)); if (PFM_IS_FILE(filp) == 0) { DPRINT(("bad magic\n")); return -EBADF; } ctx = filp->private_data; if (ctx == NULL) { printk(KERN_ERR "perfmon: pfm_close: NULL ctx [%d]\n", task_pid_nr(current)); return -EBADF; } PROTECT_CTX(ctx, flags); state = ctx->ctx_state; is_system = ctx->ctx_fl_system; task = PFM_CTX_TASK(ctx); regs = task_pt_regs(task); DPRINT(("ctx_state=%d is_current=%d\n", state, task == current ? 1 : 0)); /* * if task == current, then pfm_flush() unloaded the context */ if (state == PFM_CTX_UNLOADED) goto doit; /* * context is loaded/masked and task != current, we need to * either force an unload or go zombie */ /* * The task is currently blocked or will block after an overflow. * we must force it to wakeup to get out of the * MASKED state and transition to the unloaded state by itself. * * This situation is only possible for per-task mode */ if (state == PFM_CTX_MASKED && CTX_OVFL_NOBLOCK(ctx) == 0) { /* * set a "partial" zombie state to be checked * upon return from down() in pfm_handle_work(). * * We cannot use the ZOMBIE state, because it is checked * by pfm_load_regs() which is called upon wakeup from down(). * In such case, it would free the context and then we would * return to pfm_handle_work() which would access the * stale context. Instead, we set a flag invisible to pfm_load_regs() * but visible to pfm_handle_work(). * * For some window of time, we have a zombie context with * ctx_state = MASKED and not ZOMBIE */ ctx->ctx_fl_going_zombie = 1; /* * force task to wake up from MASKED state */ complete(&ctx->ctx_restart_done); DPRINT(("waking up ctx_state=%d\n", state)); /* * put ourself to sleep waiting for the other * task to report completion * * the context is protected by mutex, therefore there * is no risk of being notified of completion before * begin actually on the waitq. */ set_current_state(TASK_INTERRUPTIBLE); add_wait_queue(&ctx->ctx_zombieq, &wait); UNPROTECT_CTX(ctx, flags); /* * XXX: check for signals : * - ok for explicit close * - not ok when coming from exit_files() */ schedule(); PROTECT_CTX(ctx, flags); remove_wait_queue(&ctx->ctx_zombieq, &wait); set_current_state(TASK_RUNNING); /* * context is unloaded at this point */ DPRINT(("after zombie wakeup ctx_state=%d for\n", state)); } else if (task != current) { #ifdef CONFIG_SMP /* * switch context to zombie state */ ctx->ctx_state = PFM_CTX_ZOMBIE; DPRINT(("zombie ctx for [%d]\n", task_pid_nr(task))); /* * cannot free the context on the spot. deferred until * the task notices the ZOMBIE state */ free_possible = 0; #else pfm_context_unload(ctx, NULL, 0, regs); #endif } doit: /* reload state, may have changed during opening of critical section */ state = ctx->ctx_state; /* * the context is still attached to a task (possibly current) * we cannot destroy it right now */ /* * we must free the sampling buffer right here because * we cannot rely on it being cleaned up later by the * monitored task. It is not possible to free vmalloc'ed * memory in pfm_load_regs(). Instead, we remove the buffer * now. should there be subsequent PMU overflow originally * meant for sampling, the will be converted to spurious * and that's fine because the monitoring tools is gone anyway. */ if (ctx->ctx_smpl_hdr) { smpl_buf_addr = ctx->ctx_smpl_hdr; smpl_buf_size = ctx->ctx_smpl_size; /* no more sampling */ ctx->ctx_smpl_hdr = NULL; ctx->ctx_fl_is_sampling = 0; } DPRINT(("ctx_state=%d free_possible=%d addr=%p size=%lu\n", state, free_possible, smpl_buf_addr, smpl_buf_size)); if (smpl_buf_addr) pfm_exit_smpl_buffer(ctx->ctx_buf_fmt); /* * UNLOADED that the session has already been unreserved. */ if (state == PFM_CTX_ZOMBIE) { pfm_unreserve_session(ctx, ctx->ctx_fl_system , ctx->ctx_cpu); } /* * disconnect file descriptor from context must be done * before we unlock. */ filp->private_data = NULL; /* * if we free on the spot, the context is now completely unreachable * from the callers side. The monitored task side is also cut, so we * can freely cut. * * If we have a deferred free, only the caller side is disconnected. */ UNPROTECT_CTX(ctx, flags); /* * All memory free operations (especially for vmalloc'ed memory) * MUST be done with interrupts ENABLED. */ if (smpl_buf_addr) pfm_rvfree(smpl_buf_addr, smpl_buf_size); /* * return the memory used by the context */ if (free_possible) pfm_context_free(ctx); return 0; } static int pfm_no_open(struct inode *irrelevant, struct file *dontcare) { DPRINT(("pfm_no_open called\n")); return -ENXIO; } static const struct file_operations pfm_file_ops = { .llseek = no_llseek, .read = pfm_read, .write = pfm_write, .poll = pfm_poll, .unlocked_ioctl = pfm_ioctl, .open = pfm_no_open, /* special open code to disallow open via /proc */ .fasync = pfm_fasync, .release = pfm_close, .flush = pfm_flush }; static char *pfmfs_dname(struct dentry *dentry, char *buffer, int buflen) { return dynamic_dname(dentry, buffer, buflen, "pfm:[%lu]", dentry->d_inode->i_ino); } static const struct dentry_operations pfmfs_dentry_operations = { .d_delete = always_delete_dentry, .d_dname = pfmfs_dname, }; static struct file * pfm_alloc_file(pfm_context_t *ctx) { struct file *file; struct inode *inode; struct path path; struct qstr this = { .name = "" }; /* * allocate a new inode */ inode = new_inode(pfmfs_mnt->mnt_sb); if (!inode) return ERR_PTR(-ENOMEM); DPRINT(("new inode ino=%ld @%p\n", inode->i_ino, inode)); inode->i_mode = S_IFCHR|S_IRUGO; inode->i_uid = current_fsuid(); inode->i_gid = current_fsgid(); /* * allocate a new dcache entry */ path.dentry = d_alloc(pfmfs_mnt->mnt_root, &this); if (!path.dentry) { iput(inode); return ERR_PTR(-ENOMEM); } path.mnt = mntget(pfmfs_mnt); d_add(path.dentry, inode); file = alloc_file(&path, FMODE_READ, &pfm_file_ops); if (IS_ERR(file)) { path_put(&path); return file; } file->f_flags = O_RDONLY; file->private_data = ctx; return file; } static int pfm_remap_buffer(struct vm_area_struct *vma, unsigned long buf, unsigned long addr, unsigned long size) { DPRINT(("CPU%d buf=0x%lx addr=0x%lx size=%ld\n", smp_processor_id(), buf, addr, size)); while (size > 0) { unsigned long pfn = ia64_tpa(buf) >> PAGE_SHIFT; if (remap_pfn_range(vma, addr, pfn, PAGE_SIZE, PAGE_READONLY)) return -ENOMEM; addr += PAGE_SIZE; buf += PAGE_SIZE; size -= PAGE_SIZE; } return 0; } /* * allocate a sampling buffer and remaps it into the user address space of the task */ static int pfm_smpl_buffer_alloc(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned long rsize, void **user_vaddr) { struct mm_struct *mm = task->mm; struct vm_area_struct *vma = NULL; unsigned long size; void *smpl_buf; /* * the fixed header + requested size and align to page boundary */ size = PAGE_ALIGN(rsize); DPRINT(("sampling buffer rsize=%lu size=%lu bytes\n", rsize, size)); /* * check requested size to avoid Denial-of-service attacks * XXX: may have to refine this test * Check against address space limit. * * if ((mm->total_vm << PAGE_SHIFT) + len> task->rlim[RLIMIT_AS].rlim_cur) * return -ENOMEM; */ if (size > task_rlimit(task, RLIMIT_MEMLOCK)) return -ENOMEM; /* * We do the easy to undo allocations first. * * pfm_rvmalloc(), clears the buffer, so there is no leak */ smpl_buf = pfm_rvmalloc(size); if (smpl_buf == NULL) { DPRINT(("Can't allocate sampling buffer\n")); return -ENOMEM; } DPRINT(("smpl_buf @%p\n", smpl_buf)); /* allocate vma */ vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); if (!vma) { DPRINT(("Cannot allocate vma\n")); goto error_kmem; } INIT_LIST_HEAD(&vma->anon_vma_chain); /* * partially initialize the vma for the sampling buffer */ vma->vm_mm = mm; vma->vm_file = get_file(filp); vma->vm_flags = VM_READ|VM_MAYREAD|VM_DONTEXPAND|VM_DONTDUMP; vma->vm_page_prot = PAGE_READONLY; /* XXX may need to change */ /* * Now we have everything we need and we can initialize * and connect all the data structures */ ctx->ctx_smpl_hdr = smpl_buf; ctx->ctx_smpl_size = size; /* aligned size */ /* * Let's do the difficult operations next. * * now we atomically find some area in the address space and * remap the buffer in it. */ down_write(&task->mm->mmap_sem); /* find some free area in address space, must have mmap sem held */ vma->vm_start = get_unmapped_area(NULL, 0, size, 0, MAP_PRIVATE|MAP_ANONYMOUS); if (IS_ERR_VALUE(vma->vm_start)) { DPRINT(("Cannot find unmapped area for size %ld\n", size)); up_write(&task->mm->mmap_sem); goto error; } vma->vm_end = vma->vm_start + size; vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; DPRINT(("aligned size=%ld, hdr=%p mapped @0x%lx\n", size, ctx->ctx_smpl_hdr, vma->vm_start)); /* can only be applied to current task, need to have the mm semaphore held when called */ if (pfm_remap_buffer(vma, (unsigned long)smpl_buf, vma->vm_start, size)) { DPRINT(("Can't remap buffer\n")); up_write(&task->mm->mmap_sem); goto error; } /* * now insert the vma in the vm list for the process, must be * done with mmap lock held */ insert_vm_struct(mm, vma); vm_stat_account(vma->vm_mm, vma->vm_flags, vma->vm_file, vma_pages(vma)); up_write(&task->mm->mmap_sem); /* * keep track of user level virtual address */ ctx->ctx_smpl_vaddr = (void *)vma->vm_start; *(unsigned long *)user_vaddr = vma->vm_start; return 0; error: kmem_cache_free(vm_area_cachep, vma); error_kmem: pfm_rvfree(smpl_buf, size); return -ENOMEM; } /* * XXX: do something better here */ static int pfm_bad_permissions(struct task_struct *task) { const struct cred *tcred; kuid_t uid = current_uid(); kgid_t gid = current_gid(); int ret; rcu_read_lock(); tcred = __task_cred(task); /* inspired by ptrace_attach() */ DPRINT(("cur: uid=%d gid=%d task: euid=%d suid=%d uid=%d egid=%d sgid=%d\n", from_kuid(&init_user_ns, uid), from_kgid(&init_user_ns, gid), from_kuid(&init_user_ns, tcred->euid), from_kuid(&init_user_ns, tcred->suid), from_kuid(&init_user_ns, tcred->uid), from_kgid(&init_user_ns, tcred->egid), from_kgid(&init_user_ns, tcred->sgid))); ret = ((!uid_eq(uid, tcred->euid)) || (!uid_eq(uid, tcred->suid)) || (!uid_eq(uid, tcred->uid)) || (!gid_eq(gid, tcred->egid)) || (!gid_eq(gid, tcred->sgid)) || (!gid_eq(gid, tcred->gid))) && !capable(CAP_SYS_PTRACE); rcu_read_unlock(); return ret; } static int pfarg_is_sane(struct task_struct *task, pfarg_context_t *pfx) { int ctx_flags; /* valid signal */ ctx_flags = pfx->ctx_flags; if (ctx_flags & PFM_FL_SYSTEM_WIDE) { /* * cannot block in this mode */ if (ctx_flags & PFM_FL_NOTIFY_BLOCK) { DPRINT(("cannot use blocking mode when in system wide monitoring\n")); return -EINVAL; } } else { } /* probably more to add here */ return 0; } static int pfm_setup_buffer_fmt(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned int ctx_flags, unsigned int cpu, pfarg_context_t *arg) { pfm_buffer_fmt_t *fmt = NULL; unsigned long size = 0UL; void *uaddr = NULL; void *fmt_arg = NULL; int ret = 0; #define PFM_CTXARG_BUF_ARG(a) (pfm_buffer_fmt_t *)(a+1) /* invoke and lock buffer format, if found */ fmt = pfm_find_buffer_fmt(arg->ctx_smpl_buf_id); if (fmt == NULL) { DPRINT(("[%d] cannot find buffer format\n", task_pid_nr(task))); return -EINVAL; } /* * buffer argument MUST be contiguous to pfarg_context_t */ if (fmt->fmt_arg_size) fmt_arg = PFM_CTXARG_BUF_ARG(arg); ret = pfm_buf_fmt_validate(fmt, task, ctx_flags, cpu, fmt_arg); DPRINT(("[%d] after validate(0x%x,%d,%p)=%d\n", task_pid_nr(task), ctx_flags, cpu, fmt_arg, ret)); if (ret) goto error; /* link buffer format and context */ ctx->ctx_buf_fmt = fmt; ctx->ctx_fl_is_sampling = 1; /* assume record() is defined */ /* * check if buffer format wants to use perfmon buffer allocation/mapping service */ ret = pfm_buf_fmt_getsize(fmt, task, ctx_flags, cpu, fmt_arg, &size); if (ret) goto error; if (size) { /* * buffer is always remapped into the caller's address space */ ret = pfm_smpl_buffer_alloc(current, filp, ctx, size, &uaddr); if (ret) goto error; /* keep track of user address of buffer */ arg->ctx_smpl_vaddr = uaddr; } ret = pfm_buf_fmt_init(fmt, task, ctx->ctx_smpl_hdr, ctx_flags, cpu, fmt_arg); error: return ret; } static void pfm_reset_pmu_state(pfm_context_t *ctx) { int i; /* * install reset values for PMC. */ for (i=1; PMC_IS_LAST(i) == 0; i++) { if (PMC_IS_IMPL(i) == 0) continue; ctx->ctx_pmcs[i] = PMC_DFL_VAL(i); DPRINT(("pmc[%d]=0x%lx\n", i, ctx->ctx_pmcs[i])); } /* * PMD registers are set to 0UL when the context in memset() */ /* * On context switched restore, we must restore ALL pmc and ALL pmd even * when they are not actively used by the task. In UP, the incoming process * may otherwise pick up left over PMC, PMD state from the previous process. * As opposed to PMD, stale PMC can cause harm to the incoming * process because they may change what is being measured. * Therefore, we must systematically reinstall the entire * PMC state. In SMP, the same thing is possible on the * same CPU but also on between 2 CPUs. * * The problem with PMD is information leaking especially * to user level when psr.sp=0 * * There is unfortunately no easy way to avoid this problem * on either UP or SMP. This definitively slows down the * pfm_load_regs() function. */ /* * bitmask of all PMCs accessible to this context * * PMC0 is treated differently. */ ctx->ctx_all_pmcs[0] = pmu_conf->impl_pmcs[0] & ~0x1; /* * bitmask of all PMDs that are accessible to this context */ ctx->ctx_all_pmds[0] = pmu_conf->impl_pmds[0]; DPRINT(("<%d> all_pmcs=0x%lx all_pmds=0x%lx\n", ctx->ctx_fd, ctx->ctx_all_pmcs[0],ctx->ctx_all_pmds[0])); /* * useful in case of re-enable after disable */ ctx->ctx_used_ibrs[0] = 0UL; ctx->ctx_used_dbrs[0] = 0UL; } static int pfm_ctx_getsize(void *arg, size_t *sz) { pfarg_context_t *req = (pfarg_context_t *)arg; pfm_buffer_fmt_t *fmt; *sz = 0; if (!pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) return 0; fmt = pfm_find_buffer_fmt(req->ctx_smpl_buf_id); if (fmt == NULL) { DPRINT(("cannot find buffer format\n")); return -EINVAL; } /* get just enough to copy in user parameters */ *sz = fmt->fmt_arg_size; DPRINT(("arg_size=%lu\n", *sz)); return 0; } /* * cannot attach if : * - kernel task * - task not owned by caller * - task incompatible with context mode */ static int pfm_task_incompatible(pfm_context_t *ctx, struct task_struct *task) { /* * no kernel task or task not owner by caller */ if (task->mm == NULL) { DPRINT(("task [%d] has not memory context (kernel thread)\n", task_pid_nr(task))); return -EPERM; } if (pfm_bad_permissions(task)) { DPRINT(("no permission to attach to [%d]\n", task_pid_nr(task))); return -EPERM; } /* * cannot block in self-monitoring mode */ if (CTX_OVFL_NOBLOCK(ctx) == 0 && task == current) { DPRINT(("cannot load a blocking context on self for [%d]\n", task_pid_nr(task))); return -EINVAL; } if (task->exit_state == EXIT_ZOMBIE) { DPRINT(("cannot attach to zombie task [%d]\n", task_pid_nr(task))); return -EBUSY; } /* * always ok for self */ if (task == current) return 0; if (!task_is_stopped_or_traced(task)) { DPRINT(("cannot attach to non-stopped task [%d] state=%ld\n", task_pid_nr(task), task->state)); return -EBUSY; } /* * make sure the task is off any CPU */ wait_task_inactive(task, 0); /* more to come... */ return 0; } static int pfm_get_task(pfm_context_t *ctx, pid_t pid, struct task_struct **task) { struct task_struct *p = current; int ret; /* XXX: need to add more checks here */ if (pid < 2) return -EPERM; if (pid != task_pid_vnr(current)) { read_lock(&tasklist_lock); p = find_task_by_vpid(pid); /* make sure task cannot go away while we operate on it */ if (p) get_task_struct(p); read_unlock(&tasklist_lock); if (p == NULL) return -ESRCH; } ret = pfm_task_incompatible(ctx, p); if (ret == 0) { *task = p; } else if (p != current) { pfm_put_task(p); } return ret; } static int pfm_context_create(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs) { pfarg_context_t *req = (pfarg_context_t *)arg; struct file *filp; struct path path; int ctx_flags; int fd; int ret; /* let's check the arguments first */ ret = pfarg_is_sane(current, req); if (ret < 0) return ret; ctx_flags = req->ctx_flags; ret = -ENOMEM; fd = get_unused_fd(); if (fd < 0) return fd; ctx = pfm_context_alloc(ctx_flags); if (!ctx) goto error; filp = pfm_alloc_file(ctx); if (IS_ERR(filp)) { ret = PTR_ERR(filp); goto error_file; } req->ctx_fd = ctx->ctx_fd = fd; /* * does the user want to sample? */ if (pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) { ret = pfm_setup_buffer_fmt(current, filp, ctx, ctx_flags, 0, req); if (ret) goto buffer_error; } DPRINT(("ctx=%p flags=0x%x system=%d notify_block=%d excl_idle=%d no_msg=%d ctx_fd=%d\n", ctx, ctx_flags, ctx->ctx_fl_system, ctx->ctx_fl_block, ctx->ctx_fl_excl_idle, ctx->ctx_fl_no_msg, ctx->ctx_fd)); /* * initialize soft PMU state */ pfm_reset_pmu_state(ctx); fd_install(fd, filp); return 0; buffer_error: path = filp->f_path; put_filp(filp); path_put(&path); if (ctx->ctx_buf_fmt) { pfm_buf_fmt_exit(ctx->ctx_buf_fmt, current, NULL, regs); } error_file: pfm_context_free(ctx); error: put_unused_fd(fd); return ret; } static inline unsigned long pfm_new_counter_value (pfm_counter_t *reg, int is_long_reset) { unsigned long val = is_long_reset ? reg->long_reset : reg->short_reset; unsigned long new_seed, old_seed = reg->seed, mask = reg->mask; extern unsigned long carta_random32 (unsigned long seed); if (reg->flags & PFM_REGFL_RANDOM) { new_seed = carta_random32(old_seed); val -= (old_seed & mask); /* counter values are negative numbers! */ if ((mask >> 32) != 0) /* construct a full 64-bit random value: */ new_seed |= carta_random32(old_seed >> 32) << 32; reg->seed = new_seed; } reg->lval = val; return val; } static void pfm_reset_regs_masked(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset) { unsigned long mask = ovfl_regs[0]; unsigned long reset_others = 0UL; unsigned long val; int i; /* * now restore reset value on sampling overflowed counters */ mask >>= PMU_FIRST_COUNTER; for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) { if ((mask & 0x1UL) == 0UL) continue; ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset); reset_others |= ctx->ctx_pmds[i].reset_pmds[0]; DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val)); } /* * Now take care of resetting the other registers */ for(i = 0; reset_others; i++, reset_others >>= 1) { if ((reset_others & 0x1) == 0) continue; ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset); DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n", is_long_reset ? "long" : "short", i, val)); } } static void pfm_reset_regs(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset) { unsigned long mask = ovfl_regs[0]; unsigned long reset_others = 0UL; unsigned long val; int i; DPRINT_ovfl(("ovfl_regs=0x%lx is_long_reset=%d\n", ovfl_regs[0], is_long_reset)); if (ctx->ctx_state == PFM_CTX_MASKED) { pfm_reset_regs_masked(ctx, ovfl_regs, is_long_reset); return; } /* * now restore reset value on sampling overflowed counters */ mask >>= PMU_FIRST_COUNTER; for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) { if ((mask & 0x1UL) == 0UL) continue; val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset); reset_others |= ctx->ctx_pmds[i].reset_pmds[0]; DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val)); pfm_write_soft_counter(ctx, i, val); } /* * Now take care of resetting the other registers */ for(i = 0; reset_others; i++, reset_others >>= 1) { if ((reset_others & 0x1) == 0) continue; val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset); if (PMD_IS_COUNTING(i)) { pfm_write_soft_counter(ctx, i, val); } else { ia64_set_pmd(i, val); } DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n", is_long_reset ? "long" : "short", i, val)); } ia64_srlz_d(); } static int pfm_write_pmcs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs) { struct task_struct *task; pfarg_reg_t *req = (pfarg_reg_t *)arg; unsigned long value, pmc_pm; unsigned long smpl_pmds, reset_pmds, impl_pmds; unsigned int cnum, reg_flags, flags, pmc_type; int i, can_access_pmu = 0, is_loaded, is_system, expert_mode; int is_monitor, is_counting, state; int ret = -EINVAL; pfm_reg_check_t wr_func; #define PFM_CHECK_PMC_PM(x, y, z) ((x)->ctx_fl_system ^ PMC_PM(y, z)) state = ctx->ctx_state; is_loaded = state == PFM_CTX_LOADED ? 1 : 0; is_system = ctx->ctx_fl_system; task = ctx->ctx_task; impl_pmds = pmu_conf->impl_pmds[0]; if (state == PFM_CTX_ZOMBIE) return -EINVAL; if (is_loaded) { /* * In system wide and when the context is loaded, access can only happen * when the caller is running on the CPU being monitored by the session. * It does not have to be the owner (ctx_task) of the context per se. */ if (is_system && ctx->ctx_cpu != smp_processor_id()) { DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu)); return -EBUSY; } can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0; } expert_mode = pfm_sysctl.expert_mode; for (i = 0; i < count; i++, req++) { cnum = req->reg_num; reg_flags = req->reg_flags; value = req->reg_value; smpl_pmds = req->reg_smpl_pmds[0]; reset_pmds = req->reg_reset_pmds[0]; flags = 0; if (cnum >= PMU_MAX_PMCS) { DPRINT(("pmc%u is invalid\n", cnum)); goto error; } pmc_type = pmu_conf->pmc_desc[cnum].type; pmc_pm = (value >> pmu_conf->pmc_desc[cnum].pm_pos) & 0x1; is_counting = (pmc_type & PFM_REG_COUNTING) == PFM_REG_COUNTING ? 1 : 0; is_monitor = (pmc_type & PFM_REG_MONITOR) == PFM_REG_MONITOR ? 1 : 0; /* * we reject all non implemented PMC as well * as attempts to modify PMC[0-3] which are used * as status registers by the PMU */ if ((pmc_type & PFM_REG_IMPL) == 0 || (pmc_type & PFM_REG_CONTROL) == PFM_REG_CONTROL) { DPRINT(("pmc%u is unimplemented or no-access pmc_type=%x\n", cnum, pmc_type)); goto error; } wr_func = pmu_conf->pmc_desc[cnum].write_check; /* * If the PMC is a monitor, then if the value is not the default: * - system-wide session: PMCx.pm=1 (privileged monitor) * - per-task : PMCx.pm=0 (user monitor) */ if (is_monitor && value != PMC_DFL_VAL(cnum) && is_system ^ pmc_pm) { DPRINT(("pmc%u pmc_pm=%lu is_system=%d\n", cnum, pmc_pm, is_system)); goto error; } if (is_counting) { /* * enforce generation of overflow interrupt. Necessary on all * CPUs. */ value |= 1 << PMU_PMC_OI; if (reg_flags & PFM_REGFL_OVFL_NOTIFY) { flags |= PFM_REGFL_OVFL_NOTIFY; } if (reg_flags & PFM_REGFL_RANDOM) flags |= PFM_REGFL_RANDOM; /* verify validity of smpl_pmds */ if ((smpl_pmds & impl_pmds) != smpl_pmds) { DPRINT(("invalid smpl_pmds 0x%lx for pmc%u\n", smpl_pmds, cnum)); goto error; } /* verify validity of reset_pmds */ if ((reset_pmds & impl_pmds) != reset_pmds) { DPRINT(("invalid reset_pmds 0x%lx for pmc%u\n", reset_pmds, cnum)); goto error; } } else { if (reg_flags & (PFM_REGFL_OVFL_NOTIFY|PFM_REGFL_RANDOM)) { DPRINT(("cannot set ovfl_notify or random on pmc%u\n", cnum)); goto error; } /* eventid on non-counting monitors are ignored */ } /* * execute write checker, if any */ if (likely(expert_mode == 0 && wr_func)) { ret = (*wr_func)(task, ctx, cnum, &value, regs); if (ret) goto error; ret = -EINVAL; } /* * no error on this register */ PFM_REG_RETFLAG_SET(req->reg_flags, 0); /* * Now we commit the changes to the software state */ /* * update overflow information */ if (is_counting) { /* * full flag update each time a register is programmed */ ctx->ctx_pmds[cnum].flags = flags; ctx->ctx_pmds[cnum].reset_pmds[0] = reset_pmds; ctx->ctx_pmds[cnum].smpl_pmds[0] = smpl_pmds; ctx->ctx_pmds[cnum].eventid = req->reg_smpl_eventid; /* * Mark all PMDS to be accessed as used. * * We do not keep track of PMC because we have to * systematically restore ALL of them. * * We do not update the used_monitors mask, because * if we have not programmed them, then will be in * a quiescent state, therefore we will not need to * mask/restore then when context is MASKED. */ CTX_USED_PMD(ctx, reset_pmds); CTX_USED_PMD(ctx, smpl_pmds); /* * make sure we do not try to reset on * restart because we have established new values */ if (state == PFM_CTX_MASKED) ctx->ctx_ovfl_regs[0] &= ~1UL << cnum; } /* * Needed in case the user does not initialize the equivalent * PMD. Clearing is done indirectly via pfm_reset_pmu_state() so there is no * possible leak here. */ CTX_USED_PMD(ctx, pmu_conf->pmc_desc[cnum].dep_pmd[0]); /* * keep track of the monitor PMC that we are using. * we save the value of the pmc in ctx_pmcs[] and if * the monitoring is not stopped for the context we also * place it in the saved state area so that it will be * picked up later by the context switch code. * * The value in ctx_pmcs[] can only be changed in pfm_write_pmcs(). * * The value in th_pmcs[] may be modified on overflow, i.e., when * monitoring needs to be stopped. */ if (is_monitor) CTX_USED_MONITOR(ctx, 1UL << cnum); /* * update context state */ ctx->ctx_pmcs[cnum] = value; if (is_loaded) { /* * write thread state */ if (is_system == 0) ctx->th_pmcs[cnum] = value; /* * write hardware register if we can */ if (can_access_pmu) { ia64_set_pmc(cnum, value); } #ifdef CONFIG_SMP else { /* * per-task SMP only here * * we are guaranteed that the task is not running on the other CPU, * we indicate that this PMD will need to be reloaded if the task * is rescheduled on the CPU it ran last on. */ ctx->ctx_reload_pmcs[0] |= 1UL << cnum; } #endif } DPRINT(("pmc[%u]=0x%lx ld=%d apmu=%d flags=0x%x all_pmcs=0x%lx used_pmds=0x%lx eventid=%ld smpl_pmds=0x%lx reset_pmds=0x%lx reloads_pmcs=0x%lx used_monitors=0x%lx ovfl_regs=0x%lx\n", cnum, value, is_loaded, can_access_pmu, flags, ctx->ctx_all_pmcs[0], ctx->ctx_used_pmds[0], ctx->ctx_pmds[cnum].eventid, smpl_pmds, reset_pmds, ctx->ctx_reload_pmcs[0], ctx->ctx_used_monitors[0], ctx->ctx_ovfl_regs[0])); } /* * make sure the changes are visible */ if (can_access_pmu) ia64_srlz_d(); return 0; error: PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL); return ret; } static int pfm_write_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs) { struct task_struct *task; pfarg_reg_t *req = (pfarg_reg_t *)arg; unsigned long value, hw_value, ovfl_mask; unsigned int cnum; int i, can_access_pmu = 0, state; int is_counting, is_loaded, is_system, expert_mode; int ret = -EINVAL; pfm_reg_check_t wr_func; state = ctx->ctx_state; is_loaded = state == PFM_CTX_LOADED ? 1 : 0; is_system = ctx->ctx_fl_system; ovfl_mask = pmu_conf->ovfl_val; task = ctx->ctx_task; if (unlikely(state == PFM_CTX_ZOMBIE)) return -EINVAL; /* * on both UP and SMP, we can only write to the PMC when the task is * the owner of the local PMU. */ if (likely(is_loaded)) { /* * In system wide and when the context is loaded, access can only happen * when the caller is running on the CPU being monitored by the session. * It does not have to be the owner (ctx_task) of the context per se. */ if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) { DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu)); return -EBUSY; } can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0; } expert_mode = pfm_sysctl.expert_mode; for (i = 0; i < count; i++, req++) { cnum = req->reg_num; value = req->reg_value; if (!PMD_IS_IMPL(cnum)) { DPRINT(("pmd[%u] is unimplemented or invalid\n", cnum)); goto abort_mission; } is_counting = PMD_IS_COUNTING(cnum); wr_func = pmu_conf->pmd_desc[cnum].write_check; /* * execute write checker, if any */ if (unlikely(expert_mode == 0 && wr_func)) { unsigned long v = value; ret = (*wr_func)(task, ctx, cnum, &v, regs); if (ret) goto abort_mission; value = v; ret = -EINVAL; } /* * no error on this register */ PFM_REG_RETFLAG_SET(req->reg_flags, 0); /* * now commit changes to software state */ hw_value = value; /* * update virtualized (64bits) counter */ if (is_counting) { /* * write context state */ ctx->ctx_pmds[cnum].lval = value; /* * when context is load we use the split value */ if (is_loaded) { hw_value = value & ovfl_mask; value = value & ~ovfl_mask; } } /* * update reset values (not just for counters) */ ctx->ctx_pmds[cnum].long_reset = req->reg_long_reset; ctx->ctx_pmds[cnum].short_reset = req->reg_short_reset; /* * update randomization parameters (not just for counters) */ ctx->ctx_pmds[cnum].seed = req->reg_random_seed; ctx->ctx_pmds[cnum].mask = req->reg_random_mask; /* * update context value */ ctx->ctx_pmds[cnum].val = value; /* * Keep track of what we use * * We do not keep track of PMC because we have to * systematically restore ALL of them. */ CTX_USED_PMD(ctx, PMD_PMD_DEP(cnum)); /* * mark this PMD register used as well */ CTX_USED_PMD(ctx, RDEP(cnum)); /* * make sure we do not try to reset on * restart because we have established new values */ if (is_counting && state == PFM_CTX_MASKED) { ctx->ctx_ovfl_regs[0] &= ~1UL << cnum; } if (is_loaded) { /* * write thread state */ if (is_system == 0) ctx->th_pmds[cnum] = hw_value; /* * write hardware register if we can */ if (can_access_pmu) { ia64_set_pmd(cnum, hw_value); } else { #ifdef CONFIG_SMP /* * we are guaranteed that the task is not running on the other CPU, * we indicate that this PMD will need to be reloaded if the task * is rescheduled on the CPU it ran last on. */ ctx->ctx_reload_pmds[0] |= 1UL << cnum; #endif } } DPRINT(("pmd[%u]=0x%lx ld=%d apmu=%d, hw_value=0x%lx ctx_pmd=0x%lx short_reset=0x%lx " "long_reset=0x%lx notify=%c seed=0x%lx mask=0x%lx used_pmds=0x%lx reset_pmds=0x%lx reload_pmds=0x%lx all_pmds=0x%lx ovfl_regs=0x%lx\n", cnum, value, is_loaded, can_access_pmu, hw_value, ctx->ctx_pmds[cnum].val, ctx->ctx_pmds[cnum].short_reset, ctx->ctx_pmds[cnum].long_reset, PMC_OVFL_NOTIFY(ctx, cnum) ? 'Y':'N', ctx->ctx_pmds[cnum].seed, ctx->ctx_pmds[cnum].mask, ctx->ctx_used_pmds[0], ctx->ctx_pmds[cnum].reset_pmds[0], ctx->ctx_reload_pmds[0], ctx->ctx_all_pmds[0], ctx->ctx_ovfl_regs[0])); } /* * make changes visible */ if (can_access_pmu) ia64_srlz_d(); return 0; abort_mission: /* * for now, we have only one possibility for error */ PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL); return ret; } /* * By the way of PROTECT_CONTEXT(), interrupts are masked while we are in this function. * Therefore we know, we do not have to worry about the PMU overflow interrupt. If an * interrupt is delivered during the call, it will be kept pending until we leave, making * it appears as if it had been generated at the UNPROTECT_CONTEXT(). At least we are * guaranteed to return consistent data to the user, it may simply be old. It is not * trivial to treat the overflow while inside the call because you may end up in * some module sampling buffer code causing deadlocks. */ static int pfm_read_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs) { struct task_struct *task; unsigned long val = 0UL, lval, ovfl_mask, sval; pfarg_reg_t *req = (pfarg_reg_t *)arg; unsigned int cnum, reg_flags = 0; int i, can_access_pmu = 0, state; int is_loaded, is_system, is_counting, expert_mode; int ret = -EINVAL; pfm_reg_check_t rd_func; /* * access is possible when loaded only for * self-monitoring tasks or in UP mode */ state = ctx->ctx_state; is_loaded = state == PFM_CTX_LOADED ? 1 : 0; is_system = ctx->ctx_fl_system; ovfl_mask = pmu_conf->ovfl_val; task = ctx->ctx_task; if (state == PFM_CTX_ZOMBIE) return -EINVAL; if (likely(is_loaded)) { /* * In system wide and when the context is loaded, access can only happen * when the caller is running on the CPU being monitored by the session. * It does not have to be the owner (ctx_task) of the context per se. */ if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) { DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu)); return -EBUSY; } /* * this can be true when not self-monitoring only in UP */ can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0; if (can_access_pmu) ia64_srlz_d(); } expert_mode = pfm_sysctl.expert_mode; DPRINT(("ld=%d apmu=%d ctx_state=%d\n", is_loaded, can_access_pmu, state)); /* * on both UP and SMP, we can only read the PMD from the hardware register when * the task is the owner of the local PMU. */ for (i = 0; i < count; i++, req++) { cnum = req->reg_num; reg_flags = req->reg_flags; if (unlikely(!PMD_IS_IMPL(cnum))) goto error; /* * we can only read the register that we use. That includes * the one we explicitly initialize AND the one we want included * in the sampling buffer (smpl_regs). * * Having this restriction allows optimization in the ctxsw routine * without compromising security (leaks) */ if (unlikely(!CTX_IS_USED_PMD(ctx, cnum))) goto error; sval = ctx->ctx_pmds[cnum].val; lval = ctx->ctx_pmds[cnum].lval; is_counting = PMD_IS_COUNTING(cnum); /* * If the task is not the current one, then we check if the * PMU state is still in the local live register due to lazy ctxsw. * If true, then we read directly from the registers. */ if (can_access_pmu){ val = ia64_get_pmd(cnum); } else { /* * context has been saved * if context is zombie, then task does not exist anymore. * In this case, we use the full value saved in the context (pfm_flush_regs()). */ val = is_loaded ? ctx->th_pmds[cnum] : 0UL; } rd_func = pmu_conf->pmd_desc[cnum].read_check; if (is_counting) { /* * XXX: need to check for overflow when loaded */ val &= ovfl_mask; val += sval; } /* * execute read checker, if any */ if (unlikely(expert_mode == 0 && rd_func)) { unsigned long v = val; ret = (*rd_func)(ctx->ctx_task, ctx, cnum, &v, regs); if (ret) goto error; val = v; ret = -EINVAL; } PFM_REG_RETFLAG_SET(reg_flags, 0); DPRINT(("pmd[%u]=0x%lx\n", cnum, val)); /* * update register return value, abort all if problem during copy. * we only modify the reg_flags field. no check mode is fine because * access has been verified upfront in sys_perfmonctl(). */ req->reg_value = val; req->reg_flags = reg_flags; req->reg_last_reset_val = lval; } return 0; error: PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL); return ret; } int pfm_mod_write_pmcs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs) { pfm_context_t *ctx; if (req == NULL) return -EINVAL; ctx = GET_PMU_CTX(); if (ctx == NULL) return -EINVAL; /* * for now limit to current task, which is enough when calling * from overflow handler */ if (task != current && ctx->ctx_fl_system == 0) return -EBUSY; return pfm_write_pmcs(ctx, req, nreq, regs); } EXPORT_SYMBOL(pfm_mod_write_pmcs); int pfm_mod_read_pmds(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs) { pfm_context_t *ctx; if (req == NULL) return -EINVAL; ctx = GET_PMU_CTX(); if (ctx == NULL) return -EINVAL; /* * for now limit to current task, which is enough when calling * from overflow handler */ if (task != current && ctx->ctx_fl_system == 0) return -EBUSY; return pfm_read_pmds(ctx, req, nreq, regs); } EXPORT_SYMBOL(pfm_mod_read_pmds); /* * Only call this function when a process it trying to * write the debug registers (reading is always allowed) */ int pfm_use_debug_registers(struct task_struct *task) { pfm_context_t *ctx = task->thread.pfm_context; unsigned long flags; int ret = 0; if (pmu_conf->use_rr_dbregs == 0) return 0; DPRINT(("called for [%d]\n", task_pid_nr(task))); /* * do it only once */ if (task->thread.flags & IA64_THREAD_DBG_VALID) return 0; /* * Even on SMP, we do not need to use an atomic here because * the only way in is via ptrace() and this is possible only when the * process is stopped. Even in the case where the ctxsw out is not totally * completed by the time we come here, there is no way the 'stopped' process * could be in the middle of fiddling with the pfm_write_ibr_dbr() routine. * So this is always safe. */ if (ctx && ctx->ctx_fl_using_dbreg == 1) return -1; LOCK_PFS(flags); /* * We cannot allow setting breakpoints when system wide monitoring * sessions are using the debug registers. */ if (pfm_sessions.pfs_sys_use_dbregs> 0) ret = -1; else pfm_sessions.pfs_ptrace_use_dbregs++; DPRINT(("ptrace_use_dbregs=%u sys_use_dbregs=%u by [%d] ret = %d\n", pfm_sessions.pfs_ptrace_use_dbregs, pfm_sessions.pfs_sys_use_dbregs, task_pid_nr(task), ret)); UNLOCK_PFS(flags); return ret; } /* * This function is called for every task that exits with the * IA64_THREAD_DBG_VALID set. This indicates a task which was * able to use the debug registers for debugging purposes via * ptrace(). Therefore we know it was not using them for * performance monitoring, so we only decrement the number * of "ptraced" debug register users to keep the count up to date */ int pfm_release_debug_registers(struct task_struct *task) { unsigned long flags; int ret; if (pmu_conf->use_rr_dbregs == 0) return 0; LOCK_PFS(flags); if (pfm_sessions.pfs_ptrace_use_dbregs == 0) { printk(KERN_ERR "perfmon: invalid release for [%d] ptrace_use_dbregs=0\n", task_pid_nr(task)); ret = -1; } else { pfm_sessions.pfs_ptrace_use_dbregs--; ret = 0; } UNLOCK_PFS(flags); return ret; } static int pfm_restart(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs) { struct task_struct *task; pfm_buffer_fmt_t *fmt; pfm_ovfl_ctrl_t rst_ctrl; int state, is_system; int ret = 0; state = ctx->ctx_state; fmt = ctx->ctx_buf_fmt; is_system = ctx->ctx_fl_system; task = PFM_CTX_TASK(ctx); switch(state) { case PFM_CTX_MASKED: break; case PFM_CTX_LOADED: if (CTX_HAS_SMPL(ctx) && fmt->fmt_restart_active) break; /* fall through */ case PFM_CTX_UNLOADED: case PFM_CTX_ZOMBIE: DPRINT(("invalid state=%d\n", state)); return -EBUSY; default: DPRINT(("state=%d, cannot operate (no active_restart handler)\n", state)); return -EINVAL; } /* * In system wide and when the context is loaded, access can only happen * when the caller is running on the CPU being monitored by the session. * It does not have to be the owner (ctx_task) of the context per se. */ if (is_system && ctx->ctx_cpu != smp_processor_id()) { DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu)); return -EBUSY; } /* sanity check */ if (unlikely(task == NULL)) { printk(KERN_ERR "perfmon: [%d] pfm_restart no task\n", task_pid_nr(current)); return -EINVAL; } if (task == current || is_system) { fmt = ctx->ctx_buf_fmt; DPRINT(("restarting self %d ovfl=0x%lx\n", task_pid_nr(task), ctx->ctx_ovfl_regs[0])); if (CTX_HAS_SMPL(ctx)) { prefetch(ctx->ctx_smpl_hdr); rst_ctrl.bits.mask_monitoring = 0; rst_ctrl.bits.reset_ovfl_pmds = 0; if (state == PFM_CTX_LOADED) ret = pfm_buf_fmt_restart_active(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs); else ret = pfm_buf_fmt_restart(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs); } else { rst_ctrl.bits.mask_monitoring = 0; rst_ctrl.bits.reset_ovfl_pmds = 1; } if (ret == 0) { if (rst_ctrl.bits.reset_ovfl_pmds) pfm_reset_regs(ctx, ctx->ctx_ovfl_regs, PFM_PMD_LONG_RESET); if (rst_ctrl.bits.mask_monitoring == 0) { DPRINT(("resuming monitoring for [%d]\n", task_pid_nr(task))); if (state == PFM_CTX_MASKED) pfm_restore_monitoring(task); } else { DPRINT(("keeping monitoring stopped for [%d]\n", task_pid_nr(task))); // cannot use pfm_stop_monitoring(task, regs); } } /* * clear overflowed PMD mask to remove any stale information */ ctx->ctx_ovfl_regs[0] = 0UL; /* * back to LOADED state */ ctx->ctx_state = PFM_CTX_LOADED; /* * XXX: not really useful for self monitoring */ ctx->ctx_fl_can_restart = 0; return 0; } /* * restart another task */ /* * When PFM_CTX_MASKED, we cannot issue a restart before the previous * one is seen by the task. */ if (state == PFM_CTX_MASKED) { if (ctx->ctx_fl_can_restart == 0) return -EINVAL; /* * will prevent subsequent restart before this one is * seen by other task */ ctx->ctx_fl_can_restart = 0; } /* * if blocking, then post the semaphore is PFM_CTX_MASKED, i.e. * the task is blocked or on its way to block. That's the normal * restart path. If the monitoring is not masked, then the task * can be actively monitoring and we cannot directly intervene. * Therefore we use the trap mechanism to catch the task and * force it to reset the buffer/reset PMDs. * * if non-blocking, then we ensure that the task will go into * pfm_handle_work() before returning to user mode. * * We cannot explicitly reset another task, it MUST always * be done by the task itself. This works for system wide because * the tool that is controlling the session is logically doing * "self-monitoring". */ if (CTX_OVFL_NOBLOCK(ctx) == 0 && state == PFM_CTX_MASKED) { DPRINT(("unblocking [%d]\n", task_pid_nr(task))); complete(&ctx->ctx_restart_done); } else { DPRINT(("[%d] armed exit trap\n", task_pid_nr(task))); ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_RESET; PFM_SET_WORK_PENDING(task, 1); set_notify_resume(task); /* * XXX: send reschedule if task runs on another CPU */ } return 0; } static int pfm_debug(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs) { unsigned int m = *(unsigned int *)arg; pfm_sysctl.debug = m == 0 ? 0 : 1; printk(KERN_INFO "perfmon debugging %s (timing reset)\n", pfm_sysctl.debug ? "on" : "off"); if (m == 0) { memset(pfm_stats, 0, sizeof(pfm_stats)); for(m=0; m < NR_CPUS; m++) pfm_stats[m].pfm_ovfl_intr_cycles_min = ~0UL; } return 0; } /* * arg can be NULL and count can be zero for this function */ static int pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs) { struct thread_struct *thread = NULL; struct task_struct *task; pfarg_dbreg_t *req = (pfarg_dbreg_t *)arg; unsigned long flags; dbreg_t dbreg; unsigned int rnum; int first_time; int ret = 0, state; int i, can_access_pmu = 0; int is_system, is_loaded; if (pmu_conf->use_rr_dbregs == 0) return -EINVAL; state = ctx->ctx_state; is_loaded = state == PFM_CTX_LOADED ? 1 : 0; is_system = ctx->ctx_fl_system; task = ctx->ctx_task; if (state == PFM_CTX_ZOMBIE) return -EINVAL; /* * on both UP and SMP, we can only write to the PMC when the task is * the owner of the local PMU. */ if (is_loaded) { thread = &task->thread; /* * In system wide and when the context is loaded, access can only happen * when the caller is running on the CPU being monitored by the session. * It does not have to be the owner (ctx_task) of the context per se. */ if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) { DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu)); return -EBUSY; } can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0; } /* * we do not need to check for ipsr.db because we do clear ibr.x, dbr.r, and dbr.w * ensuring that no real breakpoint can be installed via this call. * * IMPORTANT: regs can be NULL in this function */ first_time = ctx->ctx_fl_using_dbreg == 0; /* * don't bother if we are loaded and task is being debugged */ if (is_loaded && (thread->flags & IA64_THREAD_DBG_VALID) != 0) { DPRINT(("debug registers already in use for [%d]\n", task_pid_nr(task))); return -EBUSY; } /* * check for debug registers in system wide mode * * If though a check is done in pfm_context_load(), * we must repeat it here, in case the registers are * written after the context is loaded */ if (is_loaded) { LOCK_PFS(flags); if (first_time && is_system) { if (pfm_sessions.pfs_ptrace_use_dbregs) ret = -EBUSY; else pfm_sessions.pfs_sys_use_dbregs++; } UNLOCK_PFS(flags); } if (ret != 0) return ret; /* * mark ourself as user of the debug registers for * perfmon purposes. */ ctx->ctx_fl_using_dbreg = 1; /* * clear hardware registers to make sure we don't * pick up stale state. * * for a system wide session, we do not use * thread.dbr, thread.ibr because this process * never leaves the current CPU and the state * is shared by all processes running on it */ if (first_time && can_access_pmu) { DPRINT(("[%d] clearing ibrs, dbrs\n", task_pid_nr(task))); for (i=0; i < pmu_conf->num_ibrs; i++) { ia64_set_ibr(i, 0UL); ia64_dv_serialize_instruction(); } ia64_srlz_i(); for (i=0; i < pmu_conf->num_dbrs; i++) { ia64_set_dbr(i, 0UL); ia64_dv_serialize_data(); } ia64_srlz_d(); } /* * Now install the values into the registers */ for (i = 0; i < count; i++, req++) { rnum = req->dbreg_num; dbreg.val = req->dbreg_value; ret = -EINVAL; if ((mode == PFM_CODE_RR && rnum >= PFM_NUM_IBRS) || ((mode == PFM_DATA_RR) && rnum >= PFM_NUM_DBRS)) { DPRINT(("invalid register %u val=0x%lx mode=%d i=%d count=%d\n", rnum, dbreg.val, mode, i, count)); goto abort_mission; } /* * make sure we do not install enabled breakpoint */ if (rnum & 0x1) { if (mode == PFM_CODE_RR) dbreg.ibr.ibr_x = 0; else dbreg.dbr.dbr_r = dbreg.dbr.dbr_w = 0; } PFM_REG_RETFLAG_SET(req->dbreg_flags, 0); /* * Debug registers, just like PMC, can only be modified * by a kernel call. Moreover, perfmon() access to those * registers are centralized in this routine. The hardware * does not modify the value of these registers, therefore, * if we save them as they are written, we can avoid having * to save them on context switch out. This is made possible * by the fact that when perfmon uses debug registers, ptrace() * won't be able to modify them concurrently. */ if (mode == PFM_CODE_RR) { CTX_USED_IBR(ctx, rnum); if (can_access_pmu) { ia64_set_ibr(rnum, dbreg.val); ia64_dv_serialize_instruction(); } ctx->ctx_ibrs[rnum] = dbreg.val; DPRINT(("write ibr%u=0x%lx used_ibrs=0x%x ld=%d apmu=%d\n", rnum, dbreg.val, ctx->ctx_used_ibrs[0], is_loaded, can_access_pmu)); } else { CTX_USED_DBR(ctx, rnum); if (can_access_pmu) { ia64_set_dbr(rnum, dbreg.val); ia64_dv_serialize_data(); } ctx->ctx_dbrs[rnum] = dbreg.val; DPRINT(("write dbr%u=0x%lx used_dbrs=0x%x ld=%d apmu=%d\n", rnum, dbreg.val, ctx->ctx_used_dbrs[0], is_loaded, can_access_pmu)); } } return 0; abort_mission: /* * in case it was our first attempt, we undo the global modifications */ if (first_time) { LOCK_PFS(flags); if (ctx->ctx_fl_system) { pfm_sessions.pfs_sys_use_dbregs--; } UNLOCK_PFS(flags); ctx->ctx_fl_using_dbreg = 0; } /* * install error return flag */ PFM_REG_RETFLAG_SET(req->dbreg_flags, PFM_REG_RETFL_EINVAL); return ret; } static int pfm_write_ibrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs) { return pfm_write_ibr_dbr(PFM_CODE_RR, ctx, arg, count, regs); } static int pfm_write_dbrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs) { return pfm_write_ibr_dbr(PFM_DATA_RR, ctx, arg, count, regs); } int pfm_mod_write_ibrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs) { pfm_context_t *ctx; if (req == NULL) return -EINVAL; ctx = GET_PMU_CTX(); if (ctx == NULL) return -EINVAL; /* * for now limit to current task, which is enough when calling * from overflow handler */ if (task != current && ctx->ctx_fl_system == 0) return -EBUSY; return pfm_write_ibrs(ctx, req, nreq, regs); } EXPORT_SYMBOL(pfm_mod_write_ibrs); int pfm_mod_write_dbrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs) { pfm_context_t *ctx; if (req == NULL) return -EINVAL; ctx = GET_PMU_CTX(); if (ctx == NULL) return -EINVAL; /* * for now limit to current task, which is enough when calling * from overflow handler */ if (task != current && ctx->ctx_fl_system == 0) return -EBUSY; return pfm_write_dbrs(ctx, req, nreq, regs); } EXPORT_SYMBOL(pfm_mod_write_dbrs); static int pfm_get_features(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs) { pfarg_features_t *req = (pfarg_features_t *)arg; req->ft_version = PFM_VERSION; return 0; } static int pfm_stop(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs) { struct pt_regs *tregs; struct task_struct *task = PFM_CTX_TASK(ctx); int state, is_system; state = ctx->ctx_state; is_system = ctx->ctx_fl_system; /* * context must be attached to issue the stop command (includes LOADED,MASKED,ZOMBIE) */ if (state == PFM_CTX_UNLOADED) return -EINVAL; /* * In system wide and when the context is loaded, access can only happen * when the caller is running on the CPU being monitored by the session. * It does not have to be the owner (ctx_task) of the context per se. */ if (is_system && ctx->ctx_cpu != smp_processor_id()) { DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu)); return -EBUSY; } DPRINT(("task [%d] ctx_state=%d is_system=%d\n", task_pid_nr(PFM_CTX_TASK(ctx)), state, is_system)); /* * in system mode, we need to update the PMU directly * and the user level state of the caller, which may not * necessarily be the creator of the context. */ if (is_system) { /* * Update local PMU first * * disable dcr pp */ ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP); ia64_srlz_i(); /* * update local cpuinfo */ PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP); /* * stop monitoring, does srlz.i */ pfm_clear_psr_pp(); /* * stop monitoring in the caller */ ia64_psr(regs)->pp = 0; return 0; } /* * per-task mode */ if (task == current) { /* stop monitoring at kernel level */ pfm_clear_psr_up(); /* * stop monitoring at the user level */ ia64_psr(regs)->up = 0; } else { tregs = task_pt_regs(task); /* * stop monitoring at the user level */ ia64_psr(tregs)->up = 0; /* * monitoring disabled in kernel at next reschedule */ ctx->ctx_saved_psr_up = 0; DPRINT(("task=[%d]\n", task_pid_nr(task))); } return 0; } static int pfm_start(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs) { struct pt_regs *tregs; int state, is_system; state = ctx->ctx_state; is_system = ctx->ctx_fl_system; if (state != PFM_CTX_LOADED) return -EINVAL; /* * In system wide and when the context is loaded, access can only happen * when the caller is running on the CPU being monitored by the session. * It does not have to be the owner (ctx_task) of the context per se. */ if (is_system && ctx->ctx_cpu != smp_processor_id()) { DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu)); return -EBUSY; } /* * in system mode, we need to update the PMU directly * and the user level state of the caller, which may not * necessarily be the creator of the context. */ if (is_system) { /* * set user level psr.pp for the caller */ ia64_psr(regs)->pp = 1; /* * now update the local PMU and cpuinfo */ PFM_CPUINFO_SET(PFM_CPUINFO_DCR_PP); /* * start monitoring at kernel level */ pfm_set_psr_pp(); /* enable dcr pp */ ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP); ia64_srlz_i(); return 0; } /* * per-process mode */ if (ctx->ctx_task == current) { /* start monitoring at kernel level */ pfm_set_psr_up(); /* * activate monitoring at user level */ ia64_psr(regs)->up = 1; } else { tregs = task_pt_regs(ctx->ctx_task); /* * start monitoring at the kernel level the next * time the task is scheduled */ ctx->ctx_saved_psr_up = IA64_PSR_UP; /* * activate monitoring at user level */ ia64_psr(tregs)->up = 1; } return 0; } static int pfm_get_pmc_reset(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs) { pfarg_reg_t *req = (pfarg_reg_t *)arg; unsigned int cnum; int i; int ret = -EINVAL; for (i = 0; i < count; i++, req++) { cnum = req->reg_num; if (!PMC_IS_IMPL(cnum)) goto abort_mission; req->reg_value = PMC_DFL_VAL(cnum); PFM_REG_RETFLAG_SET(req->reg_flags, 0); DPRINT(("pmc_reset_val pmc[%u]=0x%lx\n", cnum, req->reg_value)); } return 0; abort_mission: PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL); return ret; } static int pfm_check_task_exist(pfm_context_t *ctx) { struct task_struct *g, *t; int ret = -ESRCH; read_lock(&tasklist_lock); do_each_thread (g, t) { if (t->thread.pfm_context == ctx) { ret = 0; goto out; } } while_each_thread (g, t); out: read_unlock(&tasklist_lock); DPRINT(("pfm_check_task_exist: ret=%d ctx=%p\n", ret, ctx)); return ret; } static int pfm_context_load(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs) { struct task_struct *task; struct thread_struct *thread; struct pfm_context_t *old; unsigned long flags; #ifndef CONFIG_SMP struct task_struct *owner_task = NULL; #endif pfarg_load_t *req = (pfarg_load_t *)arg; unsigned long *pmcs_source, *pmds_source; int the_cpu; int ret = 0; int state, is_system, set_dbregs = 0; state = ctx->ctx_state; is_system = ctx->ctx_fl_system; /* * can only load from unloaded or terminated state */ if (state != PFM_CTX_UNLOADED) { DPRINT(("cannot load to [%d], invalid ctx_state=%d\n", req->load_pid, ctx->ctx_state)); return -EBUSY; } DPRINT(("load_pid [%d] using_dbreg=%d\n", req->load_pid, ctx->ctx_fl_using_dbreg)); if (CTX_OVFL_NOBLOCK(ctx) == 0 && req->load_pid == current->pid) { DPRINT(("cannot use blocking mode on self\n")); return -EINVAL; } ret = pfm_get_task(ctx, req->load_pid, &task); if (ret) { DPRINT(("load_pid [%d] get_task=%d\n", req->load_pid, ret)); return ret; } ret = -EINVAL; /* * system wide is self monitoring only */ if (is_system && task != current) { DPRINT(("system wide is self monitoring only load_pid=%d\n", req->load_pid)); goto error; } thread = &task->thread; ret = 0; /* * cannot load a context which is using range restrictions, * into a task that is being debugged. */ if (ctx->ctx_fl_using_dbreg) { if (thread->flags & IA64_THREAD_DBG_VALID) { ret = -EBUSY; DPRINT(("load_pid [%d] task is debugged, cannot load range restrictions\n", req->load_pid)); goto error; } LOCK_PFS(flags); if (is_system) { if (pfm_sessions.pfs_ptrace_use_dbregs) { DPRINT(("cannot load [%d] dbregs in use\n", task_pid_nr(task))); ret = -EBUSY; } else { pfm_sessions.pfs_sys_use_dbregs++; DPRINT(("load [%d] increased sys_use_dbreg=%u\n", task_pid_nr(task), pfm_sessions.pfs_sys_use_dbregs)); set_dbregs = 1; } } UNLOCK_PFS(flags); if (ret) goto error; } /* * SMP system-wide monitoring implies self-monitoring. * * The programming model expects the task to * be pinned on a CPU throughout the session. * Here we take note of the current CPU at the * time the context is loaded. No call from * another CPU will be allowed. * * The pinning via shed_setaffinity() * must be done by the calling task prior * to this call. * * systemwide: keep track of CPU this session is supposed to run on */ the_cpu = ctx->ctx_cpu = smp_processor_id(); ret = -EBUSY; /* * now reserve the session */ ret = pfm_reserve_session(current, is_system, the_cpu); if (ret) goto error; /* * task is necessarily stopped at this point. * * If the previous context was zombie, then it got removed in * pfm_save_regs(). Therefore we should not see it here. * If we see a context, then this is an active context * * XXX: needs to be atomic */ DPRINT(("before cmpxchg() old_ctx=%p new_ctx=%p\n", thread->pfm_context, ctx)); ret = -EBUSY; old = ia64_cmpxchg(acq, &thread->pfm_context, NULL, ctx, sizeof(pfm_context_t *)); if (old != NULL) { DPRINT(("load_pid [%d] already has a context\n", req->load_pid)); goto error_unres; } pfm_reset_msgq(ctx); ctx->ctx_state = PFM_CTX_LOADED; /* * link context to task */ ctx->ctx_task = task; if (is_system) { /* * we load as stopped */ PFM_CPUINFO_SET(PFM_CPUINFO_SYST_WIDE); PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP); if (ctx->ctx_fl_excl_idle) PFM_CPUINFO_SET(PFM_CPUINFO_EXCL_IDLE); } else { thread->flags |= IA64_THREAD_PM_VALID; } /* * propagate into thread-state */ pfm_copy_pmds(task, ctx); pfm_copy_pmcs(task, ctx); pmcs_source = ctx->th_pmcs; pmds_source = ctx->th_pmds; /* * always the case for system-wide */ if (task == current) { if (is_system == 0) { /* allow user level control */ ia64_psr(regs)->sp = 0; DPRINT(("clearing psr.sp for [%d]\n", task_pid_nr(task))); SET_LAST_CPU(ctx, smp_processor_id()); INC_ACTIVATION(); SET_ACTIVATION(ctx); #ifndef CONFIG_SMP /* * push the other task out, if any */ owner_task = GET_PMU_OWNER(); if (owner_task) pfm_lazy_save_regs(owner_task); #endif } /* * load all PMD from ctx to PMU (as opposed to thread state) * restore all PMC from ctx to PMU */ pfm_restore_pmds(pmds_source, ctx->ctx_all_pmds[0]); pfm_restore_pmcs(pmcs_source, ctx->ctx_all_pmcs[0]); ctx->ctx_reload_pmcs[0] = 0UL; ctx->ctx_reload_pmds[0] = 0UL; /* * guaranteed safe by earlier check against DBG_VALID */ if (ctx->ctx_fl_using_dbreg) { pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs); pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs); } /* * set new ownership */ SET_PMU_OWNER(task, ctx); DPRINT(("context loaded on PMU for [%d]\n", task_pid_nr(task))); } else { /* * when not current, task MUST be stopped, so this is safe */ regs = task_pt_regs(task); /* force a full reload */ ctx->ctx_last_activation = PFM_INVALID_ACTIVATION; SET_LAST_CPU(ctx, -1); /* initial saved psr (stopped) */ ctx->ctx_saved_psr_up = 0UL; ia64_psr(regs)->up = ia64_psr(regs)->pp = 0; } ret = 0; error_unres: if (ret) pfm_unreserve_session(ctx, ctx->ctx_fl_system, the_cpu); error: /* * we must undo the dbregs setting (for system-wide) */ if (ret && set_dbregs) { LOCK_PFS(flags); pfm_sessions.pfs_sys_use_dbregs--; UNLOCK_PFS(flags); } /* * release task, there is now a link with the context */ if (is_system == 0 && task != current) { pfm_put_task(task); if (ret == 0) { ret = pfm_check_task_exist(ctx); if (ret) { ctx->ctx_state = PFM_CTX_UNLOADED; ctx->ctx_task = NULL; } } } return ret; } /* * in this function, we do not need to increase the use count * for the task via get_task_struct(), because we hold the * context lock. If the task were to disappear while having * a context attached, it would go through pfm_exit_thread() * which also grabs the context lock and would therefore be blocked * until we are here. */ static void pfm_flush_pmds(struct task_struct *, pfm_context_t *ctx); static int pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs) { struct task_struct *task = PFM_CTX_TASK(ctx); struct pt_regs *tregs; int prev_state, is_system; int ret; DPRINT(("ctx_state=%d task [%d]\n", ctx->ctx_state, task ? task_pid_nr(task) : -1)); prev_state = ctx->ctx_state; is_system = ctx->ctx_fl_system; /* * unload only when necessary */ if (prev_state == PFM_CTX_UNLOADED) { DPRINT(("ctx_state=%d, nothing to do\n", prev_state)); return 0; } /* * clear psr and dcr bits */ ret = pfm_stop(ctx, NULL, 0, regs); if (ret) return ret; ctx->ctx_state = PFM_CTX_UNLOADED; /* * in system mode, we need to update the PMU directly * and the user level state of the caller, which may not * necessarily be the creator of the context. */ if (is_system) { /* * Update cpuinfo * * local PMU is taken care of in pfm_stop() */ PFM_CPUINFO_CLEAR(PFM_CPUINFO_SYST_WIDE); PFM_CPUINFO_CLEAR(PFM_CPUINFO_EXCL_IDLE); /* * save PMDs in context * release ownership */ pfm_flush_pmds(current, ctx); /* * at this point we are done with the PMU * so we can unreserve the resource. */ if (prev_state != PFM_CTX_ZOMBIE) pfm_unreserve_session(ctx, 1 , ctx->ctx_cpu); /* * disconnect context from task */ task->thread.pfm_context = NULL; /* * disconnect task from context */ ctx->ctx_task = NULL; /* * There is nothing more to cleanup here. */ return 0; } /* * per-task mode */ tregs = task == current ? regs : task_pt_regs(task); if (task == current) { /* * cancel user level control */ ia64_psr(regs)->sp = 1; DPRINT(("setting psr.sp for [%d]\n", task_pid_nr(task))); } /* * save PMDs to context * release ownership */ pfm_flush_pmds(task, ctx); /* * at this point we are done with the PMU * so we can unreserve the resource. * * when state was ZOMBIE, we have already unreserved. */ if (prev_state != PFM_CTX_ZOMBIE) pfm_unreserve_session(ctx, 0 , ctx->ctx_cpu); /* * reset activation counter and psr */ ctx->ctx_last_activation = PFM_INVALID_ACTIVATION; SET_LAST_CPU(ctx, -1); /* * PMU state will not be restored */ task->thread.flags &= ~IA64_THREAD_PM_VALID; /* * break links between context and task */ task->thread.pfm_context = NULL; ctx->ctx_task = NULL; PFM_SET_WORK_PENDING(task, 0); ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE; ctx->ctx_fl_can_restart = 0; ctx->ctx_fl_going_zombie = 0; DPRINT(("disconnected [%d] from context\n", task_pid_nr(task))); return 0; } /* * called only from exit_thread(): task == current * we come here only if current has a context attached (loaded or masked) */ void pfm_exit_thread(struct task_struct *task) { pfm_context_t *ctx; unsigned long flags; struct pt_regs *regs = task_pt_regs(task); int ret, state; int free_ok = 0; ctx = PFM_GET_CTX(task); PROTECT_CTX(ctx, flags); DPRINT(("state=%d task [%d]\n", ctx->ctx_state, task_pid_nr(task))); state = ctx->ctx_state; switch(state) { case PFM_CTX_UNLOADED: /* * only comes to this function if pfm_context is not NULL, i.e., cannot * be in unloaded state */ printk(KERN_ERR "perfmon: pfm_exit_thread [%d] ctx unloaded\n", task_pid_nr(task)); break; case PFM_CTX_LOADED: case PFM_CTX_MASKED: ret = pfm_context_unload(ctx, NULL, 0, regs); if (ret) { printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task), state, ret); } DPRINT(("ctx unloaded for current state was %d\n", state)); pfm_end_notify_user(ctx); break; case PFM_CTX_ZOMBIE: ret = pfm_context_unload(ctx, NULL, 0, regs); if (ret) { printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task), state, ret); } free_ok = 1; break; default: printk(KERN_ERR "perfmon: pfm_exit_thread [%d] unexpected state=%d\n", task_pid_nr(task), state); break; } UNPROTECT_CTX(ctx, flags); { u64 psr = pfm_get_psr(); BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP)); BUG_ON(GET_PMU_OWNER()); BUG_ON(ia64_psr(regs)->up); BUG_ON(ia64_psr(regs)->pp); } /* * All memory free operations (especially for vmalloc'ed memory) * MUST be done with interrupts ENABLED. */ if (free_ok) pfm_context_free(ctx); } /* * functions MUST be listed in the increasing order of their index (see permfon.h) */ #define PFM_CMD(name, flags, arg_count, arg_type, getsz) { name, #name, flags, arg_count, sizeof(arg_type), getsz } #define PFM_CMD_S(name, flags) { name, #name, flags, 0, 0, NULL } #define PFM_CMD_PCLRWS (PFM_CMD_FD|PFM_CMD_ARG_RW|PFM_CMD_STOP) #define PFM_CMD_PCLRW (PFM_CMD_FD|PFM_CMD_ARG_RW) #define PFM_CMD_NONE { NULL, "no-cmd", 0, 0, 0, NULL} static pfm_cmd_desc_t pfm_cmd_tab[]={ /* 0 */PFM_CMD_NONE, /* 1 */PFM_CMD(pfm_write_pmcs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL), /* 2 */PFM_CMD(pfm_write_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL), /* 3 */PFM_CMD(pfm_read_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL), /* 4 */PFM_CMD_S(pfm_stop, PFM_CMD_PCLRWS), /* 5 */PFM_CMD_S(pfm_start, PFM_CMD_PCLRWS), /* 6 */PFM_CMD_NONE, /* 7 */PFM_CMD_NONE, /* 8 */PFM_CMD(pfm_context_create, PFM_CMD_ARG_RW, 1, pfarg_context_t, pfm_ctx_getsize), /* 9 */PFM_CMD_NONE, /* 10 */PFM_CMD_S(pfm_restart, PFM_CMD_PCLRW), /* 11 */PFM_CMD_NONE, /* 12 */PFM_CMD(pfm_get_features, PFM_CMD_ARG_RW, 1, pfarg_features_t, NULL), /* 13 */PFM_CMD(pfm_debug, 0, 1, unsigned int, NULL), /* 14 */PFM_CMD_NONE, /* 15 */PFM_CMD(pfm_get_pmc_reset, PFM_CMD_ARG_RW, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL), /* 16 */PFM_CMD(pfm_context_load, PFM_CMD_PCLRWS, 1, pfarg_load_t, NULL), /* 17 */PFM_CMD_S(pfm_context_unload, PFM_CMD_PCLRWS), /* 18 */PFM_CMD_NONE, /* 19 */PFM_CMD_NONE, /* 20 */PFM_CMD_NONE, /* 21 */PFM_CMD_NONE, /* 22 */PFM_CMD_NONE, /* 23 */PFM_CMD_NONE, /* 24 */PFM_CMD_NONE, /* 25 */PFM_CMD_NONE, /* 26 */PFM_CMD_NONE, /* 27 */PFM_CMD_NONE, /* 28 */PFM_CMD_NONE, /* 29 */PFM_CMD_NONE, /* 30 */PFM_CMD_NONE, /* 31 */PFM_CMD_NONE, /* 32 */PFM_CMD(pfm_write_ibrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL), /* 33 */PFM_CMD(pfm_write_dbrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL) }; #define PFM_CMD_COUNT (sizeof(pfm_cmd_tab)/sizeof(pfm_cmd_desc_t)) static int pfm_check_task_state(pfm_context_t *ctx, int cmd, unsigned long flags) { struct task_struct *task; int state, old_state; recheck: state = ctx->ctx_state; task = ctx->ctx_task; if (task == NULL) { DPRINT(("context %d no task, state=%d\n", ctx->ctx_fd, state)); return 0; } DPRINT(("context %d state=%d [%d] task_state=%ld must_stop=%d\n", ctx->ctx_fd, state, task_pid_nr(task), task->state, PFM_CMD_STOPPED(cmd))); /* * self-monitoring always ok. * * for system-wide the caller can either be the creator of the * context (to one to which the context is attached to) OR * a task running on the same CPU as the session. */ if (task == current || ctx->ctx_fl_system) return 0; /* * we are monitoring another thread */ switch(state) { case PFM_CTX_UNLOADED: /* * if context is UNLOADED we are safe to go */ return 0; case PFM_CTX_ZOMBIE: /* * no command can operate on a zombie context */ DPRINT(("cmd %d state zombie cannot operate on context\n", cmd)); return -EINVAL; case PFM_CTX_MASKED: /* * PMU state has been saved to software even though * the thread may still be running. */ if (cmd != PFM_UNLOAD_CONTEXT) return 0; } /* * context is LOADED or MASKED. Some commands may need to have * the task stopped. * * We could lift this restriction for UP but it would mean that * the user has no guarantee the task would not run between * two successive calls to perfmonctl(). That's probably OK. * If this user wants to ensure the task does not run, then * the task must be stopped. */ if (PFM_CMD_STOPPED(cmd)) { if (!task_is_stopped_or_traced(task)) { DPRINT(("[%d] task not in stopped state\n", task_pid_nr(task))); return -EBUSY; } /* * task is now stopped, wait for ctxsw out * * This is an interesting point in the code. * We need to unprotect the context because * the pfm_save_regs() routines needs to grab * the same lock. There are danger in doing * this because it leaves a window open for * another task to get access to the context * and possibly change its state. The one thing * that is not possible is for the context to disappear * because we are protected by the VFS layer, i.e., * get_fd()/put_fd(). */ old_state = state; UNPROTECT_CTX(ctx, flags); wait_task_inactive(task, 0); PROTECT_CTX(ctx, flags); /* * we must recheck to verify if state has changed */ if (ctx->ctx_state != old_state) { DPRINT(("old_state=%d new_state=%d\n", old_state, ctx->ctx_state)); goto recheck; } } return 0; } /* * system-call entry point (must return long) */ asmlinkage long sys_perfmonctl (int fd, int cmd, void __user *arg, int count) { struct fd f = {NULL, 0}; pfm_context_t *ctx = NULL; unsigned long flags = 0UL; void *args_k = NULL; long ret; /* will expand int return types */ size_t base_sz, sz, xtra_sz = 0; int narg, completed_args = 0, call_made = 0, cmd_flags; int (*func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs); int (*getsize)(void *arg, size_t *sz); #define PFM_MAX_ARGSIZE 4096 /* * reject any call if perfmon was disabled at initialization */ if (unlikely(pmu_conf == NULL)) return -ENOSYS; if (unlikely(cmd < 0 || cmd >= PFM_CMD_COUNT)) { DPRINT(("invalid cmd=%d\n", cmd)); return -EINVAL; } func = pfm_cmd_tab[cmd].cmd_func; narg = pfm_cmd_tab[cmd].cmd_narg; base_sz = pfm_cmd_tab[cmd].cmd_argsize; getsize = pfm_cmd_tab[cmd].cmd_getsize; cmd_flags = pfm_cmd_tab[cmd].cmd_flags; if (unlikely(func == NULL)) { DPRINT(("invalid cmd=%d\n", cmd)); return -EINVAL; } DPRINT(("cmd=%s idx=%d narg=0x%x argsz=%lu count=%d\n", PFM_CMD_NAME(cmd), cmd, narg, base_sz, count)); /* * check if number of arguments matches what the command expects */ if (unlikely((narg == PFM_CMD_ARG_MANY && count <= 0) || (narg > 0 && narg != count))) return -EINVAL; restart_args: sz = xtra_sz + base_sz*count; /* * limit abuse to min page size */ if (unlikely(sz > PFM_MAX_ARGSIZE)) { printk(KERN_ERR "perfmon: [%d] argument too big %lu\n", task_pid_nr(current), sz); return -E2BIG; } /* * allocate default-sized argument buffer */ if (likely(count && args_k == NULL)) { args_k = kmalloc(PFM_MAX_ARGSIZE, GFP_KERNEL); if (args_k == NULL) return -ENOMEM; } ret = -EFAULT; /* * copy arguments * * assume sz = 0 for command without parameters */ if (sz && copy_from_user(args_k, arg, sz)) { DPRINT(("cannot copy_from_user %lu bytes @%p\n", sz, arg)); goto error_args; } /* * check if command supports extra parameters */ if (completed_args == 0 && getsize) { /* * get extra parameters size (based on main argument) */ ret = (*getsize)(args_k, &xtra_sz); if (ret) goto error_args; completed_args = 1; DPRINT(("restart_args sz=%lu xtra_sz=%lu\n", sz, xtra_sz)); /* retry if necessary */ if (likely(xtra_sz)) goto restart_args; } if (unlikely((cmd_flags & PFM_CMD_FD) == 0)) goto skip_fd; ret = -EBADF; f = fdget(fd); if (unlikely(f.file == NULL)) { DPRINT(("invalid fd %d\n", fd)); goto error_args; } if (unlikely(PFM_IS_FILE(f.file) == 0)) { DPRINT(("fd %d not related to perfmon\n", fd)); goto error_args; } ctx = f.file->private_data; if (unlikely(ctx == NULL)) { DPRINT(("no context for fd %d\n", fd)); goto error_args; } prefetch(&ctx->ctx_state); PROTECT_CTX(ctx, flags); /* * check task is stopped */ ret = pfm_check_task_state(ctx, cmd, flags); if (unlikely(ret)) goto abort_locked; skip_fd: ret = (*func)(ctx, args_k, count, task_pt_regs(current)); call_made = 1; abort_locked: if (likely(ctx)) { DPRINT(("context unlocked\n")); UNPROTECT_CTX(ctx, flags); } /* copy argument back to user, if needed */ if (call_made && PFM_CMD_RW_ARG(cmd) && copy_to_user(arg, args_k, base_sz*count)) ret = -EFAULT; error_args: if (f.file) fdput(f); kfree(args_k); DPRINT(("cmd=%s ret=%ld\n", PFM_CMD_NAME(cmd), ret)); return ret; } static void pfm_resume_after_ovfl(pfm_context_t *ctx, unsigned long ovfl_regs, struct pt_regs *regs) { pfm_buffer_fmt_t *fmt = ctx->ctx_buf_fmt; pfm_ovfl_ctrl_t rst_ctrl; int state; int ret = 0; state = ctx->ctx_state; /* * Unlock sampling buffer and reset index atomically * XXX: not really needed when blocking */ if (CTX_HAS_SMPL(ctx)) { rst_ctrl.bits.mask_monitoring = 0; rst_ctrl.bits.reset_ovfl_pmds = 0; if (state == PFM_CTX_LOADED) ret = pfm_buf_fmt_restart_active(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs); else ret = pfm_buf_fmt_restart(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs); } else { rst_ctrl.bits.mask_monitoring = 0; rst_ctrl.bits.reset_ovfl_pmds = 1; } if (ret == 0) { if (rst_ctrl.bits.reset_ovfl_pmds) { pfm_reset_regs(ctx, &ovfl_regs, PFM_PMD_LONG_RESET); } if (rst_ctrl.bits.mask_monitoring == 0) { DPRINT(("resuming monitoring\n")); if (ctx->ctx_state == PFM_CTX_MASKED) pfm_restore_monitoring(current); } else { DPRINT(("stopping monitoring\n")); //pfm_stop_monitoring(current, regs); } ctx->ctx_state = PFM_CTX_LOADED; } } /* * context MUST BE LOCKED when calling * can only be called for current */ static void pfm_context_force_terminate(pfm_context_t *ctx, struct pt_regs *regs) { int ret; DPRINT(("entering for [%d]\n", task_pid_nr(current))); ret = pfm_context_unload(ctx, NULL, 0, regs); if (ret) { printk(KERN_ERR "pfm_context_force_terminate: [%d] unloaded failed with %d\n", task_pid_nr(current), ret); } /* * and wakeup controlling task, indicating we are now disconnected */ wake_up_interruptible(&ctx->ctx_zombieq); /* * given that context is still locked, the controlling * task will only get access when we return from * pfm_handle_work(). */ } static int pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds); /* * pfm_handle_work() can be called with interrupts enabled * (TIF_NEED_RESCHED) or disabled. The down_interruptible * call may sleep, therefore we must re-enable interrupts * to avoid deadlocks. It is safe to do so because this function * is called ONLY when returning to user level (pUStk=1), in which case * there is no risk of kernel stack overflow due to deep * interrupt nesting. */ void pfm_handle_work(void) { pfm_context_t *ctx; struct pt_regs *regs; unsigned long flags, dummy_flags; unsigned long ovfl_regs; unsigned int reason; int ret; ctx = PFM_GET_CTX(current); if (ctx == NULL) { printk(KERN_ERR "perfmon: [%d] has no PFM context\n", task_pid_nr(current)); return; } PROTECT_CTX(ctx, flags); PFM_SET_WORK_PENDING(current, 0); regs = task_pt_regs(current); /* * extract reason for being here and clear */ reason = ctx->ctx_fl_trap_reason; ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE; ovfl_regs = ctx->ctx_ovfl_regs[0]; DPRINT(("reason=%d state=%d\n", reason, ctx->ctx_state)); /* * must be done before we check for simple-reset mode */ if (ctx->ctx_fl_going_zombie || ctx->ctx_state == PFM_CTX_ZOMBIE) goto do_zombie; //if (CTX_OVFL_NOBLOCK(ctx)) goto skip_blocking; if (reason == PFM_TRAP_REASON_RESET) goto skip_blocking; /* * restore interrupt mask to what it was on entry. * Could be enabled/diasbled. */ UNPROTECT_CTX(ctx, flags); /* * force interrupt enable because of down_interruptible() */ local_irq_enable(); DPRINT(("before block sleeping\n")); /* * may go through without blocking on SMP systems * if restart has been received already by the time we call down() */ ret = wait_for_completion_interruptible(&ctx->ctx_restart_done); DPRINT(("after block sleeping ret=%d\n", ret)); /* * lock context and mask interrupts again * We save flags into a dummy because we may have * altered interrupts mask compared to entry in this * function. */ PROTECT_CTX(ctx, dummy_flags); /* * we need to read the ovfl_regs only after wake-up * because we may have had pfm_write_pmds() in between * and that can changed PMD values and therefore * ovfl_regs is reset for these new PMD values. */ ovfl_regs = ctx->ctx_ovfl_regs[0]; if (ctx->ctx_fl_going_zombie) { do_zombie: DPRINT(("context is zombie, bailing out\n")); pfm_context_force_terminate(ctx, regs); goto nothing_to_do; } /* * in case of interruption of down() we don't restart anything */ if (ret < 0) goto nothing_to_do; skip_blocking: pfm_resume_after_ovfl(ctx, ovfl_regs, regs); ctx->ctx_ovfl_regs[0] = 0UL; nothing_to_do: /* * restore flags as they were upon entry */ UNPROTECT_CTX(ctx, flags); } static int pfm_notify_user(pfm_context_t *ctx, pfm_msg_t *msg) { if (ctx->ctx_state == PFM_CTX_ZOMBIE) { DPRINT(("ignoring overflow notification, owner is zombie\n")); return 0; } DPRINT(("waking up somebody\n")); if (msg) wake_up_interruptible(&ctx->ctx_msgq_wait); /* * safe, we are not in intr handler, nor in ctxsw when * we come here */ kill_fasync (&ctx->ctx_async_queue, SIGIO, POLL_IN); return 0; } static int pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds) { pfm_msg_t *msg = NULL; if (ctx->ctx_fl_no_msg == 0) { msg = pfm_get_new_msg(ctx); if (msg == NULL) { printk(KERN_ERR "perfmon: pfm_ovfl_notify_user no more notification msgs\n"); return -1; } msg->pfm_ovfl_msg.msg_type = PFM_MSG_OVFL; msg->pfm_ovfl_msg.msg_ctx_fd = ctx->ctx_fd; msg->pfm_ovfl_msg.msg_active_set = 0; msg->pfm_ovfl_msg.msg_ovfl_pmds[0] = ovfl_pmds; msg->pfm_ovfl_msg.msg_ovfl_pmds[1] = 0UL; msg->pfm_ovfl_msg.msg_ovfl_pmds[2] = 0UL; msg->pfm_ovfl_msg.msg_ovfl_pmds[3] = 0UL; msg->pfm_ovfl_msg.msg_tstamp = 0UL; } DPRINT(("ovfl msg: msg=%p no_msg=%d fd=%d ovfl_pmds=0x%lx\n", msg, ctx->ctx_fl_no_msg, ctx->ctx_fd, ovfl_pmds)); return pfm_notify_user(ctx, msg); } static int pfm_end_notify_user(pfm_context_t *ctx) { pfm_msg_t *msg; msg = pfm_get_new_msg(ctx); if (msg == NULL) { printk(KERN_ERR "perfmon: pfm_end_notify_user no more notification msgs\n"); return -1; } /* no leak */ memset(msg, 0, sizeof(*msg)); msg->pfm_end_msg.msg_type = PFM_MSG_END; msg->pfm_end_msg.msg_ctx_fd = ctx->ctx_fd; msg->pfm_ovfl_msg.msg_tstamp = 0UL; DPRINT(("end msg: msg=%p no_msg=%d ctx_fd=%d\n", msg, ctx->ctx_fl_no_msg, ctx->ctx_fd)); return pfm_notify_user(ctx, msg); } /* * main overflow processing routine. * it can be called from the interrupt path or explicitly during the context switch code */ static void pfm_overflow_handler(struct task_struct *task, pfm_context_t *ctx, unsigned long pmc0, struct pt_regs *regs) { pfm_ovfl_arg_t *ovfl_arg; unsigned long mask; unsigned long old_val, ovfl_val, new_val; unsigned long ovfl_notify = 0UL, ovfl_pmds = 0UL, smpl_pmds = 0UL, reset_pmds; unsigned long tstamp; pfm_ovfl_ctrl_t ovfl_ctrl; unsigned int i, has_smpl; int must_notify = 0; if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) goto stop_monitoring; /* * sanity test. Should never happen */ if (unlikely((pmc0 & 0x1) == 0)) goto sanity_check; tstamp = ia64_get_itc(); mask = pmc0 >> PMU_FIRST_COUNTER; ovfl_val = pmu_conf->ovfl_val; has_smpl = CTX_HAS_SMPL(ctx); DPRINT_ovfl(("pmc0=0x%lx pid=%d iip=0x%lx, %s " "used_pmds=0x%lx\n", pmc0, task ? task_pid_nr(task): -1, (regs ? regs->cr_iip : 0), CTX_OVFL_NOBLOCK(ctx) ? "nonblocking" : "blocking", ctx->ctx_used_pmds[0])); /* * first we update the virtual counters * assume there was a prior ia64_srlz_d() issued */ for (i = PMU_FIRST_COUNTER; mask ; i++, mask >>= 1) { /* skip pmd which did not overflow */ if ((mask & 0x1) == 0) continue; /* * Note that the pmd is not necessarily 0 at this point as qualified events * may have happened before the PMU was frozen. The residual count is not * taken into consideration here but will be with any read of the pmd via * pfm_read_pmds(). */ old_val = new_val = ctx->ctx_pmds[i].val; new_val += 1 + ovfl_val; ctx->ctx_pmds[i].val = new_val; /* * check for overflow condition */ if (likely(old_val > new_val)) { ovfl_pmds |= 1UL << i; if (PMC_OVFL_NOTIFY(ctx, i)) ovfl_notify |= 1UL << i; } DPRINT_ovfl(("ctx_pmd[%d].val=0x%lx old_val=0x%lx pmd=0x%lx ovfl_pmds=0x%lx ovfl_notify=0x%lx\n", i, new_val, old_val, ia64_get_pmd(i) & ovfl_val, ovfl_pmds, ovfl_notify)); } /* * there was no 64-bit overflow, nothing else to do */ if (ovfl_pmds == 0UL) return; /* * reset all control bits */ ovfl_ctrl.val = 0; reset_pmds = 0UL; /* * if a sampling format module exists, then we "cache" the overflow by * calling the module's handler() routine. */ if (has_smpl) { unsigned long start_cycles, end_cycles; unsigned long pmd_mask; int j, k, ret = 0; int this_cpu = smp_processor_id(); pmd_mask = ovfl_pmds >> PMU_FIRST_COUNTER; ovfl_arg = &ctx->ctx_ovfl_arg; prefetch(ctx->ctx_smpl_hdr); for(i=PMU_FIRST_COUNTER; pmd_mask && ret == 0; i++, pmd_mask >>=1) { mask = 1UL << i; if ((pmd_mask & 0x1) == 0) continue; ovfl_arg->ovfl_pmd = (unsigned char )i; ovfl_arg->ovfl_notify = ovfl_notify & mask ? 1 : 0; ovfl_arg->active_set = 0; ovfl_arg->ovfl_ctrl.val = 0; /* module must fill in all fields */ ovfl_arg->smpl_pmds[0] = smpl_pmds = ctx->ctx_pmds[i].smpl_pmds[0]; ovfl_arg->pmd_value = ctx->ctx_pmds[i].val; ovfl_arg->pmd_last_reset = ctx->ctx_pmds[i].lval; ovfl_arg->pmd_eventid = ctx->ctx_pmds[i].eventid; /* * copy values of pmds of interest. Sampling format may copy them * into sampling buffer. */ if (smpl_pmds) { for(j=0, k=0; smpl_pmds; j++, smpl_pmds >>=1) { if ((smpl_pmds & 0x1) == 0) continue; ovfl_arg->smpl_pmds_values[k++] = PMD_IS_COUNTING(j) ? pfm_read_soft_counter(ctx, j) : ia64_get_pmd(j); DPRINT_ovfl(("smpl_pmd[%d]=pmd%u=0x%lx\n", k-1, j, ovfl_arg->smpl_pmds_values[k-1])); } } pfm_stats[this_cpu].pfm_smpl_handler_calls++; start_cycles = ia64_get_itc(); /* * call custom buffer format record (handler) routine */ ret = (*ctx->ctx_buf_fmt->fmt_handler)(task, ctx->ctx_smpl_hdr, ovfl_arg, regs, tstamp); end_cycles = ia64_get_itc(); /* * For those controls, we take the union because they have * an all or nothing behavior. */ ovfl_ctrl.bits.notify_user |= ovfl_arg->ovfl_ctrl.bits.notify_user; ovfl_ctrl.bits.block_task |= ovfl_arg->ovfl_ctrl.bits.block_task; ovfl_ctrl.bits.mask_monitoring |= ovfl_arg->ovfl_ctrl.bits.mask_monitoring; /* * build the bitmask of pmds to reset now */ if (ovfl_arg->ovfl_ctrl.bits.reset_ovfl_pmds) reset_pmds |= mask; pfm_stats[this_cpu].pfm_smpl_handler_cycles += end_cycles - start_cycles; } /* * when the module cannot handle the rest of the overflows, we abort right here */ if (ret && pmd_mask) { DPRINT(("handler aborts leftover ovfl_pmds=0x%lx\n", pmd_mask<<PMU_FIRST_COUNTER)); } /* * remove the pmds we reset now from the set of pmds to reset in pfm_restart() */ ovfl_pmds &= ~reset_pmds; } else { /* * when no sampling module is used, then the default * is to notify on overflow if requested by user */ ovfl_ctrl.bits.notify_user = ovfl_notify ? 1 : 0; ovfl_ctrl.bits.block_task = ovfl_notify ? 1 : 0; ovfl_ctrl.bits.mask_monitoring = ovfl_notify ? 1 : 0; /* XXX: change for saturation */ ovfl_ctrl.bits.reset_ovfl_pmds = ovfl_notify ? 0 : 1; /* * if needed, we reset all overflowed pmds */ if (ovfl_notify == 0) reset_pmds = ovfl_pmds; } DPRINT_ovfl(("ovfl_pmds=0x%lx reset_pmds=0x%lx\n", ovfl_pmds, reset_pmds)); /* * reset the requested PMD registers using the short reset values */ if (reset_pmds) { unsigned long bm = reset_pmds; pfm_reset_regs(ctx, &bm, PFM_PMD_SHORT_RESET); } if (ovfl_notify && ovfl_ctrl.bits.notify_user) { /* * keep track of what to reset when unblocking */ ctx->ctx_ovfl_regs[0] = ovfl_pmds; /* * check for blocking context */ if (CTX_OVFL_NOBLOCK(ctx) == 0 && ovfl_ctrl.bits.block_task) { ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_BLOCK; /* * set the perfmon specific checking pending work for the task */ PFM_SET_WORK_PENDING(task, 1); /* * when coming from ctxsw, current still points to the * previous task, therefore we must work with task and not current. */ set_notify_resume(task); } /* * defer until state is changed (shorten spin window). the context is locked * anyway, so the signal receiver would come spin for nothing. */ must_notify = 1; } DPRINT_ovfl(("owner [%d] pending=%ld reason=%u ovfl_pmds=0x%lx ovfl_notify=0x%lx masked=%d\n", GET_PMU_OWNER() ? task_pid_nr(GET_PMU_OWNER()) : -1, PFM_GET_WORK_PENDING(task), ctx->ctx_fl_trap_reason, ovfl_pmds, ovfl_notify, ovfl_ctrl.bits.mask_monitoring ? 1 : 0)); /* * in case monitoring must be stopped, we toggle the psr bits */ if (ovfl_ctrl.bits.mask_monitoring) { pfm_mask_monitoring(task); ctx->ctx_state = PFM_CTX_MASKED; ctx->ctx_fl_can_restart = 1; } /* * send notification now */ if (must_notify) pfm_ovfl_notify_user(ctx, ovfl_notify); return; sanity_check: printk(KERN_ERR "perfmon: CPU%d overflow handler [%d] pmc0=0x%lx\n", smp_processor_id(), task ? task_pid_nr(task) : -1, pmc0); return; stop_monitoring: /* * in SMP, zombie context is never restored but reclaimed in pfm_load_regs(). * Moreover, zombies are also reclaimed in pfm_save_regs(). Therefore we can * come here as zombie only if the task is the current task. In which case, we * can access the PMU hardware directly. * * Note that zombies do have PM_VALID set. So here we do the minimal. * * In case the context was zombified it could not be reclaimed at the time * the monitoring program exited. At this point, the PMU reservation has been * returned, the sampiing buffer has been freed. We must convert this call * into a spurious interrupt. However, we must also avoid infinite overflows * by stopping monitoring for this task. We can only come here for a per-task * context. All we need to do is to stop monitoring using the psr bits which * are always task private. By re-enabling secure montioring, we ensure that * the monitored task will not be able to re-activate monitoring. * The task will eventually be context switched out, at which point the context * will be reclaimed (that includes releasing ownership of the PMU). * * So there might be a window of time where the number of per-task session is zero * yet one PMU might have a owner and get at most one overflow interrupt for a zombie * context. This is safe because if a per-task session comes in, it will push this one * out and by the virtue on pfm_save_regs(), this one will disappear. If a system wide * session is force on that CPU, given that we use task pinning, pfm_save_regs() will * also push our zombie context out. * * Overall pretty hairy stuff.... */ DPRINT(("ctx is zombie for [%d], converted to spurious\n", task ? task_pid_nr(task): -1)); pfm_clear_psr_up(); ia64_psr(regs)->up = 0; ia64_psr(regs)->sp = 1; return; } static int pfm_do_interrupt_handler(void *arg, struct pt_regs *regs) { struct task_struct *task; pfm_context_t *ctx; unsigned long flags; u64 pmc0; int this_cpu = smp_processor_id(); int retval = 0; pfm_stats[this_cpu].pfm_ovfl_intr_count++; /* * srlz.d done before arriving here */ pmc0 = ia64_get_pmc(0); task = GET_PMU_OWNER(); ctx = GET_PMU_CTX(); /* * if we have some pending bits set * assumes : if any PMC0.bit[63-1] is set, then PMC0.fr = 1 */ if (PMC0_HAS_OVFL(pmc0) && task) { /* * we assume that pmc0.fr is always set here */ /* sanity check */ if (!ctx) goto report_spurious1; if (ctx->ctx_fl_system == 0 && (task->thread.flags & IA64_THREAD_PM_VALID) == 0) goto report_spurious2; PROTECT_CTX_NOPRINT(ctx, flags); pfm_overflow_handler(task, ctx, pmc0, regs); UNPROTECT_CTX_NOPRINT(ctx, flags); } else { pfm_stats[this_cpu].pfm_spurious_ovfl_intr_count++; retval = -1; } /* * keep it unfrozen at all times */ pfm_unfreeze_pmu(); return retval; report_spurious1: printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d has no PFM context\n", this_cpu, task_pid_nr(task)); pfm_unfreeze_pmu(); return -1; report_spurious2: printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d, invalid flag\n", this_cpu, task_pid_nr(task)); pfm_unfreeze_pmu(); return -1; } static irqreturn_t pfm_interrupt_handler(int irq, void *arg) { unsigned long start_cycles, total_cycles; unsigned long min, max; int this_cpu; int ret; struct pt_regs *regs = get_irq_regs(); this_cpu = get_cpu(); if (likely(!pfm_alt_intr_handler)) { min = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min; max = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max; start_cycles = ia64_get_itc(); ret = pfm_do_interrupt_handler(arg, regs); total_cycles = ia64_get_itc(); /* * don't measure spurious interrupts */ if (likely(ret == 0)) { total_cycles -= start_cycles; if (total_cycles < min) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min = total_cycles; if (total_cycles > max) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max = total_cycles; pfm_stats[this_cpu].pfm_ovfl_intr_cycles += total_cycles; } } else { (*pfm_alt_intr_handler->handler)(irq, arg, regs); } put_cpu(); return IRQ_HANDLED; } /* * /proc/perfmon interface, for debug only */ #define PFM_PROC_SHOW_HEADER ((void *)(long)nr_cpu_ids+1) static void * pfm_proc_start(struct seq_file *m, loff_t *pos) { if (*pos == 0) { return PFM_PROC_SHOW_HEADER; } while (*pos <= nr_cpu_ids) { if (cpu_online(*pos - 1)) { return (void *)*pos; } ++*pos; } return NULL; } static void * pfm_proc_next(struct seq_file *m, void *v, loff_t *pos) { ++*pos; return pfm_proc_start(m, pos); } static void pfm_proc_stop(struct seq_file *m, void *v) { } static void pfm_proc_show_header(struct seq_file *m) { struct list_head * pos; pfm_buffer_fmt_t * entry; unsigned long flags; seq_printf(m, "perfmon version : %u.%u\n" "model : %s\n" "fastctxsw : %s\n" "expert mode : %s\n" "ovfl_mask : 0x%lx\n" "PMU flags : 0x%x\n", PFM_VERSION_MAJ, PFM_VERSION_MIN, pmu_conf->pmu_name, pfm_sysctl.fastctxsw > 0 ? "Yes": "No", pfm_sysctl.expert_mode > 0 ? "Yes": "No", pmu_conf->ovfl_val, pmu_conf->flags); LOCK_PFS(flags); seq_printf(m, "proc_sessions : %u\n" "sys_sessions : %u\n" "sys_use_dbregs : %u\n" "ptrace_use_dbregs : %u\n", pfm_sessions.pfs_task_sessions, pfm_sessions.pfs_sys_sessions, pfm_sessions.pfs_sys_use_dbregs, pfm_sessions.pfs_ptrace_use_dbregs); UNLOCK_PFS(flags); spin_lock(&pfm_buffer_fmt_lock); list_for_each(pos, &pfm_buffer_fmt_list) { entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list); seq_printf(m, "format : %16phD %s\n", entry->fmt_uuid, entry->fmt_name); } spin_unlock(&pfm_buffer_fmt_lock); } static int pfm_proc_show(struct seq_file *m, void *v) { unsigned long psr; unsigned int i; int cpu; if (v == PFM_PROC_SHOW_HEADER) { pfm_proc_show_header(m); return 0; } /* show info for CPU (v - 1) */ cpu = (long)v - 1; seq_printf(m, "CPU%-2d overflow intrs : %lu\n" "CPU%-2d overflow cycles : %lu\n" "CPU%-2d overflow min : %lu\n" "CPU%-2d overflow max : %lu\n" "CPU%-2d smpl handler calls : %lu\n" "CPU%-2d smpl handler cycles : %lu\n" "CPU%-2d spurious intrs : %lu\n" "CPU%-2d replay intrs : %lu\n" "CPU%-2d syst_wide : %d\n" "CPU%-2d dcr_pp : %d\n" "CPU%-2d exclude idle : %d\n" "CPU%-2d owner : %d\n" "CPU%-2d context : %p\n" "CPU%-2d activations : %lu\n", cpu, pfm_stats[cpu].pfm_ovfl_intr_count, cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles, cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_min, cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_max, cpu, pfm_stats[cpu].pfm_smpl_handler_calls, cpu, pfm_stats[cpu].pfm_smpl_handler_cycles, cpu, pfm_stats[cpu].pfm_spurious_ovfl_intr_count, cpu, pfm_stats[cpu].pfm_replay_ovfl_intr_count, cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_SYST_WIDE ? 1 : 0, cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_DCR_PP ? 1 : 0, cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_EXCL_IDLE ? 1 : 0, cpu, pfm_get_cpu_data(pmu_owner, cpu) ? pfm_get_cpu_data(pmu_owner, cpu)->pid: -1, cpu, pfm_get_cpu_data(pmu_ctx, cpu), cpu, pfm_get_cpu_data(pmu_activation_number, cpu)); if (num_online_cpus() == 1 && pfm_sysctl.debug > 0) { psr = pfm_get_psr(); ia64_srlz_d(); seq_printf(m, "CPU%-2d psr : 0x%lx\n" "CPU%-2d pmc0 : 0x%lx\n", cpu, psr, cpu, ia64_get_pmc(0)); for (i=0; PMC_IS_LAST(i) == 0; i++) { if (PMC_IS_COUNTING(i) == 0) continue; seq_printf(m, "CPU%-2d pmc%u : 0x%lx\n" "CPU%-2d pmd%u : 0x%lx\n", cpu, i, ia64_get_pmc(i), cpu, i, ia64_get_pmd(i)); } } return 0; } const struct seq_operations pfm_seq_ops = { .start = pfm_proc_start, .next = pfm_proc_next, .stop = pfm_proc_stop, .show = pfm_proc_show }; static int pfm_proc_open(struct inode *inode, struct file *file) { return seq_open(file, &pfm_seq_ops); } /* * we come here as soon as local_cpu_data->pfm_syst_wide is set. this happens * during pfm_enable() hence before pfm_start(). We cannot assume monitoring * is active or inactive based on mode. We must rely on the value in * local_cpu_data->pfm_syst_info */ void pfm_syst_wide_update_task(struct task_struct *task, unsigned long info, int is_ctxswin) { struct pt_regs *regs; unsigned long dcr; unsigned long dcr_pp; dcr_pp = info & PFM_CPUINFO_DCR_PP ? 1 : 0; /* * pid 0 is guaranteed to be the idle task. There is one such task with pid 0 * on every CPU, so we can rely on the pid to identify the idle task. */ if ((info & PFM_CPUINFO_EXCL_IDLE) == 0 || task->pid) { regs = task_pt_regs(task); ia64_psr(regs)->pp = is_ctxswin ? dcr_pp : 0; return; } /* * if monitoring has started */ if (dcr_pp) { dcr = ia64_getreg(_IA64_REG_CR_DCR); /* * context switching in? */ if (is_ctxswin) { /* mask monitoring for the idle task */ ia64_setreg(_IA64_REG_CR_DCR, dcr & ~IA64_DCR_PP); pfm_clear_psr_pp(); ia64_srlz_i(); return; } /* * context switching out * restore monitoring for next task * * Due to inlining this odd if-then-else construction generates * better code. */ ia64_setreg(_IA64_REG_CR_DCR, dcr |IA64_DCR_PP); pfm_set_psr_pp(); ia64_srlz_i(); } } #ifdef CONFIG_SMP static void pfm_force_cleanup(pfm_context_t *ctx, struct pt_regs *regs) { struct task_struct *task = ctx->ctx_task; ia64_psr(regs)->up = 0; ia64_psr(regs)->sp = 1; if (GET_PMU_OWNER() == task) { DPRINT(("cleared ownership for [%d]\n", task_pid_nr(ctx->ctx_task))); SET_PMU_OWNER(NULL, NULL); } /* * disconnect the task from the context and vice-versa */ PFM_SET_WORK_PENDING(task, 0); task->thread.pfm_context = NULL; task->thread.flags &= ~IA64_THREAD_PM_VALID; DPRINT(("force cleanup for [%d]\n", task_pid_nr(task))); } /* * in 2.6, interrupts are masked when we come here and the runqueue lock is held */ void pfm_save_regs(struct task_struct *task) { pfm_context_t *ctx; unsigned long flags; u64 psr; ctx = PFM_GET_CTX(task); if (ctx == NULL) return; /* * we always come here with interrupts ALREADY disabled by * the scheduler. So we simply need to protect against concurrent * access, not CPU concurrency. */ flags = pfm_protect_ctx_ctxsw(ctx); if (ctx->ctx_state == PFM_CTX_ZOMBIE) { struct pt_regs *regs = task_pt_regs(task); pfm_clear_psr_up(); pfm_force_cleanup(ctx, regs); BUG_ON(ctx->ctx_smpl_hdr); pfm_unprotect_ctx_ctxsw(ctx, flags); pfm_context_free(ctx); return; } /* * save current PSR: needed because we modify it */ ia64_srlz_d(); psr = pfm_get_psr(); BUG_ON(psr & (IA64_PSR_I)); /* * stop monitoring: * This is the last instruction which may generate an overflow * * We do not need to set psr.sp because, it is irrelevant in kernel. * It will be restored from ipsr when going back to user level */ pfm_clear_psr_up(); /* * keep a copy of psr.up (for reload) */ ctx->ctx_saved_psr_up = psr & IA64_PSR_UP; /* * release ownership of this PMU. * PM interrupts are masked, so nothing * can happen. */ SET_PMU_OWNER(NULL, NULL); /* * we systematically save the PMD as we have no * guarantee we will be schedule at that same * CPU again. */ pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]); /* * save pmc0 ia64_srlz_d() done in pfm_save_pmds() * we will need it on the restore path to check * for pending overflow. */ ctx->th_pmcs[0] = ia64_get_pmc(0); /* * unfreeze PMU if had pending overflows */ if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu(); /* * finally, allow context access. * interrupts will still be masked after this call. */ pfm_unprotect_ctx_ctxsw(ctx, flags); } #else /* !CONFIG_SMP */ void pfm_save_regs(struct task_struct *task) { pfm_context_t *ctx; u64 psr; ctx = PFM_GET_CTX(task); if (ctx == NULL) return; /* * save current PSR: needed because we modify it */ psr = pfm_get_psr(); BUG_ON(psr & (IA64_PSR_I)); /* * stop monitoring: * This is the last instruction which may generate an overflow * * We do not need to set psr.sp because, it is irrelevant in kernel. * It will be restored from ipsr when going back to user level */ pfm_clear_psr_up(); /* * keep a copy of psr.up (for reload) */ ctx->ctx_saved_psr_up = psr & IA64_PSR_UP; } static void pfm_lazy_save_regs (struct task_struct *task) { pfm_context_t *ctx; unsigned long flags; { u64 psr = pfm_get_psr(); BUG_ON(psr & IA64_PSR_UP); } ctx = PFM_GET_CTX(task); /* * we need to mask PMU overflow here to * make sure that we maintain pmc0 until * we save it. overflow interrupts are * treated as spurious if there is no * owner. * * XXX: I don't think this is necessary */ PROTECT_CTX(ctx,flags); /* * release ownership of this PMU. * must be done before we save the registers. * * after this call any PMU interrupt is treated * as spurious. */ SET_PMU_OWNER(NULL, NULL); /* * save all the pmds we use */ pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]); /* * save pmc0 ia64_srlz_d() done in pfm_save_pmds() * it is needed to check for pended overflow * on the restore path */ ctx->th_pmcs[0] = ia64_get_pmc(0); /* * unfreeze PMU if had pending overflows */ if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu(); /* * now get can unmask PMU interrupts, they will * be treated as purely spurious and we will not * lose any information */ UNPROTECT_CTX(ctx,flags); } #endif /* CONFIG_SMP */ #ifdef CONFIG_SMP /* * in 2.6, interrupts are masked when we come here and the runqueue lock is held */ void pfm_load_regs (struct task_struct *task) { pfm_context_t *ctx; unsigned long pmc_mask = 0UL, pmd_mask = 0UL; unsigned long flags; u64 psr, psr_up; int need_irq_resend; ctx = PFM_GET_CTX(task); if (unlikely(ctx == NULL)) return; BUG_ON(GET_PMU_OWNER()); /* * possible on unload */ if (unlikely((task->thread.flags & IA64_THREAD_PM_VALID) == 0)) return; /* * we always come here with interrupts ALREADY disabled by * the scheduler. So we simply need to protect against concurrent * access, not CPU concurrency. */ flags = pfm_protect_ctx_ctxsw(ctx); psr = pfm_get_psr(); need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND; BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP)); BUG_ON(psr & IA64_PSR_I); if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) { struct pt_regs *regs = task_pt_regs(task); BUG_ON(ctx->ctx_smpl_hdr); pfm_force_cleanup(ctx, regs); pfm_unprotect_ctx_ctxsw(ctx, flags); /* * this one (kmalloc'ed) is fine with interrupts disabled */ pfm_context_free(ctx); return; } /* * we restore ALL the debug registers to avoid picking up * stale state. */ if (ctx->ctx_fl_using_dbreg) { pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs); pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs); } /* * retrieve saved psr.up */ psr_up = ctx->ctx_saved_psr_up; /* * if we were the last user of the PMU on that CPU, * then nothing to do except restore psr */ if (GET_LAST_CPU(ctx) == smp_processor_id() && ctx->ctx_last_activation == GET_ACTIVATION()) { /* * retrieve partial reload masks (due to user modifications) */ pmc_mask = ctx->ctx_reload_pmcs[0]; pmd_mask = ctx->ctx_reload_pmds[0]; } else { /* * To avoid leaking information to the user level when psr.sp=0, * we must reload ALL implemented pmds (even the ones we don't use). * In the kernel we only allow PFM_READ_PMDS on registers which * we initialized or requested (sampling) so there is no risk there. */ pmd_mask = pfm_sysctl.fastctxsw ? ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0]; /* * ALL accessible PMCs are systematically reloaded, unused registers * get their default (from pfm_reset_pmu_state()) values to avoid picking * up stale configuration. * * PMC0 is never in the mask. It is always restored separately. */ pmc_mask = ctx->ctx_all_pmcs[0]; } /* * when context is MASKED, we will restore PMC with plm=0 * and PMD with stale information, but that's ok, nothing * will be captured. * * XXX: optimize here */ if (pmd_mask) pfm_restore_pmds(ctx->th_pmds, pmd_mask); if (pmc_mask) pfm_restore_pmcs(ctx->th_pmcs, pmc_mask); /* * check for pending overflow at the time the state * was saved. */ if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) { /* * reload pmc0 with the overflow information * On McKinley PMU, this will trigger a PMU interrupt */ ia64_set_pmc(0, ctx->th_pmcs[0]); ia64_srlz_d(); ctx->th_pmcs[0] = 0UL; /* * will replay the PMU interrupt */ if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR); pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++; } /* * we just did a reload, so we reset the partial reload fields */ ctx->ctx_reload_pmcs[0] = 0UL; ctx->ctx_reload_pmds[0] = 0UL; SET_LAST_CPU(ctx, smp_processor_id()); /* * dump activation value for this PMU */ INC_ACTIVATION(); /* * record current activation for this context */ SET_ACTIVATION(ctx); /* * establish new ownership. */ SET_PMU_OWNER(task, ctx); /* * restore the psr.up bit. measurement * is active again. * no PMU interrupt can happen at this point * because we still have interrupts disabled. */ if (likely(psr_up)) pfm_set_psr_up(); /* * allow concurrent access to context */ pfm_unprotect_ctx_ctxsw(ctx, flags); } #else /* !CONFIG_SMP */ /* * reload PMU state for UP kernels * in 2.5 we come here with interrupts disabled */ void pfm_load_regs (struct task_struct *task) { pfm_context_t *ctx; struct task_struct *owner; unsigned long pmd_mask, pmc_mask; u64 psr, psr_up; int need_irq_resend; owner = GET_PMU_OWNER(); ctx = PFM_GET_CTX(task); psr = pfm_get_psr(); BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP)); BUG_ON(psr & IA64_PSR_I); /* * we restore ALL the debug registers to avoid picking up * stale state. * * This must be done even when the task is still the owner * as the registers may have been modified via ptrace() * (not perfmon) by the previous task. */ if (ctx->ctx_fl_using_dbreg) { pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs); pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs); } /* * retrieved saved psr.up */ psr_up = ctx->ctx_saved_psr_up; need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND; /* * short path, our state is still there, just * need to restore psr and we go * * we do not touch either PMC nor PMD. the psr is not touched * by the overflow_handler. So we are safe w.r.t. to interrupt * concurrency even without interrupt masking. */ if (likely(owner == task)) { if (likely(psr_up)) pfm_set_psr_up(); return; } /* * someone else is still using the PMU, first push it out and * then we'll be able to install our stuff ! * * Upon return, there will be no owner for the current PMU */ if (owner) pfm_lazy_save_regs(owner); /* * To avoid leaking information to the user level when psr.sp=0, * we must reload ALL implemented pmds (even the ones we don't use). * In the kernel we only allow PFM_READ_PMDS on registers which * we initialized or requested (sampling) so there is no risk there. */ pmd_mask = pfm_sysctl.fastctxsw ? ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0]; /* * ALL accessible PMCs are systematically reloaded, unused registers * get their default (from pfm_reset_pmu_state()) values to avoid picking * up stale configuration. * * PMC0 is never in the mask. It is always restored separately */ pmc_mask = ctx->ctx_all_pmcs[0]; pfm_restore_pmds(ctx->th_pmds, pmd_mask); pfm_restore_pmcs(ctx->th_pmcs, pmc_mask); /* * check for pending overflow at the time the state * was saved. */ if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) { /* * reload pmc0 with the overflow information * On McKinley PMU, this will trigger a PMU interrupt */ ia64_set_pmc(0, ctx->th_pmcs[0]); ia64_srlz_d(); ctx->th_pmcs[0] = 0UL; /* * will replay the PMU interrupt */ if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR); pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++; } /* * establish new ownership. */ SET_PMU_OWNER(task, ctx); /* * restore the psr.up bit. measurement * is active again. * no PMU interrupt can happen at this point * because we still have interrupts disabled. */ if (likely(psr_up)) pfm_set_psr_up(); } #endif /* CONFIG_SMP */ /* * this function assumes monitoring is stopped */ static void pfm_flush_pmds(struct task_struct *task, pfm_context_t *ctx) { u64 pmc0; unsigned long mask2, val, pmd_val, ovfl_val; int i, can_access_pmu = 0; int is_self; /* * is the caller the task being monitored (or which initiated the * session for system wide measurements) */ is_self = ctx->ctx_task == task ? 1 : 0; /* * can access PMU is task is the owner of the PMU state on the current CPU * or if we are running on the CPU bound to the context in system-wide mode * (that is not necessarily the task the context is attached to in this mode). * In system-wide we always have can_access_pmu true because a task running on an * invalid processor is flagged earlier in the call stack (see pfm_stop). */ can_access_pmu = (GET_PMU_OWNER() == task) || (ctx->ctx_fl_system && ctx->ctx_cpu == smp_processor_id()); if (can_access_pmu) { /* * Mark the PMU as not owned * This will cause the interrupt handler to do nothing in case an overflow * interrupt was in-flight * This also guarantees that pmc0 will contain the final state * It virtually gives us full control on overflow processing from that point * on. */ SET_PMU_OWNER(NULL, NULL); DPRINT(("releasing ownership\n")); /* * read current overflow status: * * we are guaranteed to read the final stable state */ ia64_srlz_d(); pmc0 = ia64_get_pmc(0); /* slow */ /* * reset freeze bit, overflow status information destroyed */ pfm_unfreeze_pmu(); } else { pmc0 = ctx->th_pmcs[0]; /* * clear whatever overflow status bits there were */ ctx->th_pmcs[0] = 0; } ovfl_val = pmu_conf->ovfl_val; /* * we save all the used pmds * we take care of overflows for counting PMDs * * XXX: sampling situation is not taken into account here */ mask2 = ctx->ctx_used_pmds[0]; DPRINT(("is_self=%d ovfl_val=0x%lx mask2=0x%lx\n", is_self, ovfl_val, mask2)); for (i = 0; mask2; i++, mask2>>=1) { /* skip non used pmds */ if ((mask2 & 0x1) == 0) continue; /* * can access PMU always true in system wide mode */ val = pmd_val = can_access_pmu ? ia64_get_pmd(i) : ctx->th_pmds[i]; if (PMD_IS_COUNTING(i)) { DPRINT(("[%d] pmd[%d] ctx_pmd=0x%lx hw_pmd=0x%lx\n", task_pid_nr(task), i, ctx->ctx_pmds[i].val, val & ovfl_val)); /* * we rebuild the full 64 bit value of the counter */ val = ctx->ctx_pmds[i].val + (val & ovfl_val); /* * now everything is in ctx_pmds[] and we need * to clear the saved context from save_regs() such that * pfm_read_pmds() gets the correct value */ pmd_val = 0UL; /* * take care of overflow inline */ if (pmc0 & (1UL << i)) { val += 1 + ovfl_val; DPRINT(("[%d] pmd[%d] overflowed\n", task_pid_nr(task), i)); } } DPRINT(("[%d] ctx_pmd[%d]=0x%lx pmd_val=0x%lx\n", task_pid_nr(task), i, val, pmd_val)); if (is_self) ctx->th_pmds[i] = pmd_val; ctx->ctx_pmds[i].val = val; } } static struct irqaction perfmon_irqaction = { .handler = pfm_interrupt_handler, .name = "perfmon" }; static void pfm_alt_save_pmu_state(void *data) { struct pt_regs *regs; regs = task_pt_regs(current); DPRINT(("called\n")); /* * should not be necessary but * let's take not risk */ pfm_clear_psr_up(); pfm_clear_psr_pp(); ia64_psr(regs)->pp = 0; /* * This call is required * May cause a spurious interrupt on some processors */ pfm_freeze_pmu(); ia64_srlz_d(); } void pfm_alt_restore_pmu_state(void *data) { struct pt_regs *regs; regs = task_pt_regs(current); DPRINT(("called\n")); /* * put PMU back in state expected * by perfmon */ pfm_clear_psr_up(); pfm_clear_psr_pp(); ia64_psr(regs)->pp = 0; /* * perfmon runs with PMU unfrozen at all times */ pfm_unfreeze_pmu(); ia64_srlz_d(); } int pfm_install_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl) { int ret, i; int reserve_cpu; /* some sanity checks */ if (hdl == NULL || hdl->handler == NULL) return -EINVAL; /* do the easy test first */ if (pfm_alt_intr_handler) return -EBUSY; /* one at a time in the install or remove, just fail the others */ if (!spin_trylock(&pfm_alt_install_check)) { return -EBUSY; } /* reserve our session */ for_each_online_cpu(reserve_cpu) { ret = pfm_reserve_session(NULL, 1, reserve_cpu); if (ret) goto cleanup_reserve; } /* save the current system wide pmu states */ ret = on_each_cpu(pfm_alt_save_pmu_state, NULL, 1); if (ret) { DPRINT(("on_each_cpu() failed: %d\n", ret)); goto cleanup_reserve; } /* officially change to the alternate interrupt handler */ pfm_alt_intr_handler = hdl; spin_unlock(&pfm_alt_install_check); return 0; cleanup_reserve: for_each_online_cpu(i) { /* don't unreserve more than we reserved */ if (i >= reserve_cpu) break; pfm_unreserve_session(NULL, 1, i); } spin_unlock(&pfm_alt_install_check); return ret; } EXPORT_SYMBOL_GPL(pfm_install_alt_pmu_interrupt); int pfm_remove_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl) { int i; int ret; if (hdl == NULL) return -EINVAL; /* cannot remove someone else's handler! */ if (pfm_alt_intr_handler != hdl) return -EINVAL; /* one at a time in the install or remove, just fail the others */ if (!spin_trylock(&pfm_alt_install_check)) { return -EBUSY; } pfm_alt_intr_handler = NULL; ret = on_each_cpu(pfm_alt_restore_pmu_state, NULL, 1); if (ret) { DPRINT(("on_each_cpu() failed: %d\n", ret)); } for_each_online_cpu(i) { pfm_unreserve_session(NULL, 1, i); } spin_unlock(&pfm_alt_install_check); return 0; } EXPORT_SYMBOL_GPL(pfm_remove_alt_pmu_interrupt); /* * perfmon initialization routine, called from the initcall() table */ static int init_pfm_fs(void); static int __init pfm_probe_pmu(void) { pmu_config_t **p; int family; family = local_cpu_data->family; p = pmu_confs; while(*p) { if ((*p)->probe) { if ((*p)->probe() == 0) goto found; } else if ((*p)->pmu_family == family || (*p)->pmu_family == 0xff) { goto found; } p++; } return -1; found: pmu_conf = *p; return 0; } static const struct file_operations pfm_proc_fops = { .open = pfm_proc_open, .read = seq_read, .llseek = seq_lseek, .release = seq_release, }; int __init pfm_init(void) { unsigned int n, n_counters, i; printk("perfmon: version %u.%u IRQ %u\n", PFM_VERSION_MAJ, PFM_VERSION_MIN, IA64_PERFMON_VECTOR); if (pfm_probe_pmu()) { printk(KERN_INFO "perfmon: disabled, there is no support for processor family %d\n", local_cpu_data->family); return -ENODEV; } /* * compute the number of implemented PMD/PMC from the * description tables */ n = 0; for (i=0; PMC_IS_LAST(i) == 0; i++) { if (PMC_IS_IMPL(i) == 0) continue; pmu_conf->impl_pmcs[i>>6] |= 1UL << (i&63); n++; } pmu_conf->num_pmcs = n; n = 0; n_counters = 0; for (i=0; PMD_IS_LAST(i) == 0; i++) { if (PMD_IS_IMPL(i) == 0) continue; pmu_conf->impl_pmds[i>>6] |= 1UL << (i&63); n++; if (PMD_IS_COUNTING(i)) n_counters++; } pmu_conf->num_pmds = n; pmu_conf->num_counters = n_counters; /* * sanity checks on the number of debug registers */ if (pmu_conf->use_rr_dbregs) { if (pmu_conf->num_ibrs > IA64_NUM_DBG_REGS) { printk(KERN_INFO "perfmon: unsupported number of code debug registers (%u)\n", pmu_conf->num_ibrs); pmu_conf = NULL; return -1; } if (pmu_conf->num_dbrs > IA64_NUM_DBG_REGS) { printk(KERN_INFO "perfmon: unsupported number of data debug registers (%u)\n", pmu_conf->num_ibrs); pmu_conf = NULL; return -1; } } printk("perfmon: %s PMU detected, %u PMCs, %u PMDs, %u counters (%lu bits)\n", pmu_conf->pmu_name, pmu_conf->num_pmcs, pmu_conf->num_pmds, pmu_conf->num_counters, ffz(pmu_conf->ovfl_val)); /* sanity check */ if (pmu_conf->num_pmds >= PFM_NUM_PMD_REGS || pmu_conf->num_pmcs >= PFM_NUM_PMC_REGS) { printk(KERN_ERR "perfmon: not enough pmc/pmd, perfmon disabled\n"); pmu_conf = NULL; return -1; } /* * create /proc/perfmon (mostly for debugging purposes) */ perfmon_dir = proc_create("perfmon", S_IRUGO, NULL, &pfm_proc_fops); if (perfmon_dir == NULL) { printk(KERN_ERR "perfmon: cannot create /proc entry, perfmon disabled\n"); pmu_conf = NULL; return -1; } /* * create /proc/sys/kernel/perfmon (for debugging purposes) */ pfm_sysctl_header = register_sysctl_table(pfm_sysctl_root); /* * initialize all our spinlocks */ spin_lock_init(&pfm_sessions.pfs_lock); spin_lock_init(&pfm_buffer_fmt_lock); init_pfm_fs(); for(i=0; i < NR_CPUS; i++) pfm_stats[i].pfm_ovfl_intr_cycles_min = ~0UL; return 0; } __initcall(pfm_init); /* * this function is called before pfm_init() */ void pfm_init_percpu (void) { static int first_time=1; /* * make sure no measurement is active * (may inherit programmed PMCs from EFI). */ pfm_clear_psr_pp(); pfm_clear_psr_up(); /* * we run with the PMU not frozen at all times */ pfm_unfreeze_pmu(); if (first_time) { register_percpu_irq(IA64_PERFMON_VECTOR, &perfmon_irqaction); first_time=0; } ia64_setreg(_IA64_REG_CR_PMV, IA64_PERFMON_VECTOR); ia64_srlz_d(); } /* * used for debug purposes only */ void dump_pmu_state(const char *from) { struct task_struct *task; struct pt_regs *regs; pfm_context_t *ctx; unsigned long psr, dcr, info, flags; int i, this_cpu; local_irq_save(flags); this_cpu = smp_processor_id(); regs = task_pt_regs(current); info = PFM_CPUINFO_GET(); dcr = ia64_getreg(_IA64_REG_CR_DCR); if (info == 0 && ia64_psr(regs)->pp == 0 && (dcr & IA64_DCR_PP) == 0) { local_irq_restore(flags); return; } printk("CPU%d from %s() current [%d] iip=0x%lx %s\n", this_cpu, from, task_pid_nr(current), regs->cr_iip, current->comm); task = GET_PMU_OWNER(); ctx = GET_PMU_CTX(); printk("->CPU%d owner [%d] ctx=%p\n", this_cpu, task ? task_pid_nr(task) : -1, ctx); psr = pfm_get_psr(); printk("->CPU%d pmc0=0x%lx psr.pp=%d psr.up=%d dcr.pp=%d syst_info=0x%lx user_psr.up=%d user_psr.pp=%d\n", this_cpu, ia64_get_pmc(0), psr & IA64_PSR_PP ? 1 : 0, psr & IA64_PSR_UP ? 1 : 0, dcr & IA64_DCR_PP ? 1 : 0, info, ia64_psr(regs)->up, ia64_psr(regs)->pp); ia64_psr(regs)->up = 0; ia64_psr(regs)->pp = 0; for (i=1; PMC_IS_LAST(i) == 0; i++) { if (PMC_IS_IMPL(i) == 0) continue; printk("->CPU%d pmc[%d]=0x%lx thread_pmc[%d]=0x%lx\n", this_cpu, i, ia64_get_pmc(i), i, ctx->th_pmcs[i]); } for (i=1; PMD_IS_LAST(i) == 0; i++) { if (PMD_IS_IMPL(i) == 0) continue; printk("->CPU%d pmd[%d]=0x%lx thread_pmd[%d]=0x%lx\n", this_cpu, i, ia64_get_pmd(i), i, ctx->th_pmds[i]); } if (ctx) { printk("->CPU%d ctx_state=%d vaddr=%p addr=%p fd=%d ctx_task=[%d] saved_psr_up=0x%lx\n", this_cpu, ctx->ctx_state, ctx->ctx_smpl_vaddr, ctx->ctx_smpl_hdr, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, ctx->ctx_saved_psr_up); } local_irq_restore(flags); } /* * called from process.c:copy_thread(). task is new child. */ void pfm_inherit(struct task_struct *task, struct pt_regs *regs) { struct thread_struct *thread; DPRINT(("perfmon: pfm_inherit clearing state for [%d]\n", task_pid_nr(task))); thread = &task->thread; /* * cut links inherited from parent (current) */ thread->pfm_context = NULL; PFM_SET_WORK_PENDING(task, 0); /* * the psr bits are already set properly in copy_threads() */ } #else /* !CONFIG_PERFMON */ asmlinkage long sys_perfmonctl (int fd, int cmd, void *arg, int count) { return -ENOSYS; } #endif /* CONFIG_PERFMON */