/* * arch/ia64/kernel/ivt.S * * Copyright (C) 1998-2001, 2003, 2005 Hewlett-Packard Co * Stephane Eranian <eranian@hpl.hp.com> * David Mosberger <davidm@hpl.hp.com> * Copyright (C) 2000, 2002-2003 Intel Co * Asit Mallick <asit.k.mallick@intel.com> * Suresh Siddha <suresh.b.siddha@intel.com> * Kenneth Chen <kenneth.w.chen@intel.com> * Fenghua Yu <fenghua.yu@intel.com> * * 00/08/23 Asit Mallick <asit.k.mallick@intel.com> TLB handling for SMP * 00/12/20 David Mosberger-Tang <davidm@hpl.hp.com> DTLB/ITLB handler now uses virtual PT. * * Copyright (C) 2005 Hewlett-Packard Co * Dan Magenheimer <dan.magenheimer@hp.com> * Xen paravirtualization * Copyright (c) 2008 Isaku Yamahata <yamahata at valinux co jp> * VA Linux Systems Japan K.K. * pv_ops. * Yaozu (Eddie) Dong <eddie.dong@intel.com> */ /* * This file defines the interruption vector table used by the CPU. * It does not include one entry per possible cause of interruption. * * The first 20 entries of the table contain 64 bundles each while the * remaining 48 entries contain only 16 bundles each. * * The 64 bundles are used to allow inlining the whole handler for critical * interruptions like TLB misses. * * For each entry, the comment is as follows: * * // 0x1c00 Entry 7 (size 64 bundles) Data Key Miss (12,51) * entry offset ----/ / / / / * entry number ---------/ / / / * size of the entry -------------/ / / * vector name -------------------------------------/ / * interruptions triggering this vector ----------------------/ * * The table is 32KB in size and must be aligned on 32KB boundary. * (The CPU ignores the 15 lower bits of the address) * * Table is based upon EAS2.6 (Oct 1999) */ #include <asm/asmmacro.h> #include <asm/break.h> #include <asm/kregs.h> #include <asm/asm-offsets.h> #include <asm/pgtable.h> #include <asm/processor.h> #include <asm/ptrace.h> #include <asm/thread_info.h> #include <asm/unistd.h> #include <asm/errno.h> #if 0 # define PSR_DEFAULT_BITS psr.ac #else # define PSR_DEFAULT_BITS 0 #endif #if 0 /* * This lets you track the last eight faults that occurred on the CPU. Make sure ar.k2 isn't * needed for something else before enabling this... */ # define DBG_FAULT(i) mov r16=ar.k2;; shl r16=r16,8;; add r16=(i),r16;;mov ar.k2=r16 #else # define DBG_FAULT(i) #endif #include "minstate.h" #define FAULT(n) \ mov r31=pr; \ mov r19=n;; /* prepare to save predicates */ \ br.sptk.many dispatch_to_fault_handler .section .text..ivt,"ax" .align 32768 // align on 32KB boundary .global ia64_ivt ia64_ivt: ///////////////////////////////////////////////////////////////////////////////////////// // 0x0000 Entry 0 (size 64 bundles) VHPT Translation (8,20,47) ENTRY(vhpt_miss) DBG_FAULT(0) /* * The VHPT vector is invoked when the TLB entry for the virtual page table * is missing. This happens only as a result of a previous * (the "original") TLB miss, which may either be caused by an instruction * fetch or a data access (or non-access). * * What we do here is normal TLB miss handing for the _original_ miss, * followed by inserting the TLB entry for the virtual page table page * that the VHPT walker was attempting to access. The latter gets * inserted as long as page table entry above pte level have valid * mappings for the faulting address. The TLB entry for the original * miss gets inserted only if the pte entry indicates that the page is * present. * * do_page_fault gets invoked in the following cases: * - the faulting virtual address uses unimplemented address bits * - the faulting virtual address has no valid page table mapping */ MOV_FROM_IFA(r16) // get address that caused the TLB miss #ifdef CONFIG_HUGETLB_PAGE movl r18=PAGE_SHIFT MOV_FROM_ITIR(r25) #endif ;; RSM_PSR_DT // use physical addressing for data mov r31=pr // save the predicate registers mov r19=IA64_KR(PT_BASE) // get page table base address shl r21=r16,3 // shift bit 60 into sign bit shr.u r17=r16,61 // get the region number into r17 ;; shr.u r22=r21,3 #ifdef CONFIG_HUGETLB_PAGE extr.u r26=r25,2,6 ;; cmp.ne p8,p0=r18,r26 sub r27=r26,r18 ;; (p8) dep r25=r18,r25,2,6 (p8) shr r22=r22,r27 #endif ;; cmp.eq p6,p7=5,r17 // is IFA pointing into to region 5? shr.u r18=r22,PGDIR_SHIFT // get bottom portion of pgd index bit ;; (p7) dep r17=r17,r19,(PAGE_SHIFT-3),3 // put region number bits in place srlz.d LOAD_PHYSICAL(p6, r19, swapper_pg_dir) // region 5 is rooted at swapper_pg_dir .pred.rel "mutex", p6, p7 (p6) shr.u r21=r21,PGDIR_SHIFT+PAGE_SHIFT (p7) shr.u r21=r21,PGDIR_SHIFT+PAGE_SHIFT-3 ;; (p6) dep r17=r18,r19,3,(PAGE_SHIFT-3) // r17=pgd_offset for region 5 (p7) dep r17=r18,r17,3,(PAGE_SHIFT-6) // r17=pgd_offset for region[0-4] cmp.eq p7,p6=0,r21 // unused address bits all zeroes? #ifdef CONFIG_PGTABLE_4 shr.u r28=r22,PUD_SHIFT // shift pud index into position #else shr.u r18=r22,PMD_SHIFT // shift pmd index into position #endif ;; ld8 r17=[r17] // get *pgd (may be 0) ;; (p7) cmp.eq p6,p7=r17,r0 // was pgd_present(*pgd) == NULL? #ifdef CONFIG_PGTABLE_4 dep r28=r28,r17,3,(PAGE_SHIFT-3) // r28=pud_offset(pgd,addr) ;; shr.u r18=r22,PMD_SHIFT // shift pmd index into position (p7) ld8 r29=[r28] // get *pud (may be 0) ;; (p7) cmp.eq.or.andcm p6,p7=r29,r0 // was pud_present(*pud) == NULL? dep r17=r18,r29,3,(PAGE_SHIFT-3) // r17=pmd_offset(pud,addr) #else dep r17=r18,r17,3,(PAGE_SHIFT-3) // r17=pmd_offset(pgd,addr) #endif ;; (p7) ld8 r20=[r17] // get *pmd (may be 0) shr.u r19=r22,PAGE_SHIFT // shift pte index into position ;; (p7) cmp.eq.or.andcm p6,p7=r20,r0 // was pmd_present(*pmd) == NULL? dep r21=r19,r20,3,(PAGE_SHIFT-3) // r21=pte_offset(pmd,addr) ;; (p7) ld8 r18=[r21] // read *pte MOV_FROM_ISR(r19) // cr.isr bit 32 tells us if this is an insn miss ;; (p7) tbit.z p6,p7=r18,_PAGE_P_BIT // page present bit cleared? MOV_FROM_IHA(r22) // get the VHPT address that caused the TLB miss ;; // avoid RAW on p7 (p7) tbit.nz.unc p10,p11=r19,32 // is it an instruction TLB miss? dep r23=0,r20,0,PAGE_SHIFT // clear low bits to get page address ;; ITC_I_AND_D(p10, p11, r18, r24) // insert the instruction TLB entry and // insert the data TLB entry (p6) br.cond.spnt.many page_fault // handle bad address/page not present (page fault) MOV_TO_IFA(r22, r24) #ifdef CONFIG_HUGETLB_PAGE MOV_TO_ITIR(p8, r25, r24) // change to default page-size for VHPT #endif /* * Now compute and insert the TLB entry for the virtual page table. We never * execute in a page table page so there is no need to set the exception deferral * bit. */ adds r24=__DIRTY_BITS_NO_ED|_PAGE_PL_0|_PAGE_AR_RW,r23 ;; ITC_D(p7, r24, r25) ;; #ifdef CONFIG_SMP /* * Tell the assemblers dependency-violation checker that the above "itc" instructions * cannot possibly affect the following loads: */ dv_serialize_data /* * Re-check pagetable entry. If they changed, we may have received a ptc.g * between reading the pagetable and the "itc". If so, flush the entry we * inserted and retry. At this point, we have: * * r28 = equivalent of pud_offset(pgd, ifa) * r17 = equivalent of pmd_offset(pud, ifa) * r21 = equivalent of pte_offset(pmd, ifa) * * r29 = *pud * r20 = *pmd * r18 = *pte */ ld8 r25=[r21] // read *pte again ld8 r26=[r17] // read *pmd again #ifdef CONFIG_PGTABLE_4 ld8 r19=[r28] // read *pud again #endif cmp.ne p6,p7=r0,r0 ;; cmp.ne.or.andcm p6,p7=r26,r20 // did *pmd change #ifdef CONFIG_PGTABLE_4 cmp.ne.or.andcm p6,p7=r19,r29 // did *pud change #endif mov r27=PAGE_SHIFT<<2 ;; (p6) ptc.l r22,r27 // purge PTE page translation (p7) cmp.ne.or.andcm p6,p7=r25,r18 // did *pte change ;; (p6) ptc.l r16,r27 // purge translation #endif mov pr=r31,-1 // restore predicate registers RFI END(vhpt_miss) .org ia64_ivt+0x400 ///////////////////////////////////////////////////////////////////////////////////////// // 0x0400 Entry 1 (size 64 bundles) ITLB (21) ENTRY(itlb_miss) DBG_FAULT(1) /* * The ITLB handler accesses the PTE via the virtually mapped linear * page table. If a nested TLB miss occurs, we switch into physical * mode, walk the page table, and then re-execute the PTE read and * go on normally after that. */ MOV_FROM_IFA(r16) // get virtual address mov r29=b0 // save b0 mov r31=pr // save predicates .itlb_fault: MOV_FROM_IHA(r17) // get virtual address of PTE movl r30=1f // load nested fault continuation point ;; 1: ld8 r18=[r17] // read *pte ;; mov b0=r29 tbit.z p6,p0=r18,_PAGE_P_BIT // page present bit cleared? (p6) br.cond.spnt page_fault ;; ITC_I(p0, r18, r19) ;; #ifdef CONFIG_SMP /* * Tell the assemblers dependency-violation checker that the above "itc" instructions * cannot possibly affect the following loads: */ dv_serialize_data ld8 r19=[r17] // read *pte again and see if same mov r20=PAGE_SHIFT<<2 // setup page size for purge ;; cmp.ne p7,p0=r18,r19 ;; (p7) ptc.l r16,r20 #endif mov pr=r31,-1 RFI END(itlb_miss) .org ia64_ivt+0x0800 ///////////////////////////////////////////////////////////////////////////////////////// // 0x0800 Entry 2 (size 64 bundles) DTLB (9,48) ENTRY(dtlb_miss) DBG_FAULT(2) /* * The DTLB handler accesses the PTE via the virtually mapped linear * page table. If a nested TLB miss occurs, we switch into physical * mode, walk the page table, and then re-execute the PTE read and * go on normally after that. */ MOV_FROM_IFA(r16) // get virtual address mov r29=b0 // save b0 mov r31=pr // save predicates dtlb_fault: MOV_FROM_IHA(r17) // get virtual address of PTE movl r30=1f // load nested fault continuation point ;; 1: ld8 r18=[r17] // read *pte ;; mov b0=r29 tbit.z p6,p0=r18,_PAGE_P_BIT // page present bit cleared? (p6) br.cond.spnt page_fault ;; ITC_D(p0, r18, r19) ;; #ifdef CONFIG_SMP /* * Tell the assemblers dependency-violation checker that the above "itc" instructions * cannot possibly affect the following loads: */ dv_serialize_data ld8 r19=[r17] // read *pte again and see if same mov r20=PAGE_SHIFT<<2 // setup page size for purge ;; cmp.ne p7,p0=r18,r19 ;; (p7) ptc.l r16,r20 #endif mov pr=r31,-1 RFI END(dtlb_miss) .org ia64_ivt+0x0c00 ///////////////////////////////////////////////////////////////////////////////////////// // 0x0c00 Entry 3 (size 64 bundles) Alt ITLB (19) ENTRY(alt_itlb_miss) DBG_FAULT(3) MOV_FROM_IFA(r16) // get address that caused the TLB miss movl r17=PAGE_KERNEL MOV_FROM_IPSR(p0, r21) movl r19=(((1 << IA64_MAX_PHYS_BITS) - 1) & ~0xfff) mov r31=pr ;; #ifdef CONFIG_DISABLE_VHPT shr.u r22=r16,61 // get the region number into r21 ;; cmp.gt p8,p0=6,r22 // user mode ;; THASH(p8, r17, r16, r23) ;; MOV_TO_IHA(p8, r17, r23) (p8) mov r29=b0 // save b0 (p8) br.cond.dptk .itlb_fault #endif extr.u r23=r21,IA64_PSR_CPL0_BIT,2 // extract psr.cpl and r19=r19,r16 // clear ed, reserved bits, and PTE control bits shr.u r18=r16,57 // move address bit 61 to bit 4 ;; andcm r18=0x10,r18 // bit 4=~address-bit(61) cmp.ne p8,p0=r0,r23 // psr.cpl != 0? or r19=r17,r19 // insert PTE control bits into r19 ;; or r19=r19,r18 // set bit 4 (uncached) if the access was to region 6 (p8) br.cond.spnt page_fault ;; ITC_I(p0, r19, r18) // insert the TLB entry mov pr=r31,-1 RFI END(alt_itlb_miss) .org ia64_ivt+0x1000 ///////////////////////////////////////////////////////////////////////////////////////// // 0x1000 Entry 4 (size 64 bundles) Alt DTLB (7,46) ENTRY(alt_dtlb_miss) DBG_FAULT(4) MOV_FROM_IFA(r16) // get address that caused the TLB miss movl r17=PAGE_KERNEL MOV_FROM_ISR(r20) movl r19=(((1 << IA64_MAX_PHYS_BITS) - 1) & ~0xfff) MOV_FROM_IPSR(p0, r21) mov r31=pr mov r24=PERCPU_ADDR ;; #ifdef CONFIG_DISABLE_VHPT shr.u r22=r16,61 // get the region number into r21 ;; cmp.gt p8,p0=6,r22 // access to region 0-5 ;; THASH(p8, r17, r16, r25) ;; MOV_TO_IHA(p8, r17, r25) (p8) mov r29=b0 // save b0 (p8) br.cond.dptk dtlb_fault #endif cmp.ge p10,p11=r16,r24 // access to per_cpu_data? tbit.z p12,p0=r16,61 // access to region 6? mov r25=PERCPU_PAGE_SHIFT << 2 mov r26=PERCPU_PAGE_SIZE nop.m 0 nop.b 0 ;; (p10) mov r19=IA64_KR(PER_CPU_DATA) (p11) and r19=r19,r16 // clear non-ppn fields extr.u r23=r21,IA64_PSR_CPL0_BIT,2 // extract psr.cpl and r22=IA64_ISR_CODE_MASK,r20 // get the isr.code field tbit.nz p6,p7=r20,IA64_ISR_SP_BIT // is speculation bit on? tbit.nz p9,p0=r20,IA64_ISR_NA_BIT // is non-access bit on? ;; (p10) sub r19=r19,r26 MOV_TO_ITIR(p10, r25, r24) cmp.ne p8,p0=r0,r23 (p9) cmp.eq.or.andcm p6,p7=IA64_ISR_CODE_LFETCH,r22 // check isr.code field (p12) dep r17=-1,r17,4,1 // set ma=UC for region 6 addr (p8) br.cond.spnt page_fault dep r21=-1,r21,IA64_PSR_ED_BIT,1 ;; or r19=r19,r17 // insert PTE control bits into r19 MOV_TO_IPSR(p6, r21, r24) ;; ITC_D(p7, r19, r18) // insert the TLB entry mov pr=r31,-1 RFI END(alt_dtlb_miss) .org ia64_ivt+0x1400 ///////////////////////////////////////////////////////////////////////////////////////// // 0x1400 Entry 5 (size 64 bundles) Data nested TLB (6,45) ENTRY(nested_dtlb_miss) /* * In the absence of kernel bugs, we get here when the virtually mapped linear * page table is accessed non-speculatively (e.g., in the Dirty-bit, Instruction * Access-bit, or Data Access-bit faults). If the DTLB entry for the virtual page * table is missing, a nested TLB miss fault is triggered and control is * transferred to this point. When this happens, we lookup the pte for the * faulting address by walking the page table in physical mode and return to the * continuation point passed in register r30 (or call page_fault if the address is * not mapped). * * Input: r16: faulting address * r29: saved b0 * r30: continuation address * r31: saved pr * * Output: r17: physical address of PTE of faulting address * r29: saved b0 * r30: continuation address * r31: saved pr * * Clobbered: b0, r18, r19, r21, r22, psr.dt (cleared) */ RSM_PSR_DT // switch to using physical data addressing mov r19=IA64_KR(PT_BASE) // get the page table base address shl r21=r16,3 // shift bit 60 into sign bit MOV_FROM_ITIR(r18) ;; shr.u r17=r16,61 // get the region number into r17 extr.u r18=r18,2,6 // get the faulting page size ;; cmp.eq p6,p7=5,r17 // is faulting address in region 5? add r22=-PAGE_SHIFT,r18 // adjustment for hugetlb address add r18=PGDIR_SHIFT-PAGE_SHIFT,r18 ;; shr.u r22=r16,r22 shr.u r18=r16,r18 (p7) dep r17=r17,r19,(PAGE_SHIFT-3),3 // put region number bits in place srlz.d LOAD_PHYSICAL(p6, r19, swapper_pg_dir) // region 5 is rooted at swapper_pg_dir .pred.rel "mutex", p6, p7 (p6) shr.u r21=r21,PGDIR_SHIFT+PAGE_SHIFT (p7) shr.u r21=r21,PGDIR_SHIFT+PAGE_SHIFT-3 ;; (p6) dep r17=r18,r19,3,(PAGE_SHIFT-3) // r17=pgd_offset for region 5 (p7) dep r17=r18,r17,3,(PAGE_SHIFT-6) // r17=pgd_offset for region[0-4] cmp.eq p7,p6=0,r21 // unused address bits all zeroes? #ifdef CONFIG_PGTABLE_4 shr.u r18=r22,PUD_SHIFT // shift pud index into position #else shr.u r18=r22,PMD_SHIFT // shift pmd index into position #endif ;; ld8 r17=[r17] // get *pgd (may be 0) ;; (p7) cmp.eq p6,p7=r17,r0 // was pgd_present(*pgd) == NULL? dep r17=r18,r17,3,(PAGE_SHIFT-3) // r17=p[u|m]d_offset(pgd,addr) ;; #ifdef CONFIG_PGTABLE_4 (p7) ld8 r17=[r17] // get *pud (may be 0) shr.u r18=r22,PMD_SHIFT // shift pmd index into position ;; (p7) cmp.eq.or.andcm p6,p7=r17,r0 // was pud_present(*pud) == NULL? dep r17=r18,r17,3,(PAGE_SHIFT-3) // r17=pmd_offset(pud,addr) ;; #endif (p7) ld8 r17=[r17] // get *pmd (may be 0) shr.u r19=r22,PAGE_SHIFT // shift pte index into position ;; (p7) cmp.eq.or.andcm p6,p7=r17,r0 // was pmd_present(*pmd) == NULL? dep r17=r19,r17,3,(PAGE_SHIFT-3) // r17=pte_offset(pmd,addr); (p6) br.cond.spnt page_fault mov b0=r30 br.sptk.many b0 // return to continuation point END(nested_dtlb_miss) .org ia64_ivt+0x1800 ///////////////////////////////////////////////////////////////////////////////////////// // 0x1800 Entry 6 (size 64 bundles) Instruction Key Miss (24) ENTRY(ikey_miss) DBG_FAULT(6) FAULT(6) END(ikey_miss) .org ia64_ivt+0x1c00 ///////////////////////////////////////////////////////////////////////////////////////// // 0x1c00 Entry 7 (size 64 bundles) Data Key Miss (12,51) ENTRY(dkey_miss) DBG_FAULT(7) FAULT(7) END(dkey_miss) .org ia64_ivt+0x2000 ///////////////////////////////////////////////////////////////////////////////////////// // 0x2000 Entry 8 (size 64 bundles) Dirty-bit (54) ENTRY(dirty_bit) DBG_FAULT(8) /* * What we do here is to simply turn on the dirty bit in the PTE. We need to * update both the page-table and the TLB entry. To efficiently access the PTE, * we address it through the virtual page table. Most likely, the TLB entry for * the relevant virtual page table page is still present in the TLB so we can * normally do this without additional TLB misses. In case the necessary virtual * page table TLB entry isn't present, we take a nested TLB miss hit where we look * up the physical address of the L3 PTE and then continue at label 1 below. */ MOV_FROM_IFA(r16) // get the address that caused the fault movl r30=1f // load continuation point in case of nested fault ;; THASH(p0, r17, r16, r18) // compute virtual address of L3 PTE mov r29=b0 // save b0 in case of nested fault mov r31=pr // save pr #ifdef CONFIG_SMP mov r28=ar.ccv // save ar.ccv ;; 1: ld8 r18=[r17] ;; // avoid RAW on r18 mov ar.ccv=r18 // set compare value for cmpxchg or r25=_PAGE_D|_PAGE_A,r18 // set the dirty and accessed bits tbit.z p7,p6 = r18,_PAGE_P_BIT // Check present bit ;; (p6) cmpxchg8.acq r26=[r17],r25,ar.ccv // Only update if page is present mov r24=PAGE_SHIFT<<2 ;; (p6) cmp.eq p6,p7=r26,r18 // Only compare if page is present ;; ITC_D(p6, r25, r18) // install updated PTE ;; /* * Tell the assemblers dependency-violation checker that the above "itc" instructions * cannot possibly affect the following loads: */ dv_serialize_data ld8 r18=[r17] // read PTE again ;; cmp.eq p6,p7=r18,r25 // is it same as the newly installed ;; (p7) ptc.l r16,r24 mov b0=r29 // restore b0 mov ar.ccv=r28 #else ;; 1: ld8 r18=[r17] ;; // avoid RAW on r18 or r18=_PAGE_D|_PAGE_A,r18 // set the dirty and accessed bits mov b0=r29 // restore b0 ;; st8 [r17]=r18 // store back updated PTE ITC_D(p0, r18, r16) // install updated PTE #endif mov pr=r31,-1 // restore pr RFI END(dirty_bit) .org ia64_ivt+0x2400 ///////////////////////////////////////////////////////////////////////////////////////// // 0x2400 Entry 9 (size 64 bundles) Instruction Access-bit (27) ENTRY(iaccess_bit) DBG_FAULT(9) // Like Entry 8, except for instruction access MOV_FROM_IFA(r16) // get the address that caused the fault movl r30=1f // load continuation point in case of nested fault mov r31=pr // save predicates #ifdef CONFIG_ITANIUM /* * Erratum 10 (IFA may contain incorrect address) has "NoFix" status. */ MOV_FROM_IPSR(p0, r17) ;; MOV_FROM_IIP(r18) tbit.z p6,p0=r17,IA64_PSR_IS_BIT // IA64 instruction set? ;; (p6) mov r16=r18 // if so, use cr.iip instead of cr.ifa #endif /* CONFIG_ITANIUM */ ;; THASH(p0, r17, r16, r18) // compute virtual address of L3 PTE mov r29=b0 // save b0 in case of nested fault) #ifdef CONFIG_SMP mov r28=ar.ccv // save ar.ccv ;; 1: ld8 r18=[r17] ;; mov ar.ccv=r18 // set compare value for cmpxchg or r25=_PAGE_A,r18 // set the accessed bit tbit.z p7,p6 = r18,_PAGE_P_BIT // Check present bit ;; (p6) cmpxchg8.acq r26=[r17],r25,ar.ccv // Only if page present mov r24=PAGE_SHIFT<<2 ;; (p6) cmp.eq p6,p7=r26,r18 // Only if page present ;; ITC_I(p6, r25, r26) // install updated PTE ;; /* * Tell the assemblers dependency-violation checker that the above "itc" instructions * cannot possibly affect the following loads: */ dv_serialize_data ld8 r18=[r17] // read PTE again ;; cmp.eq p6,p7=r18,r25 // is it same as the newly installed ;; (p7) ptc.l r16,r24 mov b0=r29 // restore b0 mov ar.ccv=r28 #else /* !CONFIG_SMP */ ;; 1: ld8 r18=[r17] ;; or r18=_PAGE_A,r18 // set the accessed bit mov b0=r29 // restore b0 ;; st8 [r17]=r18 // store back updated PTE ITC_I(p0, r18, r16) // install updated PTE #endif /* !CONFIG_SMP */ mov pr=r31,-1 RFI END(iaccess_bit) .org ia64_ivt+0x2800 ///////////////////////////////////////////////////////////////////////////////////////// // 0x2800 Entry 10 (size 64 bundles) Data Access-bit (15,55) ENTRY(daccess_bit) DBG_FAULT(10) // Like Entry 8, except for data access MOV_FROM_IFA(r16) // get the address that caused the fault movl r30=1f // load continuation point in case of nested fault ;; THASH(p0, r17, r16, r18) // compute virtual address of L3 PTE mov r31=pr mov r29=b0 // save b0 in case of nested fault) #ifdef CONFIG_SMP mov r28=ar.ccv // save ar.ccv ;; 1: ld8 r18=[r17] ;; // avoid RAW on r18 mov ar.ccv=r18 // set compare value for cmpxchg or r25=_PAGE_A,r18 // set the dirty bit tbit.z p7,p6 = r18,_PAGE_P_BIT // Check present bit ;; (p6) cmpxchg8.acq r26=[r17],r25,ar.ccv // Only if page is present mov r24=PAGE_SHIFT<<2 ;; (p6) cmp.eq p6,p7=r26,r18 // Only if page is present ;; ITC_D(p6, r25, r26) // install updated PTE /* * Tell the assemblers dependency-violation checker that the above "itc" instructions * cannot possibly affect the following loads: */ dv_serialize_data ;; ld8 r18=[r17] // read PTE again ;; cmp.eq p6,p7=r18,r25 // is it same as the newly installed ;; (p7) ptc.l r16,r24 mov ar.ccv=r28 #else ;; 1: ld8 r18=[r17] ;; // avoid RAW on r18 or r18=_PAGE_A,r18 // set the accessed bit ;; st8 [r17]=r18 // store back updated PTE ITC_D(p0, r18, r16) // install updated PTE #endif mov b0=r29 // restore b0 mov pr=r31,-1 RFI END(daccess_bit) .org ia64_ivt+0x2c00 ///////////////////////////////////////////////////////////////////////////////////////// // 0x2c00 Entry 11 (size 64 bundles) Break instruction (33) ENTRY(break_fault) /* * The streamlined system call entry/exit paths only save/restore the initial part * of pt_regs. This implies that the callers of system-calls must adhere to the * normal procedure calling conventions. * * Registers to be saved & restored: * CR registers: cr.ipsr, cr.iip, cr.ifs * AR registers: ar.unat, ar.pfs, ar.rsc, ar.rnat, ar.bspstore, ar.fpsr * others: pr, b0, b6, loadrs, r1, r11, r12, r13, r15 * Registers to be restored only: * r8-r11: output value from the system call. * * During system call exit, scratch registers (including r15) are modified/cleared * to prevent leaking bits from kernel to user level. */ DBG_FAULT(11) mov.m r16=IA64_KR(CURRENT) // M2 r16 <- current task (12 cyc) MOV_FROM_IPSR(p0, r29) // M2 (12 cyc) mov r31=pr // I0 (2 cyc) MOV_FROM_IIM(r17) // M2 (2 cyc) mov.m r27=ar.rsc // M2 (12 cyc) mov r18=__IA64_BREAK_SYSCALL // A mov.m ar.rsc=0 // M2 mov.m r21=ar.fpsr // M2 (12 cyc) mov r19=b6 // I0 (2 cyc) ;; mov.m r23=ar.bspstore // M2 (12 cyc) mov.m r24=ar.rnat // M2 (5 cyc) mov.i r26=ar.pfs // I0 (2 cyc) invala // M0|1 nop.m 0 // M mov r20=r1 // A save r1 nop.m 0 movl r30=sys_call_table // X MOV_FROM_IIP(r28) // M2 (2 cyc) cmp.eq p0,p7=r18,r17 // I0 is this a system call? (p7) br.cond.spnt non_syscall // B no -> // // From this point on, we are definitely on the syscall-path // and we can use (non-banked) scratch registers. // /////////////////////////////////////////////////////////////////////// mov r1=r16 // A move task-pointer to "addl"-addressable reg mov r2=r16 // A setup r2 for ia64_syscall_setup add r9=TI_FLAGS+IA64_TASK_SIZE,r16 // A r9 = ¤t_thread_info()->flags adds r16=IA64_TASK_THREAD_ON_USTACK_OFFSET,r16 adds r15=-1024,r15 // A subtract 1024 from syscall number mov r3=NR_syscalls - 1 ;; ld1.bias r17=[r16] // M0|1 r17 = current->thread.on_ustack flag ld4 r9=[r9] // M0|1 r9 = current_thread_info()->flags extr.u r8=r29,41,2 // I0 extract ei field from cr.ipsr shladd r30=r15,3,r30 // A r30 = sys_call_table + 8*(syscall-1024) addl r22=IA64_RBS_OFFSET,r1 // A compute base of RBS cmp.leu p6,p7=r15,r3 // A syscall number in range? ;; lfetch.fault.excl.nt1 [r22] // M0|1 prefetch RBS (p6) ld8 r30=[r30] // M0|1 load address of syscall entry point tnat.nz.or p7,p0=r15 // I0 is syscall nr a NaT? mov.m ar.bspstore=r22 // M2 switch to kernel RBS cmp.eq p8,p9=2,r8 // A isr.ei==2? ;; (p8) mov r8=0 // A clear ei to 0 (p7) movl r30=sys_ni_syscall // X (p8) adds r28=16,r28 // A switch cr.iip to next bundle (p9) adds r8=1,r8 // A increment ei to next slot #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE ;; mov b6=r30 // I0 setup syscall handler branch reg early #else nop.i 0 ;; #endif mov.m r25=ar.unat // M2 (5 cyc) dep r29=r8,r29,41,2 // I0 insert new ei into cr.ipsr adds r15=1024,r15 // A restore original syscall number // // If any of the above loads miss in L1D, we'll stall here until // the data arrives. // /////////////////////////////////////////////////////////////////////// st1 [r16]=r0 // M2|3 clear current->thread.on_ustack flag #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE MOV_FROM_ITC(p0, p14, r30, r18) // M get cycle for accounting #else mov b6=r30 // I0 setup syscall handler branch reg early #endif cmp.eq pKStk,pUStk=r0,r17 // A were we on kernel stacks already? and r9=_TIF_SYSCALL_TRACEAUDIT,r9 // A mask trace or audit mov r18=ar.bsp // M2 (12 cyc) (pKStk) br.cond.spnt .break_fixup // B we're already in kernel-mode -- fix up RBS ;; .back_from_break_fixup: (pUStk) addl r1=IA64_STK_OFFSET-IA64_PT_REGS_SIZE,r1 // A compute base of memory stack cmp.eq p14,p0=r9,r0 // A are syscalls being traced/audited? br.call.sptk.many b7=ia64_syscall_setup // B 1: #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE // mov.m r30=ar.itc is called in advance, and r13 is current add r16=TI_AC_STAMP+IA64_TASK_SIZE,r13 // A add r17=TI_AC_LEAVE+IA64_TASK_SIZE,r13 // A (pKStk) br.cond.spnt .skip_accounting // B unlikely skip ;; ld8 r18=[r16],TI_AC_STIME-TI_AC_STAMP // M get last stamp ld8 r19=[r17],TI_AC_UTIME-TI_AC_LEAVE // M time at leave ;; ld8 r20=[r16],TI_AC_STAMP-TI_AC_STIME // M cumulated stime ld8 r21=[r17] // M cumulated utime sub r22=r19,r18 // A stime before leave ;; st8 [r16]=r30,TI_AC_STIME-TI_AC_STAMP // M update stamp sub r18=r30,r19 // A elapsed time in user ;; add r20=r20,r22 // A sum stime add r21=r21,r18 // A sum utime ;; st8 [r16]=r20 // M update stime st8 [r17]=r21 // M update utime ;; .skip_accounting: #endif mov ar.rsc=0x3 // M2 set eager mode, pl 0, LE, loadrs=0 nop 0 BSW_1(r2, r14) // B (6 cyc) regs are saved, switch to bank 1 ;; SSM_PSR_IC_AND_DEFAULT_BITS_AND_SRLZ_I(r3, r16) // M2 now it's safe to re-enable intr.-collection // M0 ensure interruption collection is on movl r3=ia64_ret_from_syscall // X ;; mov rp=r3 // I0 set the real return addr (p10) br.cond.spnt.many ia64_ret_from_syscall // B return if bad call-frame or r15 is a NaT SSM_PSR_I(p15, p15, r16) // M2 restore psr.i (p14) br.call.sptk.many b6=b6 // B invoke syscall-handker (ignore return addr) br.cond.spnt.many ia64_trace_syscall // B do syscall-tracing thingamagic // NOT REACHED /////////////////////////////////////////////////////////////////////// // On entry, we optimistically assumed that we're coming from user-space. // For the rare cases where a system-call is done from within the kernel, // we fix things up at this point: .break_fixup: add r1=-IA64_PT_REGS_SIZE,sp // A allocate space for pt_regs structure mov ar.rnat=r24 // M2 restore kernel's AR.RNAT ;; mov ar.bspstore=r23 // M2 restore kernel's AR.BSPSTORE br.cond.sptk .back_from_break_fixup END(break_fault) .org ia64_ivt+0x3000 ///////////////////////////////////////////////////////////////////////////////////////// // 0x3000 Entry 12 (size 64 bundles) External Interrupt (4) ENTRY(interrupt) /* interrupt handler has become too big to fit this area. */ br.sptk.many __interrupt END(interrupt) .org ia64_ivt+0x3400 ///////////////////////////////////////////////////////////////////////////////////////// // 0x3400 Entry 13 (size 64 bundles) Reserved DBG_FAULT(13) FAULT(13) .org ia64_ivt+0x3800 ///////////////////////////////////////////////////////////////////////////////////////// // 0x3800 Entry 14 (size 64 bundles) Reserved DBG_FAULT(14) FAULT(14) /* * There is no particular reason for this code to be here, other than that * there happens to be space here that would go unused otherwise. If this * fault ever gets "unreserved", simply moved the following code to a more * suitable spot... * * ia64_syscall_setup() is a separate subroutine so that it can * allocate stacked registers so it can safely demine any * potential NaT values from the input registers. * * On entry: * - executing on bank 0 or bank 1 register set (doesn't matter) * - r1: stack pointer * - r2: current task pointer * - r3: preserved * - r11: original contents (saved ar.pfs to be saved) * - r12: original contents (sp to be saved) * - r13: original contents (tp to be saved) * - r15: original contents (syscall # to be saved) * - r18: saved bsp (after switching to kernel stack) * - r19: saved b6 * - r20: saved r1 (gp) * - r21: saved ar.fpsr * - r22: kernel's register backing store base (krbs_base) * - r23: saved ar.bspstore * - r24: saved ar.rnat * - r25: saved ar.unat * - r26: saved ar.pfs * - r27: saved ar.rsc * - r28: saved cr.iip * - r29: saved cr.ipsr * - r30: ar.itc for accounting (don't touch) * - r31: saved pr * - b0: original contents (to be saved) * On exit: * - p10: TRUE if syscall is invoked with more than 8 out * registers or r15's Nat is true * - r1: kernel's gp * - r3: preserved (same as on entry) * - r8: -EINVAL if p10 is true * - r12: points to kernel stack * - r13: points to current task * - r14: preserved (same as on entry) * - p13: preserved * - p15: TRUE if interrupts need to be re-enabled * - ar.fpsr: set to kernel settings * - b6: preserved (same as on entry) */ #ifdef __IA64_ASM_PARAVIRTUALIZED_NATIVE GLOBAL_ENTRY(ia64_syscall_setup) #if PT(B6) != 0 # error This code assumes that b6 is the first field in pt_regs. #endif st8 [r1]=r19 // save b6 add r16=PT(CR_IPSR),r1 // initialize first base pointer add r17=PT(R11),r1 // initialize second base pointer ;; alloc r19=ar.pfs,8,0,0,0 // ensure in0-in7 are writable st8 [r16]=r29,PT(AR_PFS)-PT(CR_IPSR) // save cr.ipsr tnat.nz p8,p0=in0 st8.spill [r17]=r11,PT(CR_IIP)-PT(R11) // save r11 tnat.nz p9,p0=in1 (pKStk) mov r18=r0 // make sure r18 isn't NaT ;; st8 [r16]=r26,PT(CR_IFS)-PT(AR_PFS) // save ar.pfs st8 [r17]=r28,PT(AR_UNAT)-PT(CR_IIP) // save cr.iip mov r28=b0 // save b0 (2 cyc) ;; st8 [r17]=r25,PT(AR_RSC)-PT(AR_UNAT) // save ar.unat dep r19=0,r19,38,26 // clear all bits but 0..37 [I0] (p8) mov in0=-1 ;; st8 [r16]=r19,PT(AR_RNAT)-PT(CR_IFS) // store ar.pfs.pfm in cr.ifs extr.u r11=r19,7,7 // I0 // get sol of ar.pfs and r8=0x7f,r19 // A // get sof of ar.pfs st8 [r17]=r27,PT(AR_BSPSTORE)-PT(AR_RSC)// save ar.rsc tbit.nz p15,p0=r29,IA64_PSR_I_BIT // I0 (p9) mov in1=-1 ;; (pUStk) sub r18=r18,r22 // r18=RSE.ndirty*8 tnat.nz p10,p0=in2 add r11=8,r11 ;; (pKStk) adds r16=PT(PR)-PT(AR_RNAT),r16 // skip over ar_rnat field (pKStk) adds r17=PT(B0)-PT(AR_BSPSTORE),r17 // skip over ar_bspstore field tnat.nz p11,p0=in3 ;; (p10) mov in2=-1 tnat.nz p12,p0=in4 // [I0] (p11) mov in3=-1 ;; (pUStk) st8 [r16]=r24,PT(PR)-PT(AR_RNAT) // save ar.rnat (pUStk) st8 [r17]=r23,PT(B0)-PT(AR_BSPSTORE) // save ar.bspstore shl r18=r18,16 // compute ar.rsc to be used for "loadrs" ;; st8 [r16]=r31,PT(LOADRS)-PT(PR) // save predicates st8 [r17]=r28,PT(R1)-PT(B0) // save b0 tnat.nz p13,p0=in5 // [I0] ;; st8 [r16]=r18,PT(R12)-PT(LOADRS) // save ar.rsc value for "loadrs" st8.spill [r17]=r20,PT(R13)-PT(R1) // save original r1 (p12) mov in4=-1 ;; .mem.offset 0,0; st8.spill [r16]=r12,PT(AR_FPSR)-PT(R12) // save r12 .mem.offset 8,0; st8.spill [r17]=r13,PT(R15)-PT(R13) // save r13 (p13) mov in5=-1 ;; st8 [r16]=r21,PT(R8)-PT(AR_FPSR) // save ar.fpsr tnat.nz p13,p0=in6 cmp.lt p10,p9=r11,r8 // frame size can't be more than local+8 ;; mov r8=1 (p9) tnat.nz p10,p0=r15 adds r12=-16,r1 // switch to kernel memory stack (with 16 bytes of scratch) st8.spill [r17]=r15 // save r15 tnat.nz p8,p0=in7 nop.i 0 mov r13=r2 // establish `current' movl r1=__gp // establish kernel global pointer ;; st8 [r16]=r8 // ensure pt_regs.r8 != 0 (see handle_syscall_error) (p13) mov in6=-1 (p8) mov in7=-1 cmp.eq pSys,pNonSys=r0,r0 // set pSys=1, pNonSys=0 movl r17=FPSR_DEFAULT ;; mov.m ar.fpsr=r17 // set ar.fpsr to kernel default value (p10) mov r8=-EINVAL br.ret.sptk.many b7 END(ia64_syscall_setup) #endif /* __IA64_ASM_PARAVIRTUALIZED_NATIVE */ .org ia64_ivt+0x3c00 ///////////////////////////////////////////////////////////////////////////////////////// // 0x3c00 Entry 15 (size 64 bundles) Reserved DBG_FAULT(15) FAULT(15) .org ia64_ivt+0x4000 ///////////////////////////////////////////////////////////////////////////////////////// // 0x4000 Entry 16 (size 64 bundles) Reserved DBG_FAULT(16) FAULT(16) #if defined(CONFIG_VIRT_CPU_ACCOUNTING_NATIVE) && defined(__IA64_ASM_PARAVIRTUALIZED_NATIVE) /* * There is no particular reason for this code to be here, other than * that there happens to be space here that would go unused otherwise. * If this fault ever gets "unreserved", simply moved the following * code to a more suitable spot... * * account_sys_enter is called from SAVE_MIN* macros if accounting is * enabled and if the macro is entered from user mode. */ GLOBAL_ENTRY(account_sys_enter) // mov.m r20=ar.itc is called in advance, and r13 is current add r16=TI_AC_STAMP+IA64_TASK_SIZE,r13 add r17=TI_AC_LEAVE+IA64_TASK_SIZE,r13 ;; ld8 r18=[r16],TI_AC_STIME-TI_AC_STAMP // time at last check in kernel ld8 r19=[r17],TI_AC_UTIME-TI_AC_LEAVE // time at left from kernel ;; ld8 r23=[r16],TI_AC_STAMP-TI_AC_STIME // cumulated stime ld8 r21=[r17] // cumulated utime sub r22=r19,r18 // stime before leave kernel ;; st8 [r16]=r20,TI_AC_STIME-TI_AC_STAMP // update stamp sub r18=r20,r19 // elapsed time in user mode ;; add r23=r23,r22 // sum stime add r21=r21,r18 // sum utime ;; st8 [r16]=r23 // update stime st8 [r17]=r21 // update utime ;; br.ret.sptk.many rp END(account_sys_enter) #endif .org ia64_ivt+0x4400 ///////////////////////////////////////////////////////////////////////////////////////// // 0x4400 Entry 17 (size 64 bundles) Reserved DBG_FAULT(17) FAULT(17) .org ia64_ivt+0x4800 ///////////////////////////////////////////////////////////////////////////////////////// // 0x4800 Entry 18 (size 64 bundles) Reserved DBG_FAULT(18) FAULT(18) .org ia64_ivt+0x4c00 ///////////////////////////////////////////////////////////////////////////////////////// // 0x4c00 Entry 19 (size 64 bundles) Reserved DBG_FAULT(19) FAULT(19) // // --- End of long entries, Beginning of short entries // .org ia64_ivt+0x5000 ///////////////////////////////////////////////////////////////////////////////////////// // 0x5000 Entry 20 (size 16 bundles) Page Not Present (10,22,49) ENTRY(page_not_present) DBG_FAULT(20) MOV_FROM_IFA(r16) RSM_PSR_DT /* * The Linux page fault handler doesn't expect non-present pages to be in * the TLB. Flush the existing entry now, so we meet that expectation. */ mov r17=PAGE_SHIFT<<2 ;; ptc.l r16,r17 ;; mov r31=pr srlz.d br.sptk.many page_fault END(page_not_present) .org ia64_ivt+0x5100 ///////////////////////////////////////////////////////////////////////////////////////// // 0x5100 Entry 21 (size 16 bundles) Key Permission (13,25,52) ENTRY(key_permission) DBG_FAULT(21) MOV_FROM_IFA(r16) RSM_PSR_DT mov r31=pr ;; srlz.d br.sptk.many page_fault END(key_permission) .org ia64_ivt+0x5200 ///////////////////////////////////////////////////////////////////////////////////////// // 0x5200 Entry 22 (size 16 bundles) Instruction Access Rights (26) ENTRY(iaccess_rights) DBG_FAULT(22) MOV_FROM_IFA(r16) RSM_PSR_DT mov r31=pr ;; srlz.d br.sptk.many page_fault END(iaccess_rights) .org ia64_ivt+0x5300 ///////////////////////////////////////////////////////////////////////////////////////// // 0x5300 Entry 23 (size 16 bundles) Data Access Rights (14,53) ENTRY(daccess_rights) DBG_FAULT(23) MOV_FROM_IFA(r16) RSM_PSR_DT mov r31=pr ;; srlz.d br.sptk.many page_fault END(daccess_rights) .org ia64_ivt+0x5400 ///////////////////////////////////////////////////////////////////////////////////////// // 0x5400 Entry 24 (size 16 bundles) General Exception (5,32,34,36,38,39) ENTRY(general_exception) DBG_FAULT(24) MOV_FROM_ISR(r16) mov r31=pr ;; cmp4.eq p6,p0=0,r16 (p6) br.sptk.many dispatch_illegal_op_fault ;; mov r19=24 // fault number br.sptk.many dispatch_to_fault_handler END(general_exception) .org ia64_ivt+0x5500 ///////////////////////////////////////////////////////////////////////////////////////// // 0x5500 Entry 25 (size 16 bundles) Disabled FP-Register (35) ENTRY(disabled_fp_reg) DBG_FAULT(25) rsm psr.dfh // ensure we can access fph ;; srlz.d mov r31=pr mov r19=25 br.sptk.many dispatch_to_fault_handler END(disabled_fp_reg) .org ia64_ivt+0x5600 ///////////////////////////////////////////////////////////////////////////////////////// // 0x5600 Entry 26 (size 16 bundles) Nat Consumption (11,23,37,50) ENTRY(nat_consumption) DBG_FAULT(26) MOV_FROM_IPSR(p0, r16) MOV_FROM_ISR(r17) mov r31=pr // save PR ;; and r18=0xf,r17 // r18 = cr.ipsr.code{3:0} tbit.z p6,p0=r17,IA64_ISR_NA_BIT ;; cmp.ne.or p6,p0=IA64_ISR_CODE_LFETCH,r18 dep r16=-1,r16,IA64_PSR_ED_BIT,1 (p6) br.cond.spnt 1f // branch if (cr.ispr.na == 0 || cr.ipsr.code{3:0} != LFETCH) ;; MOV_TO_IPSR(p0, r16, r18) mov pr=r31,-1 ;; RFI 1: mov pr=r31,-1 ;; FAULT(26) END(nat_consumption) .org ia64_ivt+0x5700 ///////////////////////////////////////////////////////////////////////////////////////// // 0x5700 Entry 27 (size 16 bundles) Speculation (40) ENTRY(speculation_vector) DBG_FAULT(27) /* * A [f]chk.[as] instruction needs to take the branch to the recovery code but * this part of the architecture is not implemented in hardware on some CPUs, such * as Itanium. Thus, in general we need to emulate the behavior. IIM contains * the relative target (not yet sign extended). So after sign extending it we * simply add it to IIP. We also need to reset the EI field of the IPSR to zero, * i.e., the slot to restart into. * * cr.imm contains zero_ext(imm21) */ MOV_FROM_IIM(r18) ;; MOV_FROM_IIP(r17) shl r18=r18,43 // put sign bit in position (43=64-21) ;; MOV_FROM_IPSR(p0, r16) shr r18=r18,39 // sign extend (39=43-4) ;; add r17=r17,r18 // now add the offset ;; MOV_TO_IIP(r17, r19) dep r16=0,r16,41,2 // clear EI ;; MOV_TO_IPSR(p0, r16, r19) ;; RFI END(speculation_vector) .org ia64_ivt+0x5800 ///////////////////////////////////////////////////////////////////////////////////////// // 0x5800 Entry 28 (size 16 bundles) Reserved DBG_FAULT(28) FAULT(28) .org ia64_ivt+0x5900 ///////////////////////////////////////////////////////////////////////////////////////// // 0x5900 Entry 29 (size 16 bundles) Debug (16,28,56) ENTRY(debug_vector) DBG_FAULT(29) FAULT(29) END(debug_vector) .org ia64_ivt+0x5a00 ///////////////////////////////////////////////////////////////////////////////////////// // 0x5a00 Entry 30 (size 16 bundles) Unaligned Reference (57) ENTRY(unaligned_access) DBG_FAULT(30) mov r31=pr // prepare to save predicates ;; br.sptk.many dispatch_unaligned_handler END(unaligned_access) .org ia64_ivt+0x5b00 ///////////////////////////////////////////////////////////////////////////////////////// // 0x5b00 Entry 31 (size 16 bundles) Unsupported Data Reference (57) ENTRY(unsupported_data_reference) DBG_FAULT(31) FAULT(31) END(unsupported_data_reference) .org ia64_ivt+0x5c00 ///////////////////////////////////////////////////////////////////////////////////////// // 0x5c00 Entry 32 (size 16 bundles) Floating-Point Fault (64) ENTRY(floating_point_fault) DBG_FAULT(32) FAULT(32) END(floating_point_fault) .org ia64_ivt+0x5d00 ///////////////////////////////////////////////////////////////////////////////////////// // 0x5d00 Entry 33 (size 16 bundles) Floating Point Trap (66) ENTRY(floating_point_trap) DBG_FAULT(33) FAULT(33) END(floating_point_trap) .org ia64_ivt+0x5e00 ///////////////////////////////////////////////////////////////////////////////////////// // 0x5e00 Entry 34 (size 16 bundles) Lower Privilege Transfer Trap (66) ENTRY(lower_privilege_trap) DBG_FAULT(34) FAULT(34) END(lower_privilege_trap) .org ia64_ivt+0x5f00 ///////////////////////////////////////////////////////////////////////////////////////// // 0x5f00 Entry 35 (size 16 bundles) Taken Branch Trap (68) ENTRY(taken_branch_trap) DBG_FAULT(35) FAULT(35) END(taken_branch_trap) .org ia64_ivt+0x6000 ///////////////////////////////////////////////////////////////////////////////////////// // 0x6000 Entry 36 (size 16 bundles) Single Step Trap (69) ENTRY(single_step_trap) DBG_FAULT(36) FAULT(36) END(single_step_trap) .org ia64_ivt+0x6100 ///////////////////////////////////////////////////////////////////////////////////////// // 0x6100 Entry 37 (size 16 bundles) Reserved DBG_FAULT(37) FAULT(37) .org ia64_ivt+0x6200 ///////////////////////////////////////////////////////////////////////////////////////// // 0x6200 Entry 38 (size 16 bundles) Reserved DBG_FAULT(38) FAULT(38) .org ia64_ivt+0x6300 ///////////////////////////////////////////////////////////////////////////////////////// // 0x6300 Entry 39 (size 16 bundles) Reserved DBG_FAULT(39) FAULT(39) .org ia64_ivt+0x6400 ///////////////////////////////////////////////////////////////////////////////////////// // 0x6400 Entry 40 (size 16 bundles) Reserved DBG_FAULT(40) FAULT(40) .org ia64_ivt+0x6500 ///////////////////////////////////////////////////////////////////////////////////////// // 0x6500 Entry 41 (size 16 bundles) Reserved DBG_FAULT(41) FAULT(41) .org ia64_ivt+0x6600 ///////////////////////////////////////////////////////////////////////////////////////// // 0x6600 Entry 42 (size 16 bundles) Reserved DBG_FAULT(42) FAULT(42) .org ia64_ivt+0x6700 ///////////////////////////////////////////////////////////////////////////////////////// // 0x6700 Entry 43 (size 16 bundles) Reserved DBG_FAULT(43) FAULT(43) .org ia64_ivt+0x6800 ///////////////////////////////////////////////////////////////////////////////////////// // 0x6800 Entry 44 (size 16 bundles) Reserved DBG_FAULT(44) FAULT(44) .org ia64_ivt+0x6900 ///////////////////////////////////////////////////////////////////////////////////////// // 0x6900 Entry 45 (size 16 bundles) IA-32 Exeception (17,18,29,41,42,43,44,58,60,61,62,72,73,75,76,77) ENTRY(ia32_exception) DBG_FAULT(45) FAULT(45) END(ia32_exception) .org ia64_ivt+0x6a00 ///////////////////////////////////////////////////////////////////////////////////////// // 0x6a00 Entry 46 (size 16 bundles) IA-32 Intercept (30,31,59,70,71) ENTRY(ia32_intercept) DBG_FAULT(46) FAULT(46) END(ia32_intercept) .org ia64_ivt+0x6b00 ///////////////////////////////////////////////////////////////////////////////////////// // 0x6b00 Entry 47 (size 16 bundles) IA-32 Interrupt (74) ENTRY(ia32_interrupt) DBG_FAULT(47) FAULT(47) END(ia32_interrupt) .org ia64_ivt+0x6c00 ///////////////////////////////////////////////////////////////////////////////////////// // 0x6c00 Entry 48 (size 16 bundles) Reserved DBG_FAULT(48) FAULT(48) .org ia64_ivt+0x6d00 ///////////////////////////////////////////////////////////////////////////////////////// // 0x6d00 Entry 49 (size 16 bundles) Reserved DBG_FAULT(49) FAULT(49) .org ia64_ivt+0x6e00 ///////////////////////////////////////////////////////////////////////////////////////// // 0x6e00 Entry 50 (size 16 bundles) Reserved DBG_FAULT(50) FAULT(50) .org ia64_ivt+0x6f00 ///////////////////////////////////////////////////////////////////////////////////////// // 0x6f00 Entry 51 (size 16 bundles) Reserved DBG_FAULT(51) FAULT(51) .org ia64_ivt+0x7000 ///////////////////////////////////////////////////////////////////////////////////////// // 0x7000 Entry 52 (size 16 bundles) Reserved DBG_FAULT(52) FAULT(52) .org ia64_ivt+0x7100 ///////////////////////////////////////////////////////////////////////////////////////// // 0x7100 Entry 53 (size 16 bundles) Reserved DBG_FAULT(53) FAULT(53) .org ia64_ivt+0x7200 ///////////////////////////////////////////////////////////////////////////////////////// // 0x7200 Entry 54 (size 16 bundles) Reserved DBG_FAULT(54) FAULT(54) .org ia64_ivt+0x7300 ///////////////////////////////////////////////////////////////////////////////////////// // 0x7300 Entry 55 (size 16 bundles) Reserved DBG_FAULT(55) FAULT(55) .org ia64_ivt+0x7400 ///////////////////////////////////////////////////////////////////////////////////////// // 0x7400 Entry 56 (size 16 bundles) Reserved DBG_FAULT(56) FAULT(56) .org ia64_ivt+0x7500 ///////////////////////////////////////////////////////////////////////////////////////// // 0x7500 Entry 57 (size 16 bundles) Reserved DBG_FAULT(57) FAULT(57) .org ia64_ivt+0x7600 ///////////////////////////////////////////////////////////////////////////////////////// // 0x7600 Entry 58 (size 16 bundles) Reserved DBG_FAULT(58) FAULT(58) .org ia64_ivt+0x7700 ///////////////////////////////////////////////////////////////////////////////////////// // 0x7700 Entry 59 (size 16 bundles) Reserved DBG_FAULT(59) FAULT(59) .org ia64_ivt+0x7800 ///////////////////////////////////////////////////////////////////////////////////////// // 0x7800 Entry 60 (size 16 bundles) Reserved DBG_FAULT(60) FAULT(60) .org ia64_ivt+0x7900 ///////////////////////////////////////////////////////////////////////////////////////// // 0x7900 Entry 61 (size 16 bundles) Reserved DBG_FAULT(61) FAULT(61) .org ia64_ivt+0x7a00 ///////////////////////////////////////////////////////////////////////////////////////// // 0x7a00 Entry 62 (size 16 bundles) Reserved DBG_FAULT(62) FAULT(62) .org ia64_ivt+0x7b00 ///////////////////////////////////////////////////////////////////////////////////////// // 0x7b00 Entry 63 (size 16 bundles) Reserved DBG_FAULT(63) FAULT(63) .org ia64_ivt+0x7c00 ///////////////////////////////////////////////////////////////////////////////////////// // 0x7c00 Entry 64 (size 16 bundles) Reserved DBG_FAULT(64) FAULT(64) .org ia64_ivt+0x7d00 ///////////////////////////////////////////////////////////////////////////////////////// // 0x7d00 Entry 65 (size 16 bundles) Reserved DBG_FAULT(65) FAULT(65) .org ia64_ivt+0x7e00 ///////////////////////////////////////////////////////////////////////////////////////// // 0x7e00 Entry 66 (size 16 bundles) Reserved DBG_FAULT(66) FAULT(66) .org ia64_ivt+0x7f00 ///////////////////////////////////////////////////////////////////////////////////////// // 0x7f00 Entry 67 (size 16 bundles) Reserved DBG_FAULT(67) FAULT(67) //----------------------------------------------------------------------------------- // call do_page_fault (predicates are in r31, psr.dt may be off, r16 is faulting address) ENTRY(page_fault) SSM_PSR_DT_AND_SRLZ_I ;; SAVE_MIN_WITH_COVER alloc r15=ar.pfs,0,0,3,0 MOV_FROM_IFA(out0) MOV_FROM_ISR(out1) SSM_PSR_IC_AND_DEFAULT_BITS_AND_SRLZ_I(r14, r3) adds r3=8,r2 // set up second base pointer SSM_PSR_I(p15, p15, r14) // restore psr.i movl r14=ia64_leave_kernel ;; SAVE_REST mov rp=r14 ;; adds out2=16,r12 // out2 = pointer to pt_regs br.call.sptk.many b6=ia64_do_page_fault // ignore return address END(page_fault) ENTRY(non_syscall) mov ar.rsc=r27 // restore ar.rsc before SAVE_MIN_WITH_COVER ;; SAVE_MIN_WITH_COVER // There is no particular reason for this code to be here, other than that // there happens to be space here that would go unused otherwise. If this // fault ever gets "unreserved", simply moved the following code to a more // suitable spot... alloc r14=ar.pfs,0,0,2,0 MOV_FROM_IIM(out0) add out1=16,sp adds r3=8,r2 // set up second base pointer for SAVE_REST SSM_PSR_IC_AND_DEFAULT_BITS_AND_SRLZ_I(r15, r24) // guarantee that interruption collection is on SSM_PSR_I(p15, p15, r15) // restore psr.i movl r15=ia64_leave_kernel ;; SAVE_REST mov rp=r15 ;; br.call.sptk.many b6=ia64_bad_break // avoid WAW on CFM and ignore return addr END(non_syscall) ENTRY(__interrupt) DBG_FAULT(12) mov r31=pr // prepare to save predicates ;; SAVE_MIN_WITH_COVER // uses r31; defines r2 and r3 SSM_PSR_IC_AND_DEFAULT_BITS_AND_SRLZ_I(r3, r14) // ensure everybody knows psr.ic is back on adds r3=8,r2 // set up second base pointer for SAVE_REST ;; SAVE_REST ;; MCA_RECOVER_RANGE(interrupt) alloc r14=ar.pfs,0,0,2,0 // must be first in an insn group MOV_FROM_IVR(out0, r8) // pass cr.ivr as first arg add out1=16,sp // pass pointer to pt_regs as second arg ;; srlz.d // make sure we see the effect of cr.ivr movl r14=ia64_leave_kernel ;; mov rp=r14 br.call.sptk.many b6=ia64_handle_irq END(__interrupt) /* * There is no particular reason for this code to be here, other than that * there happens to be space here that would go unused otherwise. If this * fault ever gets "unreserved", simply moved the following code to a more * suitable spot... */ ENTRY(dispatch_unaligned_handler) SAVE_MIN_WITH_COVER ;; alloc r14=ar.pfs,0,0,2,0 // now it's safe (must be first in insn group!) MOV_FROM_IFA(out0) adds out1=16,sp SSM_PSR_IC_AND_DEFAULT_BITS_AND_SRLZ_I(r3, r24) // guarantee that interruption collection is on SSM_PSR_I(p15, p15, r3) // restore psr.i adds r3=8,r2 // set up second base pointer ;; SAVE_REST movl r14=ia64_leave_kernel ;; mov rp=r14 br.sptk.many ia64_prepare_handle_unaligned END(dispatch_unaligned_handler) /* * There is no particular reason for this code to be here, other than that * there happens to be space here that would go unused otherwise. If this * fault ever gets "unreserved", simply moved the following code to a more * suitable spot... */ ENTRY(dispatch_to_fault_handler) /* * Input: * psr.ic: off * r19: fault vector number (e.g., 24 for General Exception) * r31: contains saved predicates (pr) */ SAVE_MIN_WITH_COVER_R19 alloc r14=ar.pfs,0,0,5,0 MOV_FROM_ISR(out1) MOV_FROM_IFA(out2) MOV_FROM_IIM(out3) MOV_FROM_ITIR(out4) ;; SSM_PSR_IC_AND_DEFAULT_BITS_AND_SRLZ_I(r3, out0) // guarantee that interruption collection is on mov out0=r15 ;; SSM_PSR_I(p15, p15, r3) // restore psr.i adds r3=8,r2 // set up second base pointer for SAVE_REST ;; SAVE_REST movl r14=ia64_leave_kernel ;; mov rp=r14 br.call.sptk.many b6=ia64_fault END(dispatch_to_fault_handler) /* * Squatting in this space ... * * This special case dispatcher for illegal operation faults allows preserved * registers to be modified through a callback function (asm only) that is handed * back from the fault handler in r8. Up to three arguments can be passed to the * callback function by returning an aggregate with the callback as its first * element, followed by the arguments. */ ENTRY(dispatch_illegal_op_fault) .prologue .body SAVE_MIN_WITH_COVER SSM_PSR_IC_AND_DEFAULT_BITS_AND_SRLZ_I(r3, r24) // guarantee that interruption collection is on ;; SSM_PSR_I(p15, p15, r3) // restore psr.i adds r3=8,r2 // set up second base pointer for SAVE_REST ;; alloc r14=ar.pfs,0,0,1,0 // must be first in insn group mov out0=ar.ec ;; SAVE_REST PT_REGS_UNWIND_INFO(0) ;; br.call.sptk.many rp=ia64_illegal_op_fault .ret0: ;; alloc r14=ar.pfs,0,0,3,0 // must be first in insn group mov out0=r9 mov out1=r10 mov out2=r11 movl r15=ia64_leave_kernel ;; mov rp=r15 mov b6=r8 ;; cmp.ne p6,p0=0,r8 (p6) br.call.dpnt.many b6=b6 // call returns to ia64_leave_kernel br.sptk.many ia64_leave_kernel END(dispatch_illegal_op_fault)