#ifndef __ASM_AVR32_IO_H #define __ASM_AVR32_IO_H #include <linux/bug.h> #include <linux/kernel.h> #include <linux/string.h> #include <linux/types.h> #include <asm/addrspace.h> #include <asm/byteorder.h> #include <mach/io.h> /* virt_to_phys will only work when address is in P1 or P2 */ static __inline__ unsigned long virt_to_phys(volatile void *address) { return PHYSADDR(address); } static __inline__ void * phys_to_virt(unsigned long address) { return (void *)P1SEGADDR(address); } #define cached_to_phys(addr) ((unsigned long)PHYSADDR(addr)) #define uncached_to_phys(addr) ((unsigned long)PHYSADDR(addr)) #define phys_to_cached(addr) ((void *)P1SEGADDR(addr)) #define phys_to_uncached(addr) ((void *)P2SEGADDR(addr)) /* * Generic IO read/write. These perform native-endian accesses. Note * that some architectures will want to re-define __raw_{read,write}w. */ extern void __raw_writesb(void __iomem *addr, const void *data, int bytelen); extern void __raw_writesw(void __iomem *addr, const void *data, int wordlen); extern void __raw_writesl(void __iomem *addr, const void *data, int longlen); extern void __raw_readsb(const void __iomem *addr, void *data, int bytelen); extern void __raw_readsw(const void __iomem *addr, void *data, int wordlen); extern void __raw_readsl(const void __iomem *addr, void *data, int longlen); static inline void __raw_writeb(u8 v, volatile void __iomem *addr) { *(volatile u8 __force *)addr = v; } static inline void __raw_writew(u16 v, volatile void __iomem *addr) { *(volatile u16 __force *)addr = v; } static inline void __raw_writel(u32 v, volatile void __iomem *addr) { *(volatile u32 __force *)addr = v; } static inline u8 __raw_readb(const volatile void __iomem *addr) { return *(const volatile u8 __force *)addr; } static inline u16 __raw_readw(const volatile void __iomem *addr) { return *(const volatile u16 __force *)addr; } static inline u32 __raw_readl(const volatile void __iomem *addr) { return *(const volatile u32 __force *)addr; } /* Convert I/O port address to virtual address */ #ifndef __io # define __io(p) ((void *)phys_to_uncached(p)) #endif /* * Not really sure about the best way to slow down I/O on * AVR32. Defining it as a no-op until we have an actual test case. */ #define SLOW_DOWN_IO do { } while (0) #define __BUILD_MEMORY_SINGLE(pfx, bwl, type) \ static inline void \ pfx##write##bwl(type val, volatile void __iomem *addr) \ { \ volatile type *__addr; \ type __val; \ \ __addr = (void *)__swizzle_addr_##bwl((unsigned long)(addr)); \ __val = pfx##ioswab##bwl(__addr, val); \ \ BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long)); \ \ *__addr = __val; \ } \ \ static inline type pfx##read##bwl(const volatile void __iomem *addr) \ { \ volatile type *__addr; \ type __val; \ \ __addr = (void *)__swizzle_addr_##bwl((unsigned long)(addr)); \ \ BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long)); \ \ __val = *__addr; \ return pfx##ioswab##bwl(__addr, __val); \ } #define __BUILD_IOPORT_SINGLE(pfx, bwl, type, p, slow) \ static inline void pfx##out##bwl##p(type val, unsigned long port) \ { \ volatile type *__addr; \ type __val; \ \ __addr = __io(__swizzle_addr_##bwl(port)); \ __val = pfx##ioswab##bwl(__addr, val); \ \ BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long)); \ \ *__addr = __val; \ slow; \ } \ \ static inline type pfx##in##bwl##p(unsigned long port) \ { \ volatile type *__addr; \ type __val; \ \ __addr = __io(__swizzle_addr_##bwl(port)); \ \ BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long)); \ \ __val = *__addr; \ slow; \ \ return pfx##ioswab##bwl(__addr, __val); \ } #define __BUILD_MEMORY_PFX(bus, bwl, type) \ __BUILD_MEMORY_SINGLE(bus, bwl, type) #define BUILDIO_MEM(bwl, type) \ __BUILD_MEMORY_PFX(, bwl, type) \ __BUILD_MEMORY_PFX(__mem_, bwl, type) #define __BUILD_IOPORT_PFX(bus, bwl, type) \ __BUILD_IOPORT_SINGLE(bus, bwl, type, ,) \ __BUILD_IOPORT_SINGLE(bus, bwl, type, _p, SLOW_DOWN_IO) #define BUILDIO_IOPORT(bwl, type) \ __BUILD_IOPORT_PFX(, bwl, type) \ __BUILD_IOPORT_PFX(__mem_, bwl, type) BUILDIO_MEM(b, u8) BUILDIO_MEM(w, u16) BUILDIO_MEM(l, u32) BUILDIO_IOPORT(b, u8) BUILDIO_IOPORT(w, u16) BUILDIO_IOPORT(l, u32) #define readb_relaxed readb #define readw_relaxed readw #define readl_relaxed readl #define readb_be __raw_readb #define readw_be __raw_readw #define readl_be __raw_readl #define writeb_relaxed writeb #define writew_relaxed writew #define writel_relaxed writel #define writeb_be __raw_writeb #define writew_be __raw_writew #define writel_be __raw_writel #define __BUILD_MEMORY_STRING(bwl, type) \ static inline void writes##bwl(volatile void __iomem *addr, \ const void *data, unsigned int count) \ { \ const type *__data = data; \ \ while (count--) \ __mem_write##bwl(*__data++, addr); \ } \ \ static inline void reads##bwl(const volatile void __iomem *addr, \ void *data, unsigned int count) \ { \ type *__data = data; \ \ while (count--) \ *__data++ = __mem_read##bwl(addr); \ } #define __BUILD_IOPORT_STRING(bwl, type) \ static inline void outs##bwl(unsigned long port, const void *data, \ unsigned int count) \ { \ const type *__data = data; \ \ while (count--) \ __mem_out##bwl(*__data++, port); \ } \ \ static inline void ins##bwl(unsigned long port, void *data, \ unsigned int count) \ { \ type *__data = data; \ \ while (count--) \ *__data++ = __mem_in##bwl(port); \ } #define BUILDSTRING(bwl, type) \ __BUILD_MEMORY_STRING(bwl, type) \ __BUILD_IOPORT_STRING(bwl, type) BUILDSTRING(b, u8) BUILDSTRING(w, u16) BUILDSTRING(l, u32) /* * io{read,write}{8,16,32} macros in both le (for PCI style consumers) and native be */ #ifndef ioread8 #define ioread8(p) ((unsigned int)readb(p)) #define ioread16(p) ((unsigned int)readw(p)) #define ioread16be(p) ((unsigned int)__raw_readw(p)) #define ioread32(p) ((unsigned int)readl(p)) #define ioread32be(p) ((unsigned int)__raw_readl(p)) #define iowrite8(v,p) writeb(v, p) #define iowrite16(v,p) writew(v, p) #define iowrite16be(v,p) __raw_writew(v, p) #define iowrite32(v,p) writel(v, p) #define iowrite32be(v,p) __raw_writel(v, p) #define ioread8_rep(p,d,c) readsb(p,d,c) #define ioread16_rep(p,d,c) readsw(p,d,c) #define ioread32_rep(p,d,c) readsl(p,d,c) #define iowrite8_rep(p,s,c) writesb(p,s,c) #define iowrite16_rep(p,s,c) writesw(p,s,c) #define iowrite32_rep(p,s,c) writesl(p,s,c) #endif static inline void memcpy_fromio(void * to, const volatile void __iomem *from, unsigned long count) { memcpy(to, (const void __force *)from, count); } static inline void memcpy_toio(volatile void __iomem *to, const void * from, unsigned long count) { memcpy((void __force *)to, from, count); } static inline void memset_io(volatile void __iomem *addr, unsigned char val, unsigned long count) { memset((void __force *)addr, val, count); } #define mmiowb() #define IO_SPACE_LIMIT 0xffffffff extern void __iomem *__ioremap(unsigned long offset, size_t size, unsigned long flags); extern void __iounmap(void __iomem *addr); /* * ioremap - map bus memory into CPU space * @offset bus address of the memory * @size size of the resource to map * * ioremap performs a platform specific sequence of operations to make * bus memory CPU accessible via the readb/.../writel functions and * the other mmio helpers. The returned address is not guaranteed to * be usable directly as a virtual address. */ #define ioremap(offset, size) \ __ioremap((offset), (size), 0) #define ioremap_nocache(offset, size) \ __ioremap((offset), (size), 0) #define iounmap(addr) \ __iounmap(addr) #define ioremap_wc ioremap_nocache #define cached(addr) P1SEGADDR(addr) #define uncached(addr) P2SEGADDR(addr) #define virt_to_bus virt_to_phys #define bus_to_virt phys_to_virt #define page_to_bus page_to_phys #define bus_to_page phys_to_page /* * Create a virtual mapping cookie for an IO port range. There exists * no such thing as port-based I/O on AVR32, so a regular ioremap() * should do what we need. */ #define ioport_map(port, nr) ioremap(port, nr) #define ioport_unmap(port) iounmap(port) /* * Convert a physical pointer to a virtual kernel pointer for /dev/mem * access */ #define xlate_dev_mem_ptr(p) __va(p) /* * Convert a virtual cached pointer to an uncached pointer */ #define xlate_dev_kmem_ptr(p) p #endif /* __ASM_AVR32_IO_H */