/* NetWinder Floating Point Emulator (c) Rebel.COM, 1998,1999 (c) Philip Blundell, 2001 Direct questions, comments to Scott Bambrough <scottb@netwinder.org> This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include "fpa11.h" #include "softfloat.h" #include "fpopcode.h" float32 float32_exp(float32 Fm); float32 float32_ln(float32 Fm); float32 float32_sin(float32 rFm); float32 float32_cos(float32 rFm); float32 float32_arcsin(float32 rFm); float32 float32_arctan(float32 rFm); float32 float32_log(float32 rFm); float32 float32_tan(float32 rFm); float32 float32_arccos(float32 rFm); float32 float32_pow(float32 rFn, float32 rFm); float32 float32_pol(float32 rFn, float32 rFm); static float32 float32_rsf(struct roundingData *roundData, float32 rFn, float32 rFm) { return float32_sub(roundData, rFm, rFn); } static float32 float32_rdv(struct roundingData *roundData, float32 rFn, float32 rFm) { return float32_div(roundData, rFm, rFn); } static float32 (*const dyadic_single[16])(struct roundingData *, float32 rFn, float32 rFm) = { [ADF_CODE >> 20] = float32_add, [MUF_CODE >> 20] = float32_mul, [SUF_CODE >> 20] = float32_sub, [RSF_CODE >> 20] = float32_rsf, [DVF_CODE >> 20] = float32_div, [RDF_CODE >> 20] = float32_rdv, [RMF_CODE >> 20] = float32_rem, [FML_CODE >> 20] = float32_mul, [FDV_CODE >> 20] = float32_div, [FRD_CODE >> 20] = float32_rdv, }; static float32 float32_mvf(struct roundingData *roundData, float32 rFm) { return rFm; } static float32 float32_mnf(struct roundingData *roundData, float32 rFm) { return rFm ^ 0x80000000; } static float32 float32_abs(struct roundingData *roundData, float32 rFm) { return rFm & 0x7fffffff; } static float32 (*const monadic_single[16])(struct roundingData*, float32 rFm) = { [MVF_CODE >> 20] = float32_mvf, [MNF_CODE >> 20] = float32_mnf, [ABS_CODE >> 20] = float32_abs, [RND_CODE >> 20] = float32_round_to_int, [URD_CODE >> 20] = float32_round_to_int, [SQT_CODE >> 20] = float32_sqrt, [NRM_CODE >> 20] = float32_mvf, }; unsigned int SingleCPDO(struct roundingData *roundData, const unsigned int opcode, FPREG * rFd) { FPA11 *fpa11 = GET_FPA11(); float32 rFm; unsigned int Fm, opc_mask_shift; Fm = getFm(opcode); if (CONSTANT_FM(opcode)) { rFm = getSingleConstant(Fm); } else if (fpa11->fType[Fm] == typeSingle) { rFm = fpa11->fpreg[Fm].fSingle; } else { return 0; } opc_mask_shift = (opcode & MASK_ARITHMETIC_OPCODE) >> 20; if (!MONADIC_INSTRUCTION(opcode)) { unsigned int Fn = getFn(opcode); float32 rFn; if (fpa11->fType[Fn] == typeSingle && dyadic_single[opc_mask_shift]) { rFn = fpa11->fpreg[Fn].fSingle; rFd->fSingle = dyadic_single[opc_mask_shift](roundData, rFn, rFm); } else { return 0; } } else { if (monadic_single[opc_mask_shift]) { rFd->fSingle = monadic_single[opc_mask_shift](roundData, rFm); } else { return 0; } } return 1; }