/* * Copyright (C) 2014 Broadcom Corporation * Copyright 2014 Linaro Limited * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation version 2. * * This program is distributed "as is" WITHOUT ANY WARRANTY of any * kind, whether express or implied; without even the implied warranty * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include <linux/init.h> #include <linux/errno.h> #include <linux/io.h> #include <linux/of.h> #include <linux/sched.h> #include <asm/smp.h> #include <asm/smp_plat.h> #include <asm/smp_scu.h> /* Size of mapped Cortex A9 SCU address space */ #define CORTEX_A9_SCU_SIZE 0x58 #define SECONDARY_TIMEOUT_NS NSEC_PER_MSEC /* 1 msec (in nanoseconds) */ #define BOOT_ADDR_CPUID_MASK 0x3 /* Name of device node property defining secondary boot register location */ #define OF_SECONDARY_BOOT "secondary-boot-reg" /* I/O address of register used to coordinate secondary core startup */ static u32 secondary_boot; /* * Enable the Cortex A9 Snoop Control Unit * * By the time this is called we already know there are multiple * cores present. We assume we're running on a Cortex A9 processor, * so any trouble getting the base address register or getting the * SCU base is a problem. * * Return 0 if successful or an error code otherwise. */ static int __init scu_a9_enable(void) { unsigned long config_base; void __iomem *scu_base; if (!scu_a9_has_base()) { pr_err("no configuration base address register!\n"); return -ENXIO; } /* Config base address register value is zero for uniprocessor */ config_base = scu_a9_get_base(); if (!config_base) { pr_err("hardware reports only one core\n"); return -ENOENT; } scu_base = ioremap((phys_addr_t)config_base, CORTEX_A9_SCU_SIZE); if (!scu_base) { pr_err("failed to remap config base (%lu/%u) for SCU\n", config_base, CORTEX_A9_SCU_SIZE); return -ENOMEM; } scu_enable(scu_base); iounmap(scu_base); /* That's the last we'll need of this */ return 0; } static void __init bcm_smp_prepare_cpus(unsigned int max_cpus) { static cpumask_t only_cpu_0 = { CPU_BITS_CPU0 }; struct device_node *node; int ret; BUG_ON(secondary_boot); /* We're called only once */ /* * This function is only called via smp_ops->smp_prepare_cpu(). * That only happens if a "/cpus" device tree node exists * and has an "enable-method" property that selects the SMP * operations defined herein. */ node = of_find_node_by_path("/cpus"); BUG_ON(!node); /* * Our secondary enable method requires a "secondary-boot-reg" * property to specify a register address used to request the * ROM code boot a secondary code. If we have any trouble * getting this we fall back to uniprocessor mode. */ if (of_property_read_u32(node, OF_SECONDARY_BOOT, &secondary_boot)) { pr_err("%s: missing/invalid " OF_SECONDARY_BOOT " property\n", node->name); ret = -ENOENT; /* Arrange to disable SMP */ goto out; } /* * Enable the SCU on Cortex A9 based SoCs. If -ENOENT is * returned, the SoC reported a uniprocessor configuration. * We bail on any other error. */ ret = scu_a9_enable(); out: of_node_put(node); if (ret) { /* Update the CPU present map to reflect uniprocessor mode */ BUG_ON(ret != -ENOENT); pr_warn("disabling SMP\n"); init_cpu_present(&only_cpu_0); } } /* * The ROM code has the secondary cores looping, waiting for an event. * When an event occurs each core examines the bottom two bits of the * secondary boot register. When a core finds those bits contain its * own core id, it performs initialization, including computing its boot * address by clearing the boot register value's bottom two bits. The * core signals that it is beginning its execution by writing its boot * address back to the secondary boot register, and finally jumps to * that address. * * So to start a core executing we need to: * - Encode the (hardware) CPU id with the bottom bits of the secondary * start address. * - Write that value into the secondary boot register. * - Generate an event to wake up the secondary CPU(s). * - Wait for the secondary boot register to be re-written, which * indicates the secondary core has started. */ static int bcm_boot_secondary(unsigned int cpu, struct task_struct *idle) { void __iomem *boot_reg; phys_addr_t boot_func; u64 start_clock; u32 cpu_id; u32 boot_val; bool timeout = false; cpu_id = cpu_logical_map(cpu); if (cpu_id & ~BOOT_ADDR_CPUID_MASK) { pr_err("bad cpu id (%u > %u)\n", cpu_id, BOOT_ADDR_CPUID_MASK); return -EINVAL; } if (!secondary_boot) { pr_err("required secondary boot register not specified\n"); return -EINVAL; } boot_reg = ioremap_nocache((phys_addr_t)secondary_boot, sizeof(u32)); if (!boot_reg) { pr_err("unable to map boot register for cpu %u\n", cpu_id); return -ENOSYS; } /* * Secondary cores will start in secondary_startup(), * defined in "arch/arm/kernel/head.S" */ boot_func = virt_to_phys(secondary_startup); BUG_ON(boot_func & BOOT_ADDR_CPUID_MASK); BUG_ON(boot_func > (phys_addr_t)U32_MAX); /* The core to start is encoded in the low bits */ boot_val = (u32)boot_func | cpu_id; writel_relaxed(boot_val, boot_reg); sev(); /* The low bits will be cleared once the core has started */ start_clock = local_clock(); while (!timeout && readl_relaxed(boot_reg) == boot_val) timeout = local_clock() - start_clock > SECONDARY_TIMEOUT_NS; iounmap(boot_reg); if (!timeout) return 0; pr_err("timeout waiting for cpu %u to start\n", cpu_id); return -ENOSYS; } static struct smp_operations bcm_smp_ops __initdata = { .smp_prepare_cpus = bcm_smp_prepare_cpus, .smp_boot_secondary = bcm_boot_secondary, }; CPU_METHOD_OF_DECLARE(bcm_smp_bcm281xx, "brcm,bcm11351-cpu-method", &bcm_smp_ops);