Kernel  |  3.14

下载     查看原文件
C++程序  |  875行  |  20.52 KB
/* CoreChip-sz SR9800 one chip USB 2.0 Ethernet Devices
 *
 * Author : Liu Junliang <liujunliang_ljl@163.com>
 *
 * Based on asix_common.c, asix_devices.c
 *
 * This file is licensed under the terms of the GNU General Public License
 * version 2.  This program is licensed "as is" without any warranty of any
 * kind, whether express or implied.*
 */

#include <linux/module.h>
#include <linux/kmod.h>
#include <linux/init.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/workqueue.h>
#include <linux/mii.h>
#include <linux/usb.h>
#include <linux/crc32.h>
#include <linux/usb/usbnet.h>
#include <linux/slab.h>
#include <linux/if_vlan.h>

#include "sr9800.h"

static int sr_read_cmd(struct usbnet *dev, u8 cmd, u16 value, u16 index,
			    u16 size, void *data)
{
	int err;

	err = usbnet_read_cmd(dev, cmd, SR_REQ_RD_REG, value, index,
			      data, size);
	if ((err != size) && (err >= 0))
		err = -EINVAL;

	return err;
}

static int sr_write_cmd(struct usbnet *dev, u8 cmd, u16 value, u16 index,
			     u16 size, void *data)
{
	int err;

	err = usbnet_write_cmd(dev, cmd, SR_REQ_WR_REG, value, index,
			      data, size);
	if ((err != size) && (err >= 0))
		err = -EINVAL;

	return err;
}

static void
sr_write_cmd_async(struct usbnet *dev, u8 cmd, u16 value, u16 index,
		   u16 size, void *data)
{
	usbnet_write_cmd_async(dev, cmd, SR_REQ_WR_REG, value, index, data,
			       size);
}

static int sr_rx_fixup(struct usbnet *dev, struct sk_buff *skb)
{
	int offset = 0;

	/* This check is no longer done by usbnet */
	if (skb->len < dev->net->hard_header_len)
		return 0;

	while (offset + sizeof(u32) < skb->len) {
		struct sk_buff *sr_skb;
		u16 size;
		u32 header = get_unaligned_le32(skb->data + offset);

		offset += sizeof(u32);
		/* get the packet length */
		size = (u16) (header & 0x7ff);
		if (size != ((~header >> 16) & 0x07ff)) {
			netdev_err(dev->net, "%s : Bad Header Length\n",
				   __func__);
			return 0;
		}

		if ((size > dev->net->mtu + ETH_HLEN + VLAN_HLEN) ||
		    (size + offset > skb->len)) {
			netdev_err(dev->net, "%s : Bad RX Length %d\n",
				   __func__, size);
			return 0;
		}
		sr_skb = netdev_alloc_skb_ip_align(dev->net, size);
		if (!sr_skb)
			return 0;

		skb_put(sr_skb, size);
		memcpy(sr_skb->data, skb->data + offset, size);
		usbnet_skb_return(dev, sr_skb);

		offset += (size + 1) & 0xfffe;
	}

	if (skb->len != offset) {
		netdev_err(dev->net, "%s : Bad SKB Length %d\n", __func__,
			   skb->len);
		return 0;
	}

	return 1;
}

static struct sk_buff *sr_tx_fixup(struct usbnet *dev, struct sk_buff *skb,
					gfp_t flags)
{
	int headroom = skb_headroom(skb);
	int tailroom = skb_tailroom(skb);
	u32 padbytes = 0xffff0000;
	u32 packet_len;
	int padlen;

	padlen = ((skb->len + 4) % (dev->maxpacket - 1)) ? 0 : 4;

	if ((!skb_cloned(skb)) && ((headroom + tailroom) >= (4 + padlen))) {
		if ((headroom < 4) || (tailroom < padlen)) {
			skb->data = memmove(skb->head + 4, skb->data,
					    skb->len);
			skb_set_tail_pointer(skb, skb->len);
		}
	} else {
		struct sk_buff *skb2;
		skb2 = skb_copy_expand(skb, 4, padlen, flags);
		dev_kfree_skb_any(skb);
		skb = skb2;
		if (!skb)
			return NULL;
	}

	skb_push(skb, 4);
	packet_len = (((skb->len - 4) ^ 0x0000ffff) << 16) + (skb->len - 4);
	cpu_to_le32s(&packet_len);
	skb_copy_to_linear_data(skb, &packet_len, sizeof(packet_len));

	if (padlen) {
		cpu_to_le32s(&padbytes);
		memcpy(skb_tail_pointer(skb), &padbytes, sizeof(padbytes));
		skb_put(skb, sizeof(padbytes));
	}

	return skb;
}

static void sr_status(struct usbnet *dev, struct urb *urb)
{
	struct sr9800_int_data *event;
	int link;

	if (urb->actual_length < 8)
		return;

	event = urb->transfer_buffer;
	link = event->link & 0x01;
	if (netif_carrier_ok(dev->net) != link) {
		usbnet_link_change(dev, link, 1);
		netdev_dbg(dev->net, "Link Status is: %d\n", link);
	}

	return;
}

static inline int sr_set_sw_mii(struct usbnet *dev)
{
	int ret;

	ret = sr_write_cmd(dev, SR_CMD_SET_SW_MII, 0x0000, 0, 0, NULL);
	if (ret < 0)
		netdev_err(dev->net, "Failed to enable software MII access\n");
	return ret;
}

static inline int sr_set_hw_mii(struct usbnet *dev)
{
	int ret;

	ret = sr_write_cmd(dev, SR_CMD_SET_HW_MII, 0x0000, 0, 0, NULL);
	if (ret < 0)
		netdev_err(dev->net, "Failed to enable hardware MII access\n");
	return ret;
}

static inline int sr_get_phy_addr(struct usbnet *dev)
{
	u8 buf[2];
	int ret;

	ret = sr_read_cmd(dev, SR_CMD_READ_PHY_ID, 0, 0, 2, buf);
	if (ret < 0) {
		netdev_err(dev->net, "%s : Error reading PHYID register:%02x\n",
			   __func__, ret);
		goto out;
	}
	netdev_dbg(dev->net, "%s : returning 0x%04x\n", __func__,
		   *((__le16 *)buf));

	ret = buf[1];

out:
	return ret;
}

static int sr_sw_reset(struct usbnet *dev, u8 flags)
{
	int ret;

	ret = sr_write_cmd(dev, SR_CMD_SW_RESET, flags, 0, 0, NULL);
	if (ret < 0)
		netdev_err(dev->net, "Failed to send software reset:%02x\n",
			   ret);

	return ret;
}

static u16 sr_read_rx_ctl(struct usbnet *dev)
{
	__le16 v;
	int ret;

	ret = sr_read_cmd(dev, SR_CMD_READ_RX_CTL, 0, 0, 2, &v);
	if (ret < 0) {
		netdev_err(dev->net, "Error reading RX_CTL register:%02x\n",
			   ret);
		goto out;
	}

	ret = le16_to_cpu(v);
out:
	return ret;
}

static int sr_write_rx_ctl(struct usbnet *dev, u16 mode)
{
	int ret;

	netdev_dbg(dev->net, "%s : mode = 0x%04x\n", __func__, mode);
	ret = sr_write_cmd(dev, SR_CMD_WRITE_RX_CTL, mode, 0, 0, NULL);
	if (ret < 0)
		netdev_err(dev->net,
			   "Failed to write RX_CTL mode to 0x%04x:%02x\n",
			   mode, ret);

	return ret;
}

static u16 sr_read_medium_status(struct usbnet *dev)
{
	__le16 v;
	int ret;

	ret = sr_read_cmd(dev, SR_CMD_READ_MEDIUM_STATUS, 0, 0, 2, &v);
	if (ret < 0) {
		netdev_err(dev->net,
			   "Error reading Medium Status register:%02x\n", ret);
		return ret;	/* TODO: callers not checking for error ret */
	}

	return le16_to_cpu(v);
}

static int sr_write_medium_mode(struct usbnet *dev, u16 mode)
{
	int ret;

	netdev_dbg(dev->net, "%s : mode = 0x%04x\n", __func__, mode);
	ret = sr_write_cmd(dev, SR_CMD_WRITE_MEDIUM_MODE, mode, 0, 0, NULL);
	if (ret < 0)
		netdev_err(dev->net,
			   "Failed to write Medium Mode mode to 0x%04x:%02x\n",
			   mode, ret);
	return ret;
}

static int sr_write_gpio(struct usbnet *dev, u16 value, int sleep)
{
	int ret;

	netdev_dbg(dev->net, "%s : value = 0x%04x\n", __func__, value);
	ret = sr_write_cmd(dev, SR_CMD_WRITE_GPIOS, value, 0, 0, NULL);
	if (ret < 0)
		netdev_err(dev->net, "Failed to write GPIO value 0x%04x:%02x\n",
			   value, ret);
	if (sleep)
		msleep(sleep);

	return ret;
}

/* SR9800 have a 16-bit RX_CTL value */
static void sr_set_multicast(struct net_device *net)
{
	struct usbnet *dev = netdev_priv(net);
	struct sr_data *data = (struct sr_data *)&dev->data;
	u16 rx_ctl = SR_DEFAULT_RX_CTL;

	if (net->flags & IFF_PROMISC) {
		rx_ctl |= SR_RX_CTL_PRO;
	} else if (net->flags & IFF_ALLMULTI ||
		   netdev_mc_count(net) > SR_MAX_MCAST) {
		rx_ctl |= SR_RX_CTL_AMALL;
	} else if (netdev_mc_empty(net)) {
		/* just broadcast and directed */
	} else {
		/* We use the 20 byte dev->data
		 * for our 8 byte filter buffer
		 * to avoid allocating memory that
		 * is tricky to free later
		 */
		struct netdev_hw_addr *ha;
		u32 crc_bits;

		memset(data->multi_filter, 0, SR_MCAST_FILTER_SIZE);

		/* Build the multicast hash filter. */
		netdev_for_each_mc_addr(ha, net) {
			crc_bits = ether_crc(ETH_ALEN, ha->addr) >> 26;
			data->multi_filter[crc_bits >> 3] |=
			    1 << (crc_bits & 7);
		}

		sr_write_cmd_async(dev, SR_CMD_WRITE_MULTI_FILTER, 0, 0,
				   SR_MCAST_FILTER_SIZE, data->multi_filter);

		rx_ctl |= SR_RX_CTL_AM;
	}

	sr_write_cmd_async(dev, SR_CMD_WRITE_RX_CTL, rx_ctl, 0, 0, NULL);
}

static int sr_mdio_read(struct net_device *net, int phy_id, int loc)
{
	struct usbnet *dev = netdev_priv(net);
	__le16 res;

	mutex_lock(&dev->phy_mutex);
	sr_set_sw_mii(dev);
	sr_read_cmd(dev, SR_CMD_READ_MII_REG, phy_id, (__u16)loc, 2, &res);
	sr_set_hw_mii(dev);
	mutex_unlock(&dev->phy_mutex);

	netdev_dbg(dev->net,
		   "%s : phy_id=0x%02x, loc=0x%02x, returns=0x%04x\n", __func__,
		   phy_id, loc, le16_to_cpu(res));

	return le16_to_cpu(res);
}

static void
sr_mdio_write(struct net_device *net, int phy_id, int loc, int val)
{
	struct usbnet *dev = netdev_priv(net);
	__le16 res = cpu_to_le16(val);

	netdev_dbg(dev->net,
		   "%s : phy_id=0x%02x, loc=0x%02x, val=0x%04x\n", __func__,
		   phy_id, loc, val);
	mutex_lock(&dev->phy_mutex);
	sr_set_sw_mii(dev);
	sr_write_cmd(dev, SR_CMD_WRITE_MII_REG, phy_id, (__u16)loc, 2, &res);
	sr_set_hw_mii(dev);
	mutex_unlock(&dev->phy_mutex);
}

/* Get the PHY Identifier from the PHYSID1 & PHYSID2 MII registers */
static u32 sr_get_phyid(struct usbnet *dev)
{
	int phy_reg;
	u32 phy_id;
	int i;

	/* Poll for the rare case the FW or phy isn't ready yet.  */
	for (i = 0; i < 100; i++) {
		phy_reg = sr_mdio_read(dev->net, dev->mii.phy_id, MII_PHYSID1);
		if (phy_reg != 0 && phy_reg != 0xFFFF)
			break;
		mdelay(1);
	}

	if (phy_reg <= 0 || phy_reg == 0xFFFF)
		return 0;

	phy_id = (phy_reg & 0xffff) << 16;

	phy_reg = sr_mdio_read(dev->net, dev->mii.phy_id, MII_PHYSID2);
	if (phy_reg < 0)
		return 0;

	phy_id |= (phy_reg & 0xffff);

	return phy_id;
}

static void
sr_get_wol(struct net_device *net, struct ethtool_wolinfo *wolinfo)
{
	struct usbnet *dev = netdev_priv(net);
	u8 opt;

	if (sr_read_cmd(dev, SR_CMD_READ_MONITOR_MODE, 0, 0, 1, &opt) < 0) {
		wolinfo->supported = 0;
		wolinfo->wolopts = 0;
		return;
	}
	wolinfo->supported = WAKE_PHY | WAKE_MAGIC;
	wolinfo->wolopts = 0;
	if (opt & SR_MONITOR_LINK)
		wolinfo->wolopts |= WAKE_PHY;
	if (opt & SR_MONITOR_MAGIC)
		wolinfo->wolopts |= WAKE_MAGIC;
}

static int
sr_set_wol(struct net_device *net, struct ethtool_wolinfo *wolinfo)
{
	struct usbnet *dev = netdev_priv(net);
	u8 opt = 0;

	if (wolinfo->wolopts & WAKE_PHY)
		opt |= SR_MONITOR_LINK;
	if (wolinfo->wolopts & WAKE_MAGIC)
		opt |= SR_MONITOR_MAGIC;

	if (sr_write_cmd(dev, SR_CMD_WRITE_MONITOR_MODE,
			 opt, 0, 0, NULL) < 0)
		return -EINVAL;

	return 0;
}

static int sr_get_eeprom_len(struct net_device *net)
{
	struct usbnet *dev = netdev_priv(net);
	struct sr_data *data = (struct sr_data *)&dev->data;

	return data->eeprom_len;
}

static int sr_get_eeprom(struct net_device *net,
			      struct ethtool_eeprom *eeprom, u8 *data)
{
	struct usbnet *dev = netdev_priv(net);
	__le16 *ebuf = (__le16 *)data;
	int ret;
	int i;

	/* Crude hack to ensure that we don't overwrite memory
	 * if an odd length is supplied
	 */
	if (eeprom->len % 2)
		return -EINVAL;

	eeprom->magic = SR_EEPROM_MAGIC;

	/* sr9800 returns 2 bytes from eeprom on read */
	for (i = 0; i < eeprom->len / 2; i++) {
		ret = sr_read_cmd(dev, SR_CMD_READ_EEPROM, eeprom->offset + i,
				  0, 2, &ebuf[i]);
		if (ret < 0)
			return -EINVAL;
	}
	return 0;
}

static void sr_get_drvinfo(struct net_device *net,
				 struct ethtool_drvinfo *info)
{
	struct usbnet *dev = netdev_priv(net);
	struct sr_data *data = (struct sr_data *)&dev->data;

	/* Inherit standard device info */
	usbnet_get_drvinfo(net, info);
	strncpy(info->driver, DRIVER_NAME, sizeof(info->driver));
	strncpy(info->version, DRIVER_VERSION, sizeof(info->version));
	info->eedump_len = data->eeprom_len;
}

static u32 sr_get_link(struct net_device *net)
{
	struct usbnet *dev = netdev_priv(net);

	return mii_link_ok(&dev->mii);
}

static int sr_ioctl(struct net_device *net, struct ifreq *rq, int cmd)
{
	struct usbnet *dev = netdev_priv(net);

	return generic_mii_ioctl(&dev->mii, if_mii(rq), cmd, NULL);
}

static int sr_set_mac_address(struct net_device *net, void *p)
{
	struct usbnet *dev = netdev_priv(net);
	struct sr_data *data = (struct sr_data *)&dev->data;
	struct sockaddr *addr = p;

	if (netif_running(net))
		return -EBUSY;
	if (!is_valid_ether_addr(addr->sa_data))
		return -EADDRNOTAVAIL;

	memcpy(net->dev_addr, addr->sa_data, ETH_ALEN);

	/* We use the 20 byte dev->data
	 * for our 6 byte mac buffer
	 * to avoid allocating memory that
	 * is tricky to free later
	 */
	memcpy(data->mac_addr, addr->sa_data, ETH_ALEN);
	sr_write_cmd_async(dev, SR_CMD_WRITE_NODE_ID, 0, 0, ETH_ALEN,
			   data->mac_addr);

	return 0;
}

static const struct ethtool_ops sr9800_ethtool_ops = {
	.get_drvinfo	= sr_get_drvinfo,
	.get_link	= sr_get_link,
	.get_msglevel	= usbnet_get_msglevel,
	.set_msglevel	= usbnet_set_msglevel,
	.get_wol	= sr_get_wol,
	.set_wol	= sr_set_wol,
	.get_eeprom_len	= sr_get_eeprom_len,
	.get_eeprom	= sr_get_eeprom,
	.get_settings	= usbnet_get_settings,
	.set_settings	= usbnet_set_settings,
	.nway_reset	= usbnet_nway_reset,
};

static int sr9800_link_reset(struct usbnet *dev)
{
	struct ethtool_cmd ecmd = { .cmd = ETHTOOL_GSET };
	u16 mode;

	mii_check_media(&dev->mii, 1, 1);
	mii_ethtool_gset(&dev->mii, &ecmd);
	mode = SR9800_MEDIUM_DEFAULT;

	if (ethtool_cmd_speed(&ecmd) != SPEED_100)
		mode &= ~SR_MEDIUM_PS;

	if (ecmd.duplex != DUPLEX_FULL)
		mode &= ~SR_MEDIUM_FD;

	netdev_dbg(dev->net, "%s : speed: %u duplex: %d mode: 0x%04x\n",
		   __func__, ethtool_cmd_speed(&ecmd), ecmd.duplex, mode);

	sr_write_medium_mode(dev, mode);

	return 0;
}


static int sr9800_set_default_mode(struct usbnet *dev)
{
	u16 rx_ctl;
	int ret;

	sr_mdio_write(dev->net, dev->mii.phy_id, MII_BMCR, BMCR_RESET);
	sr_mdio_write(dev->net, dev->mii.phy_id, MII_ADVERTISE,
		      ADVERTISE_ALL | ADVERTISE_CSMA);
	mii_nway_restart(&dev->mii);

	ret = sr_write_medium_mode(dev, SR9800_MEDIUM_DEFAULT);
	if (ret < 0)
		goto out;

	ret = sr_write_cmd(dev, SR_CMD_WRITE_IPG012,
				SR9800_IPG0_DEFAULT | SR9800_IPG1_DEFAULT,
				SR9800_IPG2_DEFAULT, 0, NULL);
	if (ret < 0) {
		netdev_dbg(dev->net, "Write IPG,IPG1,IPG2 failed: %d\n", ret);
		goto out;
	}

	/* Set RX_CTL to default values with 2k buffer, and enable cactus */
	ret = sr_write_rx_ctl(dev, SR_DEFAULT_RX_CTL);
	if (ret < 0)
		goto out;

	rx_ctl = sr_read_rx_ctl(dev);
	netdev_dbg(dev->net, "RX_CTL is 0x%04x after all initializations\n",
		   rx_ctl);

	rx_ctl = sr_read_medium_status(dev);
	netdev_dbg(dev->net, "Medium Status:0x%04x after all initializations\n",
		   rx_ctl);

	return 0;
out:
	return ret;
}

static int sr9800_reset(struct usbnet *dev)
{
	struct sr_data *data = (struct sr_data *)&dev->data;
	int ret, embd_phy;
	u16 rx_ctl;

	ret = sr_write_gpio(dev,
			SR_GPIO_RSE | SR_GPIO_GPO_2 | SR_GPIO_GPO2EN, 5);
	if (ret < 0)
		goto out;

	embd_phy = ((sr_get_phy_addr(dev) & 0x1f) == 0x10 ? 1 : 0);

	ret = sr_write_cmd(dev, SR_CMD_SW_PHY_SELECT, embd_phy, 0, 0, NULL);
	if (ret < 0) {
		netdev_dbg(dev->net, "Select PHY #1 failed: %d\n", ret);
		goto out;
	}

	ret = sr_sw_reset(dev, SR_SWRESET_IPPD | SR_SWRESET_PRL);
	if (ret < 0)
		goto out;

	msleep(150);

	ret = sr_sw_reset(dev, SR_SWRESET_CLEAR);
	if (ret < 0)
		goto out;

	msleep(150);

	if (embd_phy) {
		ret = sr_sw_reset(dev, SR_SWRESET_IPRL);
		if (ret < 0)
			goto out;
	} else {
		ret = sr_sw_reset(dev, SR_SWRESET_PRTE);
		if (ret < 0)
			goto out;
	}

	msleep(150);
	rx_ctl = sr_read_rx_ctl(dev);
	netdev_dbg(dev->net, "RX_CTL is 0x%04x after software reset\n", rx_ctl);
	ret = sr_write_rx_ctl(dev, 0x0000);
	if (ret < 0)
		goto out;

	rx_ctl = sr_read_rx_ctl(dev);
	netdev_dbg(dev->net, "RX_CTL is 0x%04x setting to 0x0000\n", rx_ctl);

	ret = sr_sw_reset(dev, SR_SWRESET_PRL);
	if (ret < 0)
		goto out;

	msleep(150);

	ret = sr_sw_reset(dev, SR_SWRESET_IPRL | SR_SWRESET_PRL);
	if (ret < 0)
		goto out;

	msleep(150);

	ret = sr9800_set_default_mode(dev);
	if (ret < 0)
		goto out;

	/* Rewrite MAC address */
	memcpy(data->mac_addr, dev->net->dev_addr, ETH_ALEN);
	ret = sr_write_cmd(dev, SR_CMD_WRITE_NODE_ID, 0, 0, ETH_ALEN,
							data->mac_addr);
	if (ret < 0)
		goto out;

	return 0;

out:
	return ret;
}

static const struct net_device_ops sr9800_netdev_ops = {
	.ndo_open		= usbnet_open,
	.ndo_stop		= usbnet_stop,
	.ndo_start_xmit		= usbnet_start_xmit,
	.ndo_tx_timeout		= usbnet_tx_timeout,
	.ndo_change_mtu		= usbnet_change_mtu,
	.ndo_set_mac_address	= sr_set_mac_address,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_do_ioctl		= sr_ioctl,
	.ndo_set_rx_mode        = sr_set_multicast,
};

static int sr9800_phy_powerup(struct usbnet *dev)
{
	int ret;

	/* set the embedded Ethernet PHY in power-down state */
	ret = sr_sw_reset(dev, SR_SWRESET_IPPD | SR_SWRESET_IPRL);
	if (ret < 0) {
		netdev_err(dev->net, "Failed to power down PHY : %d\n", ret);
		return ret;
	}
	msleep(20);

	/* set the embedded Ethernet PHY in power-up state */
	ret = sr_sw_reset(dev, SR_SWRESET_IPRL);
	if (ret < 0) {
		netdev_err(dev->net, "Failed to reset PHY: %d\n", ret);
		return ret;
	}
	msleep(600);

	/* set the embedded Ethernet PHY in reset state */
	ret = sr_sw_reset(dev, SR_SWRESET_CLEAR);
	if (ret < 0) {
		netdev_err(dev->net, "Failed to power up PHY: %d\n", ret);
		return ret;
	}
	msleep(20);

	/* set the embedded Ethernet PHY in power-up state */
	ret = sr_sw_reset(dev, SR_SWRESET_IPRL);
	if (ret < 0) {
		netdev_err(dev->net, "Failed to reset PHY: %d\n", ret);
		return ret;
	}

	return 0;
}

static int sr9800_bind(struct usbnet *dev, struct usb_interface *intf)
{
	struct sr_data *data = (struct sr_data *)&dev->data;
	u16 led01_mux, led23_mux;
	int ret, embd_phy;
	u32 phyid;
	u16 rx_ctl;

	data->eeprom_len = SR9800_EEPROM_LEN;

	usbnet_get_endpoints(dev, intf);

	/* LED Setting Rule :
	 * AABB:CCDD
	 * AA : MFA0(LED0)
	 * BB : MFA1(LED1)
	 * CC : MFA2(LED2), Reserved for SR9800
	 * DD : MFA3(LED3), Reserved for SR9800
	 */
	led01_mux = (SR_LED_MUX_LINK_ACTIVE << 8) | SR_LED_MUX_LINK;
	led23_mux = (SR_LED_MUX_LINK_ACTIVE << 8) | SR_LED_MUX_TX_ACTIVE;
	ret = sr_write_cmd(dev, SR_CMD_LED_MUX, led01_mux, led23_mux, 0, NULL);
	if (ret < 0) {
			netdev_err(dev->net, "set LINK LED failed : %d\n", ret);
			goto out;
	}

	/* Get the MAC address */
	ret = sr_read_cmd(dev, SR_CMD_READ_NODE_ID, 0, 0, ETH_ALEN,
			  dev->net->dev_addr);
	if (ret < 0) {
		netdev_dbg(dev->net, "Failed to read MAC address: %d\n", ret);
		return ret;
	}
	netdev_dbg(dev->net, "mac addr : %pM\n", dev->net->dev_addr);

	/* Initialize MII structure */
	dev->mii.dev = dev->net;
	dev->mii.mdio_read = sr_mdio_read;
	dev->mii.mdio_write = sr_mdio_write;
	dev->mii.phy_id_mask = 0x1f;
	dev->mii.reg_num_mask = 0x1f;
	dev->mii.phy_id = sr_get_phy_addr(dev);

	dev->net->netdev_ops = &sr9800_netdev_ops;
	dev->net->ethtool_ops = &sr9800_ethtool_ops;

	embd_phy = ((dev->mii.phy_id & 0x1f) == 0x10 ? 1 : 0);
	/* Reset the PHY to normal operation mode */
	ret = sr_write_cmd(dev, SR_CMD_SW_PHY_SELECT, embd_phy, 0, 0, NULL);
	if (ret < 0) {
		netdev_dbg(dev->net, "Select PHY #1 failed: %d\n", ret);
		return ret;
	}

	/* Init PHY routine */
	ret = sr9800_phy_powerup(dev);
	if (ret < 0)
		goto out;

	rx_ctl = sr_read_rx_ctl(dev);
	netdev_dbg(dev->net, "RX_CTL is 0x%04x after software reset\n", rx_ctl);
	ret = sr_write_rx_ctl(dev, 0x0000);
	if (ret < 0)
		goto out;

	rx_ctl = sr_read_rx_ctl(dev);
	netdev_dbg(dev->net, "RX_CTL is 0x%04x setting to 0x0000\n", rx_ctl);

	/* Read PHYID register *AFTER* the PHY was reset properly */
	phyid = sr_get_phyid(dev);
	netdev_dbg(dev->net, "PHYID=0x%08x\n", phyid);

	/* medium mode setting */
	ret = sr9800_set_default_mode(dev);
	if (ret < 0)
		goto out;

	if (dev->udev->speed == USB_SPEED_HIGH) {
		ret = sr_write_cmd(dev, SR_CMD_BULKIN_SIZE,
			SR9800_BULKIN_SIZE[SR9800_MAX_BULKIN_4K].byte_cnt,
			SR9800_BULKIN_SIZE[SR9800_MAX_BULKIN_4K].threshold,
			0, NULL);
		if (ret < 0) {
			netdev_err(dev->net, "Reset RX_CTL failed: %d\n", ret);
			goto out;
		}
		dev->rx_urb_size =
			SR9800_BULKIN_SIZE[SR9800_MAX_BULKIN_4K].size;
	} else {
		ret = sr_write_cmd(dev, SR_CMD_BULKIN_SIZE,
			SR9800_BULKIN_SIZE[SR9800_MAX_BULKIN_2K].byte_cnt,
			SR9800_BULKIN_SIZE[SR9800_MAX_BULKIN_2K].threshold,
			0, NULL);
		if (ret < 0) {
			netdev_err(dev->net, "Reset RX_CTL failed: %d\n", ret);
			goto out;
		}
		dev->rx_urb_size =
			SR9800_BULKIN_SIZE[SR9800_MAX_BULKIN_2K].size;
	}
	netdev_dbg(dev->net, "%s : setting rx_urb_size with : %zu\n", __func__,
		   dev->rx_urb_size);
	return 0;

out:
	return ret;
}

static const struct driver_info sr9800_driver_info = {
	.description	= "CoreChip SR9800 USB 2.0 Ethernet",
	.bind		= sr9800_bind,
	.status		= sr_status,
	.link_reset	= sr9800_link_reset,
	.reset		= sr9800_reset,
	.flags		= DRIVER_FLAG,
	.rx_fixup	= sr_rx_fixup,
	.tx_fixup	= sr_tx_fixup,
};

static const struct usb_device_id	products[] = {
	{
		USB_DEVICE(0x0fe6, 0x9800),	/* SR9800 Device  */
		.driver_info = (unsigned long) &sr9800_driver_info,
	},
	{},		/* END */
};

MODULE_DEVICE_TABLE(usb, products);

static struct usb_driver sr_driver = {
	.name		= DRIVER_NAME,
	.id_table	= products,
	.probe		= usbnet_probe,
	.suspend	= usbnet_suspend,
	.resume		= usbnet_resume,
	.disconnect	= usbnet_disconnect,
	.supports_autosuspend = 1,
};

module_usb_driver(sr_driver);

MODULE_AUTHOR("Liu Junliang <liujunliang_ljl@163.com");
MODULE_VERSION(DRIVER_VERSION);
MODULE_DESCRIPTION("SR9800 USB 2.0 USB2NET Dev : http://www.corechip-sz.com");
MODULE_LICENSE("GPL");