Kernel  |  3.14

下载     查看原文件
C++程序  |  942行  |  23.2 KB
/*
 * Copyright (c) 2005-2008 Chelsio, Inc. All rights reserved.
 *
 * This software is available to you under a choice of one of two
 * licenses.  You may choose to be licensed under the terms of the GNU
 * General Public License (GPL) Version 2, available from the file
 * COPYING in the main directory of this source tree, or the
 * OpenIB.org BSD license below:
 *
 *     Redistribution and use in source and binary forms, with or
 *     without modification, are permitted provided that the following
 *     conditions are met:
 *
 *      - Redistributions of source code must retain the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer.
 *
 *      - Redistributions in binary form must reproduce the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer in the documentation and/or other materials
 *        provided with the distribution.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "common.h"
#include "regs.h"

enum {
	AEL100X_TX_CONFIG1 = 0xc002,
	AEL1002_PWR_DOWN_HI = 0xc011,
	AEL1002_PWR_DOWN_LO = 0xc012,
	AEL1002_XFI_EQL = 0xc015,
	AEL1002_LB_EN = 0xc017,
	AEL_OPT_SETTINGS = 0xc017,
	AEL_I2C_CTRL = 0xc30a,
	AEL_I2C_DATA = 0xc30b,
	AEL_I2C_STAT = 0xc30c,
	AEL2005_GPIO_CTRL = 0xc214,
	AEL2005_GPIO_STAT = 0xc215,

	AEL2020_GPIO_INTR   = 0xc103,	/* Latch High (LH) */
	AEL2020_GPIO_CTRL   = 0xc108,	/* Store Clear (SC) */
	AEL2020_GPIO_STAT   = 0xc10c,	/* Read Only (RO) */
	AEL2020_GPIO_CFG    = 0xc110,	/* Read Write (RW) */

	AEL2020_GPIO_SDA    = 0,	/* IN: i2c serial data */
	AEL2020_GPIO_MODDET = 1,	/* IN: Module Detect */
	AEL2020_GPIO_0      = 3,	/* IN: unassigned */
	AEL2020_GPIO_1      = 2,	/* OUT: unassigned */
	AEL2020_GPIO_LSTAT  = AEL2020_GPIO_1, /* wired to link status LED */
};

enum { edc_none, edc_sr, edc_twinax };

/* PHY module I2C device address */
enum {
	MODULE_DEV_ADDR	= 0xa0,
	SFF_DEV_ADDR	= 0xa2,
};

/* PHY transceiver type */
enum {
	phy_transtype_unknown = 0,
	phy_transtype_sfp     = 3,
	phy_transtype_xfp     = 6,
};

#define AEL2005_MODDET_IRQ 4

struct reg_val {
	unsigned short mmd_addr;
	unsigned short reg_addr;
	unsigned short clear_bits;
	unsigned short set_bits;
};

static int set_phy_regs(struct cphy *phy, const struct reg_val *rv)
{
	int err;

	for (err = 0; rv->mmd_addr && !err; rv++) {
		if (rv->clear_bits == 0xffff)
			err = t3_mdio_write(phy, rv->mmd_addr, rv->reg_addr,
					    rv->set_bits);
		else
			err = t3_mdio_change_bits(phy, rv->mmd_addr,
						  rv->reg_addr, rv->clear_bits,
						  rv->set_bits);
	}
	return err;
}

static void ael100x_txon(struct cphy *phy)
{
	int tx_on_gpio =
		phy->mdio.prtad == 0 ? F_GPIO7_OUT_VAL : F_GPIO2_OUT_VAL;

	msleep(100);
	t3_set_reg_field(phy->adapter, A_T3DBG_GPIO_EN, 0, tx_on_gpio);
	msleep(30);
}

/*
 * Read an 8-bit word from a device attached to the PHY's i2c bus.
 */
static int ael_i2c_rd(struct cphy *phy, int dev_addr, int word_addr)
{
	int i, err;
	unsigned int stat, data;

	err = t3_mdio_write(phy, MDIO_MMD_PMAPMD, AEL_I2C_CTRL,
			    (dev_addr << 8) | (1 << 8) | word_addr);
	if (err)
		return err;

	for (i = 0; i < 200; i++) {
		msleep(1);
		err = t3_mdio_read(phy, MDIO_MMD_PMAPMD, AEL_I2C_STAT, &stat);
		if (err)
			return err;
		if ((stat & 3) == 1) {
			err = t3_mdio_read(phy, MDIO_MMD_PMAPMD, AEL_I2C_DATA,
					   &data);
			if (err)
				return err;
			return data >> 8;
		}
	}
	CH_WARN(phy->adapter, "PHY %u i2c read of dev.addr %#x.%#x timed out\n",
		phy->mdio.prtad, dev_addr, word_addr);
	return -ETIMEDOUT;
}

static int ael1002_power_down(struct cphy *phy, int enable)
{
	int err;

	err = t3_mdio_write(phy, MDIO_MMD_PMAPMD, MDIO_PMA_TXDIS, !!enable);
	if (!err)
		err = mdio_set_flag(&phy->mdio, phy->mdio.prtad,
				    MDIO_MMD_PMAPMD, MDIO_CTRL1,
				    MDIO_CTRL1_LPOWER, enable);
	return err;
}

static int ael1002_reset(struct cphy *phy, int wait)
{
	int err;

	if ((err = ael1002_power_down(phy, 0)) ||
	    (err = t3_mdio_write(phy, MDIO_MMD_PMAPMD, AEL100X_TX_CONFIG1, 1)) ||
	    (err = t3_mdio_write(phy, MDIO_MMD_PMAPMD, AEL1002_PWR_DOWN_HI, 0)) ||
	    (err = t3_mdio_write(phy, MDIO_MMD_PMAPMD, AEL1002_PWR_DOWN_LO, 0)) ||
	    (err = t3_mdio_write(phy, MDIO_MMD_PMAPMD, AEL1002_XFI_EQL, 0x18)) ||
	    (err = t3_mdio_change_bits(phy, MDIO_MMD_PMAPMD, AEL1002_LB_EN,
				       0, 1 << 5)))
		return err;
	return 0;
}

static int ael1002_intr_noop(struct cphy *phy)
{
	return 0;
}

/*
 * Get link status for a 10GBASE-R device.
 */
static int get_link_status_r(struct cphy *phy, int *link_ok, int *speed,
			     int *duplex, int *fc)
{
	if (link_ok) {
		unsigned int stat0, stat1, stat2;
		int err = t3_mdio_read(phy, MDIO_MMD_PMAPMD,
				       MDIO_PMA_RXDET, &stat0);

		if (!err)
			err = t3_mdio_read(phy, MDIO_MMD_PCS,
					   MDIO_PCS_10GBRT_STAT1, &stat1);
		if (!err)
			err = t3_mdio_read(phy, MDIO_MMD_PHYXS,
					   MDIO_PHYXS_LNSTAT, &stat2);
		if (err)
			return err;
		*link_ok = (stat0 & stat1 & (stat2 >> 12)) & 1;
	}
	if (speed)
		*speed = SPEED_10000;
	if (duplex)
		*duplex = DUPLEX_FULL;
	return 0;
}

static struct cphy_ops ael1002_ops = {
	.reset = ael1002_reset,
	.intr_enable = ael1002_intr_noop,
	.intr_disable = ael1002_intr_noop,
	.intr_clear = ael1002_intr_noop,
	.intr_handler = ael1002_intr_noop,
	.get_link_status = get_link_status_r,
	.power_down = ael1002_power_down,
	.mmds = MDIO_DEVS_PMAPMD | MDIO_DEVS_PCS | MDIO_DEVS_PHYXS,
};

int t3_ael1002_phy_prep(struct cphy *phy, struct adapter *adapter,
			int phy_addr, const struct mdio_ops *mdio_ops)
{
	cphy_init(phy, adapter, phy_addr, &ael1002_ops, mdio_ops,
		  SUPPORTED_10000baseT_Full | SUPPORTED_AUI | SUPPORTED_FIBRE,
		   "10GBASE-R");
	ael100x_txon(phy);
	return 0;
}

static int ael1006_reset(struct cphy *phy, int wait)
{
	return t3_phy_reset(phy, MDIO_MMD_PMAPMD, wait);
}

static struct cphy_ops ael1006_ops = {
	.reset = ael1006_reset,
	.intr_enable = t3_phy_lasi_intr_enable,
	.intr_disable = t3_phy_lasi_intr_disable,
	.intr_clear = t3_phy_lasi_intr_clear,
	.intr_handler = t3_phy_lasi_intr_handler,
	.get_link_status = get_link_status_r,
	.power_down = ael1002_power_down,
	.mmds = MDIO_DEVS_PMAPMD | MDIO_DEVS_PCS | MDIO_DEVS_PHYXS,
};

int t3_ael1006_phy_prep(struct cphy *phy, struct adapter *adapter,
			     int phy_addr, const struct mdio_ops *mdio_ops)
{
	cphy_init(phy, adapter, phy_addr, &ael1006_ops, mdio_ops,
		  SUPPORTED_10000baseT_Full | SUPPORTED_AUI | SUPPORTED_FIBRE,
		   "10GBASE-SR");
	ael100x_txon(phy);
	return 0;
}

/*
 * Decode our module type.
 */
static int ael2xxx_get_module_type(struct cphy *phy, int delay_ms)
{
	int v;

	if (delay_ms)
		msleep(delay_ms);

	/* see SFF-8472 for below */
	v = ael_i2c_rd(phy, MODULE_DEV_ADDR, 3);
	if (v < 0)
		return v;

	if (v == 0x10)
		return phy_modtype_sr;
	if (v == 0x20)
		return phy_modtype_lr;
	if (v == 0x40)
		return phy_modtype_lrm;

	v = ael_i2c_rd(phy, MODULE_DEV_ADDR, 6);
	if (v < 0)
		return v;
	if (v != 4)
		goto unknown;

	v = ael_i2c_rd(phy, MODULE_DEV_ADDR, 10);
	if (v < 0)
		return v;

	if (v & 0x80) {
		v = ael_i2c_rd(phy, MODULE_DEV_ADDR, 0x12);
		if (v < 0)
			return v;
		return v > 10 ? phy_modtype_twinax_long : phy_modtype_twinax;
	}
unknown:
	return phy_modtype_unknown;
}

/*
 * Code to support the Aeluros/NetLogic 2005 10Gb PHY.
 */
static int ael2005_setup_sr_edc(struct cphy *phy)
{
	static const struct reg_val regs[] = {
		{ MDIO_MMD_PMAPMD, 0xc003, 0xffff, 0x181 },
		{ MDIO_MMD_PMAPMD, 0xc010, 0xffff, 0x448a },
		{ MDIO_MMD_PMAPMD, 0xc04a, 0xffff, 0x5200 },
		{ 0, 0, 0, 0 }
	};

	int i, err;

	err = set_phy_regs(phy, regs);
	if (err)
		return err;

	msleep(50);

	if (phy->priv != edc_sr)
		err = t3_get_edc_fw(phy, EDC_OPT_AEL2005,
				    EDC_OPT_AEL2005_SIZE);
	if (err)
		return err;

	for (i = 0; i <  EDC_OPT_AEL2005_SIZE / sizeof(u16) && !err; i += 2)
		err = t3_mdio_write(phy, MDIO_MMD_PMAPMD,
				    phy->phy_cache[i],
				    phy->phy_cache[i + 1]);
	if (!err)
		phy->priv = edc_sr;
	return err;
}

static int ael2005_setup_twinax_edc(struct cphy *phy, int modtype)
{
	static const struct reg_val regs[] = {
		{ MDIO_MMD_PMAPMD, 0xc04a, 0xffff, 0x5a00 },
		{ 0, 0, 0, 0 }
	};
	static const struct reg_val preemphasis[] = {
		{ MDIO_MMD_PMAPMD, 0xc014, 0xffff, 0xfe16 },
		{ MDIO_MMD_PMAPMD, 0xc015, 0xffff, 0xa000 },
		{ 0, 0, 0, 0 }
	};
	int i, err;

	err = set_phy_regs(phy, regs);
	if (!err && modtype == phy_modtype_twinax_long)
		err = set_phy_regs(phy, preemphasis);
	if (err)
		return err;

	msleep(50);

	if (phy->priv != edc_twinax)
		err = t3_get_edc_fw(phy, EDC_TWX_AEL2005,
				    EDC_TWX_AEL2005_SIZE);
	if (err)
		return err;

	for (i = 0; i <  EDC_TWX_AEL2005_SIZE / sizeof(u16) && !err; i += 2)
		err = t3_mdio_write(phy, MDIO_MMD_PMAPMD,
				    phy->phy_cache[i],
				    phy->phy_cache[i + 1]);
	if (!err)
		phy->priv = edc_twinax;
	return err;
}

static int ael2005_get_module_type(struct cphy *phy, int delay_ms)
{
	int v;
	unsigned int stat;

	v = t3_mdio_read(phy, MDIO_MMD_PMAPMD, AEL2005_GPIO_CTRL, &stat);
	if (v)
		return v;

	if (stat & (1 << 8))			/* module absent */
		return phy_modtype_none;

	return ael2xxx_get_module_type(phy, delay_ms);
}

static int ael2005_intr_enable(struct cphy *phy)
{
	int err = t3_mdio_write(phy, MDIO_MMD_PMAPMD, AEL2005_GPIO_CTRL, 0x200);
	return err ? err : t3_phy_lasi_intr_enable(phy);
}

static int ael2005_intr_disable(struct cphy *phy)
{
	int err = t3_mdio_write(phy, MDIO_MMD_PMAPMD, AEL2005_GPIO_CTRL, 0x100);
	return err ? err : t3_phy_lasi_intr_disable(phy);
}

static int ael2005_intr_clear(struct cphy *phy)
{
	int err = t3_mdio_write(phy, MDIO_MMD_PMAPMD, AEL2005_GPIO_CTRL, 0xd00);
	return err ? err : t3_phy_lasi_intr_clear(phy);
}

static int ael2005_reset(struct cphy *phy, int wait)
{
	static const struct reg_val regs0[] = {
		{ MDIO_MMD_PMAPMD, 0xc001, 0, 1 << 5 },
		{ MDIO_MMD_PMAPMD, 0xc017, 0, 1 << 5 },
		{ MDIO_MMD_PMAPMD, 0xc013, 0xffff, 0xf341 },
		{ MDIO_MMD_PMAPMD, 0xc210, 0xffff, 0x8000 },
		{ MDIO_MMD_PMAPMD, 0xc210, 0xffff, 0x8100 },
		{ MDIO_MMD_PMAPMD, 0xc210, 0xffff, 0x8000 },
		{ MDIO_MMD_PMAPMD, 0xc210, 0xffff, 0 },
		{ 0, 0, 0, 0 }
	};
	static const struct reg_val regs1[] = {
		{ MDIO_MMD_PMAPMD, 0xca00, 0xffff, 0x0080 },
		{ MDIO_MMD_PMAPMD, 0xca12, 0xffff, 0 },
		{ 0, 0, 0, 0 }
	};

	int err;
	unsigned int lasi_ctrl;

	err = t3_mdio_read(phy, MDIO_MMD_PMAPMD, MDIO_PMA_LASI_CTRL,
			   &lasi_ctrl);
	if (err)
		return err;

	err = t3_phy_reset(phy, MDIO_MMD_PMAPMD, 0);
	if (err)
		return err;

	msleep(125);
	phy->priv = edc_none;
	err = set_phy_regs(phy, regs0);
	if (err)
		return err;

	msleep(50);

	err = ael2005_get_module_type(phy, 0);
	if (err < 0)
		return err;
	phy->modtype = err;

	if (err == phy_modtype_twinax || err == phy_modtype_twinax_long)
		err = ael2005_setup_twinax_edc(phy, err);
	else
		err = ael2005_setup_sr_edc(phy);
	if (err)
		return err;

	err = set_phy_regs(phy, regs1);
	if (err)
		return err;

	/* reset wipes out interrupts, reenable them if they were on */
	if (lasi_ctrl & 1)
		err = ael2005_intr_enable(phy);
	return err;
}

static int ael2005_intr_handler(struct cphy *phy)
{
	unsigned int stat;
	int ret, edc_needed, cause = 0;

	ret = t3_mdio_read(phy, MDIO_MMD_PMAPMD, AEL2005_GPIO_STAT, &stat);
	if (ret)
		return ret;

	if (stat & AEL2005_MODDET_IRQ) {
		ret = t3_mdio_write(phy, MDIO_MMD_PMAPMD, AEL2005_GPIO_CTRL,
				    0xd00);
		if (ret)
			return ret;

		/* modules have max 300 ms init time after hot plug */
		ret = ael2005_get_module_type(phy, 300);
		if (ret < 0)
			return ret;

		phy->modtype = ret;
		if (ret == phy_modtype_none)
			edc_needed = phy->priv;       /* on unplug retain EDC */
		else if (ret == phy_modtype_twinax ||
			 ret == phy_modtype_twinax_long)
			edc_needed = edc_twinax;
		else
			edc_needed = edc_sr;

		if (edc_needed != phy->priv) {
			ret = ael2005_reset(phy, 0);
			return ret ? ret : cphy_cause_module_change;
		}
		cause = cphy_cause_module_change;
	}

	ret = t3_phy_lasi_intr_handler(phy);
	if (ret < 0)
		return ret;

	ret |= cause;
	return ret ? ret : cphy_cause_link_change;
}

static struct cphy_ops ael2005_ops = {
	.reset           = ael2005_reset,
	.intr_enable     = ael2005_intr_enable,
	.intr_disable    = ael2005_intr_disable,
	.intr_clear      = ael2005_intr_clear,
	.intr_handler    = ael2005_intr_handler,
	.get_link_status = get_link_status_r,
	.power_down      = ael1002_power_down,
	.mmds            = MDIO_DEVS_PMAPMD | MDIO_DEVS_PCS | MDIO_DEVS_PHYXS,
};

int t3_ael2005_phy_prep(struct cphy *phy, struct adapter *adapter,
			int phy_addr, const struct mdio_ops *mdio_ops)
{
	cphy_init(phy, adapter, phy_addr, &ael2005_ops, mdio_ops,
		  SUPPORTED_10000baseT_Full | SUPPORTED_AUI | SUPPORTED_FIBRE |
		  SUPPORTED_IRQ, "10GBASE-R");
	msleep(125);
	return t3_mdio_change_bits(phy, MDIO_MMD_PMAPMD, AEL_OPT_SETTINGS, 0,
				   1 << 5);
}

/*
 * Setup EDC and other parameters for operation with an optical module.
 */
static int ael2020_setup_sr_edc(struct cphy *phy)
{
	static const struct reg_val regs[] = {
		/* set CDR offset to 10 */
		{ MDIO_MMD_PMAPMD, 0xcc01, 0xffff, 0x488a },

		/* adjust 10G RX bias current */
		{ MDIO_MMD_PMAPMD, 0xcb1b, 0xffff, 0x0200 },
		{ MDIO_MMD_PMAPMD, 0xcb1c, 0xffff, 0x00f0 },
		{ MDIO_MMD_PMAPMD, 0xcc06, 0xffff, 0x00e0 },

		/* end */
		{ 0, 0, 0, 0 }
	};
	int err;

	err = set_phy_regs(phy, regs);
	msleep(50);
	if (err)
		return err;

	phy->priv = edc_sr;
	return 0;
}

/*
 * Setup EDC and other parameters for operation with an TWINAX module.
 */
static int ael2020_setup_twinax_edc(struct cphy *phy, int modtype)
{
	/* set uC to 40MHz */
	static const struct reg_val uCclock40MHz[] = {
		{ MDIO_MMD_PMAPMD, 0xff28, 0xffff, 0x4001 },
		{ MDIO_MMD_PMAPMD, 0xff2a, 0xffff, 0x0002 },
		{ 0, 0, 0, 0 }
	};

	/* activate uC clock */
	static const struct reg_val uCclockActivate[] = {
		{ MDIO_MMD_PMAPMD, 0xd000, 0xffff, 0x5200 },
		{ 0, 0, 0, 0 }
	};

	/* set PC to start of SRAM and activate uC */
	static const struct reg_val uCactivate[] = {
		{ MDIO_MMD_PMAPMD, 0xd080, 0xffff, 0x0100 },
		{ MDIO_MMD_PMAPMD, 0xd092, 0xffff, 0x0000 },
		{ 0, 0, 0, 0 }
	};
	int i, err;

	/* set uC clock and activate it */
	err = set_phy_regs(phy, uCclock40MHz);
	msleep(500);
	if (err)
		return err;
	err = set_phy_regs(phy, uCclockActivate);
	msleep(500);
	if (err)
		return err;

	if (phy->priv != edc_twinax)
		err = t3_get_edc_fw(phy, EDC_TWX_AEL2020,
				    EDC_TWX_AEL2020_SIZE);
	if (err)
		return err;

	for (i = 0; i <  EDC_TWX_AEL2020_SIZE / sizeof(u16) && !err; i += 2)
		err = t3_mdio_write(phy, MDIO_MMD_PMAPMD,
				    phy->phy_cache[i],
				    phy->phy_cache[i + 1]);
	/* activate uC */
	err = set_phy_regs(phy, uCactivate);
	if (!err)
		phy->priv = edc_twinax;
	return err;
}

/*
 * Return Module Type.
 */
static int ael2020_get_module_type(struct cphy *phy, int delay_ms)
{
	int v;
	unsigned int stat;

	v = t3_mdio_read(phy, MDIO_MMD_PMAPMD, AEL2020_GPIO_STAT, &stat);
	if (v)
		return v;

	if (stat & (0x1 << (AEL2020_GPIO_MODDET*4))) {
		/* module absent */
		return phy_modtype_none;
	}

	return ael2xxx_get_module_type(phy, delay_ms);
}

/*
 * Enable PHY interrupts.  We enable "Module Detection" interrupts (on any
 * state transition) and then generic Link Alarm Status Interrupt (LASI).
 */
static int ael2020_intr_enable(struct cphy *phy)
{
	static const struct reg_val regs[] = {
		/* output Module's Loss Of Signal (LOS) to LED */
		{ MDIO_MMD_PMAPMD, AEL2020_GPIO_CFG+AEL2020_GPIO_LSTAT,
			0xffff, 0x4 },
		{ MDIO_MMD_PMAPMD, AEL2020_GPIO_CTRL,
			0xffff, 0x8 << (AEL2020_GPIO_LSTAT*4) },

		 /* enable module detect status change interrupts */
		{ MDIO_MMD_PMAPMD, AEL2020_GPIO_CTRL,
			0xffff, 0x2 << (AEL2020_GPIO_MODDET*4) },

		/* end */
		{ 0, 0, 0, 0 }
	};
	int err, link_ok = 0;

	/* set up "link status" LED and enable module change interrupts */
	err = set_phy_regs(phy, regs);
	if (err)
		return err;

	err = get_link_status_r(phy, &link_ok, NULL, NULL, NULL);
	if (err)
		return err;
	if (link_ok)
		t3_link_changed(phy->adapter,
				phy2portid(phy));

	err = t3_phy_lasi_intr_enable(phy);
	if (err)
		return err;

	return 0;
}

/*
 * Disable PHY interrupts.  The mirror of the above ...
 */
static int ael2020_intr_disable(struct cphy *phy)
{
	static const struct reg_val regs[] = {
		/* reset "link status" LED to "off" */
		{ MDIO_MMD_PMAPMD, AEL2020_GPIO_CTRL,
			0xffff, 0xb << (AEL2020_GPIO_LSTAT*4) },

		/* disable module detect status change interrupts */
		{ MDIO_MMD_PMAPMD, AEL2020_GPIO_CTRL,
			0xffff, 0x1 << (AEL2020_GPIO_MODDET*4) },

		/* end */
		{ 0, 0, 0, 0 }
	};
	int err;

	/* turn off "link status" LED and disable module change interrupts */
	err = set_phy_regs(phy, regs);
	if (err)
		return err;

	return t3_phy_lasi_intr_disable(phy);
}

/*
 * Clear PHY interrupt state.
 */
static int ael2020_intr_clear(struct cphy *phy)
{
	/*
	 * The GPIO Interrupt register on the AEL2020 is a "Latching High"
	 * (LH) register which is cleared to the current state when it's read.
	 * Thus, we simply read the register and discard the result.
	 */
	unsigned int stat;
	int err = t3_mdio_read(phy, MDIO_MMD_PMAPMD, AEL2020_GPIO_INTR, &stat);
	return err ? err : t3_phy_lasi_intr_clear(phy);
}

static const struct reg_val ael2020_reset_regs[] = {
	/* Erratum #2: CDRLOL asserted, causing PMA link down status */
	{ MDIO_MMD_PMAPMD, 0xc003, 0xffff, 0x3101 },

	/* force XAUI to send LF when RX_LOS is asserted */
	{ MDIO_MMD_PMAPMD, 0xcd40, 0xffff, 0x0001 },

	/* allow writes to transceiver module EEPROM on i2c bus */
	{ MDIO_MMD_PMAPMD, 0xff02, 0xffff, 0x0023 },
	{ MDIO_MMD_PMAPMD, 0xff03, 0xffff, 0x0000 },
	{ MDIO_MMD_PMAPMD, 0xff04, 0xffff, 0x0000 },

	/* end */
	{ 0, 0, 0, 0 }
};
/*
 * Reset the PHY and put it into a canonical operating state.
 */
static int ael2020_reset(struct cphy *phy, int wait)
{
	int err;
	unsigned int lasi_ctrl;

	/* grab current interrupt state */
	err = t3_mdio_read(phy, MDIO_MMD_PMAPMD, MDIO_PMA_LASI_CTRL,
			   &lasi_ctrl);
	if (err)
		return err;

	err = t3_phy_reset(phy, MDIO_MMD_PMAPMD, 125);
	if (err)
		return err;
	msleep(100);

	/* basic initialization for all module types */
	phy->priv = edc_none;
	err = set_phy_regs(phy, ael2020_reset_regs);
	if (err)
		return err;

	/* determine module type and perform appropriate initialization */
	err = ael2020_get_module_type(phy, 0);
	if (err < 0)
		return err;
	phy->modtype = (u8)err;
	if (err == phy_modtype_twinax || err == phy_modtype_twinax_long)
		err = ael2020_setup_twinax_edc(phy, err);
	else
		err = ael2020_setup_sr_edc(phy);
	if (err)
		return err;

	/* reset wipes out interrupts, reenable them if they were on */
	if (lasi_ctrl & 1)
		err = ael2005_intr_enable(phy);
	return err;
}

/*
 * Handle a PHY interrupt.
 */
static int ael2020_intr_handler(struct cphy *phy)
{
	unsigned int stat;
	int ret, edc_needed, cause = 0;

	ret = t3_mdio_read(phy, MDIO_MMD_PMAPMD, AEL2020_GPIO_INTR, &stat);
	if (ret)
		return ret;

	if (stat & (0x1 << AEL2020_GPIO_MODDET)) {
		/* modules have max 300 ms init time after hot plug */
		ret = ael2020_get_module_type(phy, 300);
		if (ret < 0)
			return ret;

		phy->modtype = (u8)ret;
		if (ret == phy_modtype_none)
			edc_needed = phy->priv;       /* on unplug retain EDC */
		else if (ret == phy_modtype_twinax ||
			 ret == phy_modtype_twinax_long)
			edc_needed = edc_twinax;
		else
			edc_needed = edc_sr;

		if (edc_needed != phy->priv) {
			ret = ael2020_reset(phy, 0);
			return ret ? ret : cphy_cause_module_change;
		}
		cause = cphy_cause_module_change;
	}

	ret = t3_phy_lasi_intr_handler(phy);
	if (ret < 0)
		return ret;

	ret |= cause;
	return ret ? ret : cphy_cause_link_change;
}

static struct cphy_ops ael2020_ops = {
	.reset           = ael2020_reset,
	.intr_enable     = ael2020_intr_enable,
	.intr_disable    = ael2020_intr_disable,
	.intr_clear      = ael2020_intr_clear,
	.intr_handler    = ael2020_intr_handler,
	.get_link_status = get_link_status_r,
	.power_down      = ael1002_power_down,
	.mmds		 = MDIO_DEVS_PMAPMD | MDIO_DEVS_PCS | MDIO_DEVS_PHYXS,
};

int t3_ael2020_phy_prep(struct cphy *phy, struct adapter *adapter, int phy_addr,
			const struct mdio_ops *mdio_ops)
{
	int err;

	cphy_init(phy, adapter, phy_addr, &ael2020_ops, mdio_ops,
		  SUPPORTED_10000baseT_Full | SUPPORTED_AUI | SUPPORTED_FIBRE |
		  SUPPORTED_IRQ, "10GBASE-R");
	msleep(125);

	err = set_phy_regs(phy, ael2020_reset_regs);
	if (err)
		return err;
	return 0;
}

/*
 * Get link status for a 10GBASE-X device.
 */
static int get_link_status_x(struct cphy *phy, int *link_ok, int *speed,
			     int *duplex, int *fc)
{
	if (link_ok) {
		unsigned int stat0, stat1, stat2;
		int err = t3_mdio_read(phy, MDIO_MMD_PMAPMD,
				       MDIO_PMA_RXDET, &stat0);

		if (!err)
			err = t3_mdio_read(phy, MDIO_MMD_PCS,
					   MDIO_PCS_10GBX_STAT1, &stat1);
		if (!err)
			err = t3_mdio_read(phy, MDIO_MMD_PHYXS,
					   MDIO_PHYXS_LNSTAT, &stat2);
		if (err)
			return err;
		*link_ok = (stat0 & (stat1 >> 12) & (stat2 >> 12)) & 1;
	}
	if (speed)
		*speed = SPEED_10000;
	if (duplex)
		*duplex = DUPLEX_FULL;
	return 0;
}

static struct cphy_ops qt2045_ops = {
	.reset = ael1006_reset,
	.intr_enable = t3_phy_lasi_intr_enable,
	.intr_disable = t3_phy_lasi_intr_disable,
	.intr_clear = t3_phy_lasi_intr_clear,
	.intr_handler = t3_phy_lasi_intr_handler,
	.get_link_status = get_link_status_x,
	.power_down = ael1002_power_down,
	.mmds = MDIO_DEVS_PMAPMD | MDIO_DEVS_PCS | MDIO_DEVS_PHYXS,
};

int t3_qt2045_phy_prep(struct cphy *phy, struct adapter *adapter,
		       int phy_addr, const struct mdio_ops *mdio_ops)
{
	unsigned int stat;

	cphy_init(phy, adapter, phy_addr, &qt2045_ops, mdio_ops,
		  SUPPORTED_10000baseT_Full | SUPPORTED_AUI | SUPPORTED_TP,
		  "10GBASE-CX4");

	/*
	 * Some cards where the PHY is supposed to be at address 0 actually
	 * have it at 1.
	 */
	if (!phy_addr &&
	    !t3_mdio_read(phy, MDIO_MMD_PMAPMD, MDIO_STAT1, &stat) &&
	    stat == 0xffff)
		phy->mdio.prtad = 1;
	return 0;
}

static int xaui_direct_reset(struct cphy *phy, int wait)
{
	return 0;
}

static int xaui_direct_get_link_status(struct cphy *phy, int *link_ok,
				       int *speed, int *duplex, int *fc)
{
	if (link_ok) {
		unsigned int status;
		int prtad = phy->mdio.prtad;

		status = t3_read_reg(phy->adapter,
				     XGM_REG(A_XGM_SERDES_STAT0, prtad)) |
		    t3_read_reg(phy->adapter,
				    XGM_REG(A_XGM_SERDES_STAT1, prtad)) |
		    t3_read_reg(phy->adapter,
				XGM_REG(A_XGM_SERDES_STAT2, prtad)) |
		    t3_read_reg(phy->adapter,
				XGM_REG(A_XGM_SERDES_STAT3, prtad));
		*link_ok = !(status & F_LOWSIG0);
	}
	if (speed)
		*speed = SPEED_10000;
	if (duplex)
		*duplex = DUPLEX_FULL;
	return 0;
}

static int xaui_direct_power_down(struct cphy *phy, int enable)
{
	return 0;
}

static struct cphy_ops xaui_direct_ops = {
	.reset = xaui_direct_reset,
	.intr_enable = ael1002_intr_noop,
	.intr_disable = ael1002_intr_noop,
	.intr_clear = ael1002_intr_noop,
	.intr_handler = ael1002_intr_noop,
	.get_link_status = xaui_direct_get_link_status,
	.power_down = xaui_direct_power_down,
};

int t3_xaui_direct_phy_prep(struct cphy *phy, struct adapter *adapter,
			    int phy_addr, const struct mdio_ops *mdio_ops)
{
	cphy_init(phy, adapter, phy_addr, &xaui_direct_ops, mdio_ops,
		  SUPPORTED_10000baseT_Full | SUPPORTED_AUI | SUPPORTED_TP,
		  "10GBASE-CX4");
	return 0;
}