- 根目录:
- drivers
- char
- ipmi
- ipmi_si_intf.c
/*
* ipmi_si.c
*
* The interface to the IPMI driver for the system interfaces (KCS, SMIC,
* BT).
*
* Author: MontaVista Software, Inc.
* Corey Minyard <minyard@mvista.com>
* source@mvista.com
*
* Copyright 2002 MontaVista Software Inc.
* Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
* TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
* USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* This file holds the "policy" for the interface to the SMI state
* machine. It does the configuration, handles timers and interrupts,
* and drives the real SMI state machine.
*/
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/sched.h>
#include <linux/seq_file.h>
#include <linux/timer.h>
#include <linux/errno.h>
#include <linux/spinlock.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/list.h>
#include <linux/pci.h>
#include <linux/ioport.h>
#include <linux/notifier.h>
#include <linux/mutex.h>
#include <linux/kthread.h>
#include <asm/irq.h>
#include <linux/interrupt.h>
#include <linux/rcupdate.h>
#include <linux/ipmi.h>
#include <linux/ipmi_smi.h>
#include <asm/io.h>
#include "ipmi_si_sm.h"
#include <linux/init.h>
#include <linux/dmi.h>
#include <linux/string.h>
#include <linux/ctype.h>
#include <linux/pnp.h>
#include <linux/of_device.h>
#include <linux/of_platform.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#ifdef CONFIG_PARISC
#include <asm/hardware.h> /* for register_parisc_driver() stuff */
#include <asm/parisc-device.h>
#endif
#define PFX "ipmi_si: "
/* Measure times between events in the driver. */
#undef DEBUG_TIMING
/* Call every 10 ms. */
#define SI_TIMEOUT_TIME_USEC 10000
#define SI_USEC_PER_JIFFY (1000000/HZ)
#define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
#define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
short timeout */
enum si_intf_state {
SI_NORMAL,
SI_GETTING_FLAGS,
SI_GETTING_EVENTS,
SI_CLEARING_FLAGS,
SI_CLEARING_FLAGS_THEN_SET_IRQ,
SI_GETTING_MESSAGES,
SI_ENABLE_INTERRUPTS1,
SI_ENABLE_INTERRUPTS2,
SI_DISABLE_INTERRUPTS1,
SI_DISABLE_INTERRUPTS2
/* FIXME - add watchdog stuff. */
};
/* Some BT-specific defines we need here. */
#define IPMI_BT_INTMASK_REG 2
#define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
#define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
enum si_type {
SI_KCS, SI_SMIC, SI_BT
};
static char *si_to_str[] = { "kcs", "smic", "bt" };
static char *ipmi_addr_src_to_str[] = { NULL, "hotmod", "hardcoded", "SPMI",
"ACPI", "SMBIOS", "PCI",
"device-tree", "default" };
#define DEVICE_NAME "ipmi_si"
static struct platform_driver ipmi_driver;
/*
* Indexes into stats[] in smi_info below.
*/
enum si_stat_indexes {
/*
* Number of times the driver requested a timer while an operation
* was in progress.
*/
SI_STAT_short_timeouts = 0,
/*
* Number of times the driver requested a timer while nothing was in
* progress.
*/
SI_STAT_long_timeouts,
/* Number of times the interface was idle while being polled. */
SI_STAT_idles,
/* Number of interrupts the driver handled. */
SI_STAT_interrupts,
/* Number of time the driver got an ATTN from the hardware. */
SI_STAT_attentions,
/* Number of times the driver requested flags from the hardware. */
SI_STAT_flag_fetches,
/* Number of times the hardware didn't follow the state machine. */
SI_STAT_hosed_count,
/* Number of completed messages. */
SI_STAT_complete_transactions,
/* Number of IPMI events received from the hardware. */
SI_STAT_events,
/* Number of watchdog pretimeouts. */
SI_STAT_watchdog_pretimeouts,
/* Number of asynchronous messages received. */
SI_STAT_incoming_messages,
/* This *must* remain last, add new values above this. */
SI_NUM_STATS
};
struct smi_info {
int intf_num;
ipmi_smi_t intf;
struct si_sm_data *si_sm;
struct si_sm_handlers *handlers;
enum si_type si_type;
spinlock_t si_lock;
struct list_head xmit_msgs;
struct list_head hp_xmit_msgs;
struct ipmi_smi_msg *curr_msg;
enum si_intf_state si_state;
/*
* Used to handle the various types of I/O that can occur with
* IPMI
*/
struct si_sm_io io;
int (*io_setup)(struct smi_info *info);
void (*io_cleanup)(struct smi_info *info);
int (*irq_setup)(struct smi_info *info);
void (*irq_cleanup)(struct smi_info *info);
unsigned int io_size;
enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
void (*addr_source_cleanup)(struct smi_info *info);
void *addr_source_data;
/*
* Per-OEM handler, called from handle_flags(). Returns 1
* when handle_flags() needs to be re-run or 0 indicating it
* set si_state itself.
*/
int (*oem_data_avail_handler)(struct smi_info *smi_info);
/*
* Flags from the last GET_MSG_FLAGS command, used when an ATTN
* is set to hold the flags until we are done handling everything
* from the flags.
*/
#define RECEIVE_MSG_AVAIL 0x01
#define EVENT_MSG_BUFFER_FULL 0x02
#define WDT_PRE_TIMEOUT_INT 0x08
#define OEM0_DATA_AVAIL 0x20
#define OEM1_DATA_AVAIL 0x40
#define OEM2_DATA_AVAIL 0x80
#define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
OEM1_DATA_AVAIL | \
OEM2_DATA_AVAIL)
unsigned char msg_flags;
/* Does the BMC have an event buffer? */
char has_event_buffer;
/*
* If set to true, this will request events the next time the
* state machine is idle.
*/
atomic_t req_events;
/*
* If true, run the state machine to completion on every send
* call. Generally used after a panic to make sure stuff goes
* out.
*/
int run_to_completion;
/* The I/O port of an SI interface. */
int port;
/*
* The space between start addresses of the two ports. For
* instance, if the first port is 0xca2 and the spacing is 4, then
* the second port is 0xca6.
*/
unsigned int spacing;
/* zero if no irq; */
int irq;
/* The timer for this si. */
struct timer_list si_timer;
/* The time (in jiffies) the last timeout occurred at. */
unsigned long last_timeout_jiffies;
/* Used to gracefully stop the timer without race conditions. */
atomic_t stop_operation;
/*
* The driver will disable interrupts when it gets into a
* situation where it cannot handle messages due to lack of
* memory. Once that situation clears up, it will re-enable
* interrupts.
*/
int interrupt_disabled;
/* From the get device id response... */
struct ipmi_device_id device_id;
/* Driver model stuff. */
struct device *dev;
struct platform_device *pdev;
/*
* True if we allocated the device, false if it came from
* someplace else (like PCI).
*/
int dev_registered;
/* Slave address, could be reported from DMI. */
unsigned char slave_addr;
/* Counters and things for the proc filesystem. */
atomic_t stats[SI_NUM_STATS];
struct task_struct *thread;
struct list_head link;
union ipmi_smi_info_union addr_info;
};
#define smi_inc_stat(smi, stat) \
atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
#define smi_get_stat(smi, stat) \
((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
#define SI_MAX_PARMS 4
static int force_kipmid[SI_MAX_PARMS];
static int num_force_kipmid;
#ifdef CONFIG_PCI
static int pci_registered;
#endif
#ifdef CONFIG_ACPI
static int pnp_registered;
#endif
#ifdef CONFIG_PARISC
static int parisc_registered;
#endif
static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
static int num_max_busy_us;
static int unload_when_empty = 1;
static int add_smi(struct smi_info *smi);
static int try_smi_init(struct smi_info *smi);
static void cleanup_one_si(struct smi_info *to_clean);
static void cleanup_ipmi_si(void);
static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
static int register_xaction_notifier(struct notifier_block *nb)
{
return atomic_notifier_chain_register(&xaction_notifier_list, nb);
}
static void deliver_recv_msg(struct smi_info *smi_info,
struct ipmi_smi_msg *msg)
{
/* Deliver the message to the upper layer. */
ipmi_smi_msg_received(smi_info->intf, msg);
}
static void return_hosed_msg(struct smi_info *smi_info, int cCode)
{
struct ipmi_smi_msg *msg = smi_info->curr_msg;
if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
cCode = IPMI_ERR_UNSPECIFIED;
/* else use it as is */
/* Make it a response */
msg->rsp[0] = msg->data[0] | 4;
msg->rsp[1] = msg->data[1];
msg->rsp[2] = cCode;
msg->rsp_size = 3;
smi_info->curr_msg = NULL;
deliver_recv_msg(smi_info, msg);
}
static enum si_sm_result start_next_msg(struct smi_info *smi_info)
{
int rv;
struct list_head *entry = NULL;
#ifdef DEBUG_TIMING
struct timeval t;
#endif
/* Pick the high priority queue first. */
if (!list_empty(&(smi_info->hp_xmit_msgs))) {
entry = smi_info->hp_xmit_msgs.next;
} else if (!list_empty(&(smi_info->xmit_msgs))) {
entry = smi_info->xmit_msgs.next;
}
if (!entry) {
smi_info->curr_msg = NULL;
rv = SI_SM_IDLE;
} else {
int err;
list_del(entry);
smi_info->curr_msg = list_entry(entry,
struct ipmi_smi_msg,
link);
#ifdef DEBUG_TIMING
do_gettimeofday(&t);
printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
#endif
err = atomic_notifier_call_chain(&xaction_notifier_list,
0, smi_info);
if (err & NOTIFY_STOP_MASK) {
rv = SI_SM_CALL_WITHOUT_DELAY;
goto out;
}
err = smi_info->handlers->start_transaction(
smi_info->si_sm,
smi_info->curr_msg->data,
smi_info->curr_msg->data_size);
if (err)
return_hosed_msg(smi_info, err);
rv = SI_SM_CALL_WITHOUT_DELAY;
}
out:
return rv;
}
static void start_enable_irq(struct smi_info *smi_info)
{
unsigned char msg[2];
/*
* If we are enabling interrupts, we have to tell the
* BMC to use them.
*/
msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
smi_info->si_state = SI_ENABLE_INTERRUPTS1;
}
static void start_disable_irq(struct smi_info *smi_info)
{
unsigned char msg[2];
msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
smi_info->si_state = SI_DISABLE_INTERRUPTS1;
}
static void start_clear_flags(struct smi_info *smi_info)
{
unsigned char msg[3];
/* Make sure the watchdog pre-timeout flag is not set at startup. */
msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
msg[2] = WDT_PRE_TIMEOUT_INT;
smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
smi_info->si_state = SI_CLEARING_FLAGS;
}
/*
* When we have a situtaion where we run out of memory and cannot
* allocate messages, we just leave them in the BMC and run the system
* polled until we can allocate some memory. Once we have some
* memory, we will re-enable the interrupt.
*/
static inline void disable_si_irq(struct smi_info *smi_info)
{
if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
start_disable_irq(smi_info);
smi_info->interrupt_disabled = 1;
if (!atomic_read(&smi_info->stop_operation))
mod_timer(&smi_info->si_timer,
jiffies + SI_TIMEOUT_JIFFIES);
}
}
static inline void enable_si_irq(struct smi_info *smi_info)
{
if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
start_enable_irq(smi_info);
smi_info->interrupt_disabled = 0;
}
}
static void handle_flags(struct smi_info *smi_info)
{
retry:
if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
/* Watchdog pre-timeout */
smi_inc_stat(smi_info, watchdog_pretimeouts);
start_clear_flags(smi_info);
smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
ipmi_smi_watchdog_pretimeout(smi_info->intf);
} else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
/* Messages available. */
smi_info->curr_msg = ipmi_alloc_smi_msg();
if (!smi_info->curr_msg) {
disable_si_irq(smi_info);
smi_info->si_state = SI_NORMAL;
return;
}
enable_si_irq(smi_info);
smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
smi_info->curr_msg->data_size = 2;
smi_info->handlers->start_transaction(
smi_info->si_sm,
smi_info->curr_msg->data,
smi_info->curr_msg->data_size);
smi_info->si_state = SI_GETTING_MESSAGES;
} else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
/* Events available. */
smi_info->curr_msg = ipmi_alloc_smi_msg();
if (!smi_info->curr_msg) {
disable_si_irq(smi_info);
smi_info->si_state = SI_NORMAL;
return;
}
enable_si_irq(smi_info);
smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
smi_info->curr_msg->data_size = 2;
smi_info->handlers->start_transaction(
smi_info->si_sm,
smi_info->curr_msg->data,
smi_info->curr_msg->data_size);
smi_info->si_state = SI_GETTING_EVENTS;
} else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
smi_info->oem_data_avail_handler) {
if (smi_info->oem_data_avail_handler(smi_info))
goto retry;
} else
smi_info->si_state = SI_NORMAL;
}
static void handle_transaction_done(struct smi_info *smi_info)
{
struct ipmi_smi_msg *msg;
#ifdef DEBUG_TIMING
struct timeval t;
do_gettimeofday(&t);
printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
#endif
switch (smi_info->si_state) {
case SI_NORMAL:
if (!smi_info->curr_msg)
break;
smi_info->curr_msg->rsp_size
= smi_info->handlers->get_result(
smi_info->si_sm,
smi_info->curr_msg->rsp,
IPMI_MAX_MSG_LENGTH);
/*
* Do this here becase deliver_recv_msg() releases the
* lock, and a new message can be put in during the
* time the lock is released.
*/
msg = smi_info->curr_msg;
smi_info->curr_msg = NULL;
deliver_recv_msg(smi_info, msg);
break;
case SI_GETTING_FLAGS:
{
unsigned char msg[4];
unsigned int len;
/* We got the flags from the SMI, now handle them. */
len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
if (msg[2] != 0) {
/* Error fetching flags, just give up for now. */
smi_info->si_state = SI_NORMAL;
} else if (len < 4) {
/*
* Hmm, no flags. That's technically illegal, but
* don't use uninitialized data.
*/
smi_info->si_state = SI_NORMAL;
} else {
smi_info->msg_flags = msg[3];
handle_flags(smi_info);
}
break;
}
case SI_CLEARING_FLAGS:
case SI_CLEARING_FLAGS_THEN_SET_IRQ:
{
unsigned char msg[3];
/* We cleared the flags. */
smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
if (msg[2] != 0) {
/* Error clearing flags */
dev_warn(smi_info->dev,
"Error clearing flags: %2.2x\n", msg[2]);
}
if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
start_enable_irq(smi_info);
else
smi_info->si_state = SI_NORMAL;
break;
}
case SI_GETTING_EVENTS:
{
smi_info->curr_msg->rsp_size
= smi_info->handlers->get_result(
smi_info->si_sm,
smi_info->curr_msg->rsp,
IPMI_MAX_MSG_LENGTH);
/*
* Do this here becase deliver_recv_msg() releases the
* lock, and a new message can be put in during the
* time the lock is released.
*/
msg = smi_info->curr_msg;
smi_info->curr_msg = NULL;
if (msg->rsp[2] != 0) {
/* Error getting event, probably done. */
msg->done(msg);
/* Take off the event flag. */
smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
handle_flags(smi_info);
} else {
smi_inc_stat(smi_info, events);
/*
* Do this before we deliver the message
* because delivering the message releases the
* lock and something else can mess with the
* state.
*/
handle_flags(smi_info);
deliver_recv_msg(smi_info, msg);
}
break;
}
case SI_GETTING_MESSAGES:
{
smi_info->curr_msg->rsp_size
= smi_info->handlers->get_result(
smi_info->si_sm,
smi_info->curr_msg->rsp,
IPMI_MAX_MSG_LENGTH);
/*
* Do this here becase deliver_recv_msg() releases the
* lock, and a new message can be put in during the
* time the lock is released.
*/
msg = smi_info->curr_msg;
smi_info->curr_msg = NULL;
if (msg->rsp[2] != 0) {
/* Error getting event, probably done. */
msg->done(msg);
/* Take off the msg flag. */
smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
handle_flags(smi_info);
} else {
smi_inc_stat(smi_info, incoming_messages);
/*
* Do this before we deliver the message
* because delivering the message releases the
* lock and something else can mess with the
* state.
*/
handle_flags(smi_info);
deliver_recv_msg(smi_info, msg);
}
break;
}
case SI_ENABLE_INTERRUPTS1:
{
unsigned char msg[4];
/* We got the flags from the SMI, now handle them. */
smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
if (msg[2] != 0) {
dev_warn(smi_info->dev,
"Couldn't get irq info: %x.\n", msg[2]);
dev_warn(smi_info->dev,
"Maybe ok, but ipmi might run very slowly.\n");
smi_info->si_state = SI_NORMAL;
} else {
msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
msg[2] = (msg[3] |
IPMI_BMC_RCV_MSG_INTR |
IPMI_BMC_EVT_MSG_INTR);
smi_info->handlers->start_transaction(
smi_info->si_sm, msg, 3);
smi_info->si_state = SI_ENABLE_INTERRUPTS2;
}
break;
}
case SI_ENABLE_INTERRUPTS2:
{
unsigned char msg[4];
/* We got the flags from the SMI, now handle them. */
smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
if (msg[2] != 0) {
dev_warn(smi_info->dev,
"Couldn't set irq info: %x.\n", msg[2]);
dev_warn(smi_info->dev,
"Maybe ok, but ipmi might run very slowly.\n");
} else
smi_info->interrupt_disabled = 0;
smi_info->si_state = SI_NORMAL;
break;
}
case SI_DISABLE_INTERRUPTS1:
{
unsigned char msg[4];
/* We got the flags from the SMI, now handle them. */
smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
if (msg[2] != 0) {
dev_warn(smi_info->dev, "Could not disable interrupts"
", failed get.\n");
smi_info->si_state = SI_NORMAL;
} else {
msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
msg[2] = (msg[3] &
~(IPMI_BMC_RCV_MSG_INTR |
IPMI_BMC_EVT_MSG_INTR));
smi_info->handlers->start_transaction(
smi_info->si_sm, msg, 3);
smi_info->si_state = SI_DISABLE_INTERRUPTS2;
}
break;
}
case SI_DISABLE_INTERRUPTS2:
{
unsigned char msg[4];
/* We got the flags from the SMI, now handle them. */
smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
if (msg[2] != 0) {
dev_warn(smi_info->dev, "Could not disable interrupts"
", failed set.\n");
}
smi_info->si_state = SI_NORMAL;
break;
}
}
}
/*
* Called on timeouts and events. Timeouts should pass the elapsed
* time, interrupts should pass in zero. Must be called with
* si_lock held and interrupts disabled.
*/
static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
int time)
{
enum si_sm_result si_sm_result;
restart:
/*
* There used to be a loop here that waited a little while
* (around 25us) before giving up. That turned out to be
* pointless, the minimum delays I was seeing were in the 300us
* range, which is far too long to wait in an interrupt. So
* we just run until the state machine tells us something
* happened or it needs a delay.
*/
si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
time = 0;
while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
smi_inc_stat(smi_info, complete_transactions);
handle_transaction_done(smi_info);
si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
} else if (si_sm_result == SI_SM_HOSED) {
smi_inc_stat(smi_info, hosed_count);
/*
* Do the before return_hosed_msg, because that
* releases the lock.
*/
smi_info->si_state = SI_NORMAL;
if (smi_info->curr_msg != NULL) {
/*
* If we were handling a user message, format
* a response to send to the upper layer to
* tell it about the error.
*/
return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
}
si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
}
/*
* We prefer handling attn over new messages. But don't do
* this if there is not yet an upper layer to handle anything.
*/
if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) {
unsigned char msg[2];
smi_inc_stat(smi_info, attentions);
/*
* Got a attn, send down a get message flags to see
* what's causing it. It would be better to handle
* this in the upper layer, but due to the way
* interrupts work with the SMI, that's not really
* possible.
*/
msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
msg[1] = IPMI_GET_MSG_FLAGS_CMD;
smi_info->handlers->start_transaction(
smi_info->si_sm, msg, 2);
smi_info->si_state = SI_GETTING_FLAGS;
goto restart;
}
/* If we are currently idle, try to start the next message. */
if (si_sm_result == SI_SM_IDLE) {
smi_inc_stat(smi_info, idles);
si_sm_result = start_next_msg(smi_info);
if (si_sm_result != SI_SM_IDLE)
goto restart;
}
if ((si_sm_result == SI_SM_IDLE)
&& (atomic_read(&smi_info->req_events))) {
/*
* We are idle and the upper layer requested that I fetch
* events, so do so.
*/
atomic_set(&smi_info->req_events, 0);
smi_info->curr_msg = ipmi_alloc_smi_msg();
if (!smi_info->curr_msg)
goto out;
smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
smi_info->curr_msg->data_size = 2;
smi_info->handlers->start_transaction(
smi_info->si_sm,
smi_info->curr_msg->data,
smi_info->curr_msg->data_size);
smi_info->si_state = SI_GETTING_EVENTS;
goto restart;
}
out:
return si_sm_result;
}
static void sender(void *send_info,
struct ipmi_smi_msg *msg,
int priority)
{
struct smi_info *smi_info = send_info;
enum si_sm_result result;
unsigned long flags;
#ifdef DEBUG_TIMING
struct timeval t;
#endif
if (atomic_read(&smi_info->stop_operation)) {
msg->rsp[0] = msg->data[0] | 4;
msg->rsp[1] = msg->data[1];
msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
msg->rsp_size = 3;
deliver_recv_msg(smi_info, msg);
return;
}
#ifdef DEBUG_TIMING
do_gettimeofday(&t);
printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
#endif
if (smi_info->run_to_completion) {
/*
* If we are running to completion, then throw it in
* the list and run transactions until everything is
* clear. Priority doesn't matter here.
*/
/*
* Run to completion means we are single-threaded, no
* need for locks.
*/
list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
result = smi_event_handler(smi_info, 0);
while (result != SI_SM_IDLE) {
udelay(SI_SHORT_TIMEOUT_USEC);
result = smi_event_handler(smi_info,
SI_SHORT_TIMEOUT_USEC);
}
return;
}
spin_lock_irqsave(&smi_info->si_lock, flags);
if (priority > 0)
list_add_tail(&msg->link, &smi_info->hp_xmit_msgs);
else
list_add_tail(&msg->link, &smi_info->xmit_msgs);
if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
/*
* last_timeout_jiffies is updated here to avoid
* smi_timeout() handler passing very large time_diff
* value to smi_event_handler() that causes
* the send command to abort.
*/
smi_info->last_timeout_jiffies = jiffies;
mod_timer(&smi_info->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
if (smi_info->thread)
wake_up_process(smi_info->thread);
start_next_msg(smi_info);
smi_event_handler(smi_info, 0);
}
spin_unlock_irqrestore(&smi_info->si_lock, flags);
}
static void set_run_to_completion(void *send_info, int i_run_to_completion)
{
struct smi_info *smi_info = send_info;
enum si_sm_result result;
smi_info->run_to_completion = i_run_to_completion;
if (i_run_to_completion) {
result = smi_event_handler(smi_info, 0);
while (result != SI_SM_IDLE) {
udelay(SI_SHORT_TIMEOUT_USEC);
result = smi_event_handler(smi_info,
SI_SHORT_TIMEOUT_USEC);
}
}
}
/*
* Use -1 in the nsec value of the busy waiting timespec to tell that
* we are spinning in kipmid looking for something and not delaying
* between checks
*/
static inline void ipmi_si_set_not_busy(struct timespec *ts)
{
ts->tv_nsec = -1;
}
static inline int ipmi_si_is_busy(struct timespec *ts)
{
return ts->tv_nsec != -1;
}
static int ipmi_thread_busy_wait(enum si_sm_result smi_result,
const struct smi_info *smi_info,
struct timespec *busy_until)
{
unsigned int max_busy_us = 0;
if (smi_info->intf_num < num_max_busy_us)
max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
ipmi_si_set_not_busy(busy_until);
else if (!ipmi_si_is_busy(busy_until)) {
getnstimeofday(busy_until);
timespec_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
} else {
struct timespec now;
getnstimeofday(&now);
if (unlikely(timespec_compare(&now, busy_until) > 0)) {
ipmi_si_set_not_busy(busy_until);
return 0;
}
}
return 1;
}
/*
* A busy-waiting loop for speeding up IPMI operation.
*
* Lousy hardware makes this hard. This is only enabled for systems
* that are not BT and do not have interrupts. It starts spinning
* when an operation is complete or until max_busy tells it to stop
* (if that is enabled). See the paragraph on kimid_max_busy_us in
* Documentation/IPMI.txt for details.
*/
static int ipmi_thread(void *data)
{
struct smi_info *smi_info = data;
unsigned long flags;
enum si_sm_result smi_result;
struct timespec busy_until;
ipmi_si_set_not_busy(&busy_until);
set_user_nice(current, 19);
while (!kthread_should_stop()) {
int busy_wait;
spin_lock_irqsave(&(smi_info->si_lock), flags);
smi_result = smi_event_handler(smi_info, 0);
spin_unlock_irqrestore(&(smi_info->si_lock), flags);
busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
&busy_until);
if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
; /* do nothing */
else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
schedule();
else if (smi_result == SI_SM_IDLE)
schedule_timeout_interruptible(100);
else
schedule_timeout_interruptible(1);
}
return 0;
}
static void poll(void *send_info)
{
struct smi_info *smi_info = send_info;
unsigned long flags = 0;
int run_to_completion = smi_info->run_to_completion;
/*
* Make sure there is some delay in the poll loop so we can
* drive time forward and timeout things.
*/
udelay(10);
if (!run_to_completion)
spin_lock_irqsave(&smi_info->si_lock, flags);
smi_event_handler(smi_info, 10);
if (!run_to_completion)
spin_unlock_irqrestore(&smi_info->si_lock, flags);
}
static void request_events(void *send_info)
{
struct smi_info *smi_info = send_info;
if (atomic_read(&smi_info->stop_operation) ||
!smi_info->has_event_buffer)
return;
atomic_set(&smi_info->req_events, 1);
}
static int initialized;
static void smi_timeout(unsigned long data)
{
struct smi_info *smi_info = (struct smi_info *) data;
enum si_sm_result smi_result;
unsigned long flags;
unsigned long jiffies_now;
long time_diff;
long timeout;
#ifdef DEBUG_TIMING
struct timeval t;
#endif
spin_lock_irqsave(&(smi_info->si_lock), flags);
#ifdef DEBUG_TIMING
do_gettimeofday(&t);
printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
#endif
jiffies_now = jiffies;
time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
* SI_USEC_PER_JIFFY);
smi_result = smi_event_handler(smi_info, time_diff);
spin_unlock_irqrestore(&(smi_info->si_lock), flags);
smi_info->last_timeout_jiffies = jiffies_now;
if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
/* Running with interrupts, only do long timeouts. */
timeout = jiffies + SI_TIMEOUT_JIFFIES;
smi_inc_stat(smi_info, long_timeouts);
goto do_mod_timer;
}
/*
* If the state machine asks for a short delay, then shorten
* the timer timeout.
*/
if (smi_result == SI_SM_CALL_WITH_DELAY) {
smi_inc_stat(smi_info, short_timeouts);
timeout = jiffies + 1;
} else {
smi_inc_stat(smi_info, long_timeouts);
timeout = jiffies + SI_TIMEOUT_JIFFIES;
}
do_mod_timer:
if (smi_result != SI_SM_IDLE)
mod_timer(&(smi_info->si_timer), timeout);
}
static irqreturn_t si_irq_handler(int irq, void *data)
{
struct smi_info *smi_info = data;
unsigned long flags;
#ifdef DEBUG_TIMING
struct timeval t;
#endif
spin_lock_irqsave(&(smi_info->si_lock), flags);
smi_inc_stat(smi_info, interrupts);
#ifdef DEBUG_TIMING
do_gettimeofday(&t);
printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
#endif
smi_event_handler(smi_info, 0);
spin_unlock_irqrestore(&(smi_info->si_lock), flags);
return IRQ_HANDLED;
}
static irqreturn_t si_bt_irq_handler(int irq, void *data)
{
struct smi_info *smi_info = data;
/* We need to clear the IRQ flag for the BT interface. */
smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
IPMI_BT_INTMASK_CLEAR_IRQ_BIT
| IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
return si_irq_handler(irq, data);
}
static int smi_start_processing(void *send_info,
ipmi_smi_t intf)
{
struct smi_info *new_smi = send_info;
int enable = 0;
new_smi->intf = intf;
/* Try to claim any interrupts. */
if (new_smi->irq_setup)
new_smi->irq_setup(new_smi);
/* Set up the timer that drives the interface. */
setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
new_smi->last_timeout_jiffies = jiffies;
mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
/*
* Check if the user forcefully enabled the daemon.
*/
if (new_smi->intf_num < num_force_kipmid)
enable = force_kipmid[new_smi->intf_num];
/*
* The BT interface is efficient enough to not need a thread,
* and there is no need for a thread if we have interrupts.
*/
else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
enable = 1;
if (enable) {
new_smi->thread = kthread_run(ipmi_thread, new_smi,
"kipmi%d", new_smi->intf_num);
if (IS_ERR(new_smi->thread)) {
dev_notice(new_smi->dev, "Could not start"
" kernel thread due to error %ld, only using"
" timers to drive the interface\n",
PTR_ERR(new_smi->thread));
new_smi->thread = NULL;
}
}
return 0;
}
static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
{
struct smi_info *smi = send_info;
data->addr_src = smi->addr_source;
data->dev = smi->dev;
data->addr_info = smi->addr_info;
get_device(smi->dev);
return 0;
}
static void set_maintenance_mode(void *send_info, int enable)
{
struct smi_info *smi_info = send_info;
if (!enable)
atomic_set(&smi_info->req_events, 0);
}
static struct ipmi_smi_handlers handlers = {
.owner = THIS_MODULE,
.start_processing = smi_start_processing,
.get_smi_info = get_smi_info,
.sender = sender,
.request_events = request_events,
.set_maintenance_mode = set_maintenance_mode,
.set_run_to_completion = set_run_to_completion,
.poll = poll,
};
/*
* There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
* a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS.
*/
static LIST_HEAD(smi_infos);
static DEFINE_MUTEX(smi_infos_lock);
static int smi_num; /* Used to sequence the SMIs */
#define DEFAULT_REGSPACING 1
#define DEFAULT_REGSIZE 1
#ifdef CONFIG_ACPI
static bool si_tryacpi = 1;
#endif
#ifdef CONFIG_DMI
static bool si_trydmi = 1;
#endif
static bool si_tryplatform = 1;
#ifdef CONFIG_PCI
static bool si_trypci = 1;
#endif
static bool si_trydefaults = 1;
static char *si_type[SI_MAX_PARMS];
#define MAX_SI_TYPE_STR 30
static char si_type_str[MAX_SI_TYPE_STR];
static unsigned long addrs[SI_MAX_PARMS];
static unsigned int num_addrs;
static unsigned int ports[SI_MAX_PARMS];
static unsigned int num_ports;
static int irqs[SI_MAX_PARMS];
static unsigned int num_irqs;
static int regspacings[SI_MAX_PARMS];
static unsigned int num_regspacings;
static int regsizes[SI_MAX_PARMS];
static unsigned int num_regsizes;
static int regshifts[SI_MAX_PARMS];
static unsigned int num_regshifts;
static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
static unsigned int num_slave_addrs;
#define IPMI_IO_ADDR_SPACE 0
#define IPMI_MEM_ADDR_SPACE 1
static char *addr_space_to_str[] = { "i/o", "mem" };
static int hotmod_handler(const char *val, struct kernel_param *kp);
module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
MODULE_PARM_DESC(hotmod, "Add and remove interfaces. See"
" Documentation/IPMI.txt in the kernel sources for the"
" gory details.");
#ifdef CONFIG_ACPI
module_param_named(tryacpi, si_tryacpi, bool, 0);
MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
" default scan of the interfaces identified via ACPI");
#endif
#ifdef CONFIG_DMI
module_param_named(trydmi, si_trydmi, bool, 0);
MODULE_PARM_DESC(trydmi, "Setting this to zero will disable the"
" default scan of the interfaces identified via DMI");
#endif
module_param_named(tryplatform, si_tryplatform, bool, 0);
MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
" default scan of the interfaces identified via platform"
" interfaces like openfirmware");
#ifdef CONFIG_PCI
module_param_named(trypci, si_trypci, bool, 0);
MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
" default scan of the interfaces identified via pci");
#endif
module_param_named(trydefaults, si_trydefaults, bool, 0);
MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
" default scan of the KCS and SMIC interface at the standard"
" address");
module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
MODULE_PARM_DESC(type, "Defines the type of each interface, each"
" interface separated by commas. The types are 'kcs',"
" 'smic', and 'bt'. For example si_type=kcs,bt will set"
" the first interface to kcs and the second to bt");
module_param_array(addrs, ulong, &num_addrs, 0);
MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
" addresses separated by commas. Only use if an interface"
" is in memory. Otherwise, set it to zero or leave"
" it blank.");
module_param_array(ports, uint, &num_ports, 0);
MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
" addresses separated by commas. Only use if an interface"
" is a port. Otherwise, set it to zero or leave"
" it blank.");
module_param_array(irqs, int, &num_irqs, 0);
MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
" addresses separated by commas. Only use if an interface"
" has an interrupt. Otherwise, set it to zero or leave"
" it blank.");
module_param_array(regspacings, int, &num_regspacings, 0);
MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
" and each successive register used by the interface. For"
" instance, if the start address is 0xca2 and the spacing"
" is 2, then the second address is at 0xca4. Defaults"
" to 1.");
module_param_array(regsizes, int, &num_regsizes, 0);
MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
" This should generally be 1, 2, 4, or 8 for an 8-bit,"
" 16-bit, 32-bit, or 64-bit register. Use this if you"
" the 8-bit IPMI register has to be read from a larger"
" register.");
module_param_array(regshifts, int, &num_regshifts, 0);
MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
" IPMI register, in bits. For instance, if the data"
" is read from a 32-bit word and the IPMI data is in"
" bit 8-15, then the shift would be 8");
module_param_array(slave_addrs, int, &num_slave_addrs, 0);
MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
" the controller. Normally this is 0x20, but can be"
" overridden by this parm. This is an array indexed"
" by interface number.");
module_param_array(force_kipmid, int, &num_force_kipmid, 0);
MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
" disabled(0). Normally the IPMI driver auto-detects"
" this, but the value may be overridden by this parm.");
module_param(unload_when_empty, int, 0);
MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
" specified or found, default is 1. Setting to 0"
" is useful for hot add of devices using hotmod.");
module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
MODULE_PARM_DESC(kipmid_max_busy_us,
"Max time (in microseconds) to busy-wait for IPMI data before"
" sleeping. 0 (default) means to wait forever. Set to 100-500"
" if kipmid is using up a lot of CPU time.");
static void std_irq_cleanup(struct smi_info *info)
{
if (info->si_type == SI_BT)
/* Disable the interrupt in the BT interface. */
info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
free_irq(info->irq, info);
}
static int std_irq_setup(struct smi_info *info)
{
int rv;
if (!info->irq)
return 0;
if (info->si_type == SI_BT) {
rv = request_irq(info->irq,
si_bt_irq_handler,
IRQF_SHARED,
DEVICE_NAME,
info);
if (!rv)
/* Enable the interrupt in the BT interface. */
info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
} else
rv = request_irq(info->irq,
si_irq_handler,
IRQF_SHARED,
DEVICE_NAME,
info);
if (rv) {
dev_warn(info->dev, "%s unable to claim interrupt %d,"
" running polled\n",
DEVICE_NAME, info->irq);
info->irq = 0;
} else {
info->irq_cleanup = std_irq_cleanup;
dev_info(info->dev, "Using irq %d\n", info->irq);
}
return rv;
}
static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
{
unsigned int addr = io->addr_data;
return inb(addr + (offset * io->regspacing));
}
static void port_outb(struct si_sm_io *io, unsigned int offset,
unsigned char b)
{
unsigned int addr = io->addr_data;
outb(b, addr + (offset * io->regspacing));
}
static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
{
unsigned int addr = io->addr_data;
return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
}
static void port_outw(struct si_sm_io *io, unsigned int offset,
unsigned char b)
{
unsigned int addr = io->addr_data;
outw(b << io->regshift, addr + (offset * io->regspacing));
}
static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
{
unsigned int addr = io->addr_data;
return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
}
static void port_outl(struct si_sm_io *io, unsigned int offset,
unsigned char b)
{
unsigned int addr = io->addr_data;
outl(b << io->regshift, addr+(offset * io->regspacing));
}
static void port_cleanup(struct smi_info *info)
{
unsigned int addr = info->io.addr_data;
int idx;
if (addr) {
for (idx = 0; idx < info->io_size; idx++)
release_region(addr + idx * info->io.regspacing,
info->io.regsize);
}
}
static int port_setup(struct smi_info *info)
{
unsigned int addr = info->io.addr_data;
int idx;
if (!addr)
return -ENODEV;
info->io_cleanup = port_cleanup;
/*
* Figure out the actual inb/inw/inl/etc routine to use based
* upon the register size.
*/
switch (info->io.regsize) {
case 1:
info->io.inputb = port_inb;
info->io.outputb = port_outb;
break;
case 2:
info->io.inputb = port_inw;
info->io.outputb = port_outw;
break;
case 4:
info->io.inputb = port_inl;
info->io.outputb = port_outl;
break;
default:
dev_warn(info->dev, "Invalid register size: %d\n",
info->io.regsize);
return -EINVAL;
}
/*
* Some BIOSes reserve disjoint I/O regions in their ACPI
* tables. This causes problems when trying to register the
* entire I/O region. Therefore we must register each I/O
* port separately.
*/
for (idx = 0; idx < info->io_size; idx++) {
if (request_region(addr + idx * info->io.regspacing,
info->io.regsize, DEVICE_NAME) == NULL) {
/* Undo allocations */
while (idx--) {
release_region(addr + idx * info->io.regspacing,
info->io.regsize);
}
return -EIO;
}
}
return 0;
}
static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
{
return readb((io->addr)+(offset * io->regspacing));
}
static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
unsigned char b)
{
writeb(b, (io->addr)+(offset * io->regspacing));
}
static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
{
return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
& 0xff;
}
static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
unsigned char b)
{
writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
}
static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
{
return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
& 0xff;
}
static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
unsigned char b)
{
writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
}
#ifdef readq
static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
{
return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
& 0xff;
}
static void mem_outq(struct si_sm_io *io, unsigned int offset,
unsigned char b)
{
writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
}
#endif
static void mem_cleanup(struct smi_info *info)
{
unsigned long addr = info->io.addr_data;
int mapsize;
if (info->io.addr) {
iounmap(info->io.addr);
mapsize = ((info->io_size * info->io.regspacing)
- (info->io.regspacing - info->io.regsize));
release_mem_region(addr, mapsize);
}
}
static int mem_setup(struct smi_info *info)
{
unsigned long addr = info->io.addr_data;
int mapsize;
if (!addr)
return -ENODEV;
info->io_cleanup = mem_cleanup;
/*
* Figure out the actual readb/readw/readl/etc routine to use based
* upon the register size.
*/
switch (info->io.regsize) {
case 1:
info->io.inputb = intf_mem_inb;
info->io.outputb = intf_mem_outb;
break;
case 2:
info->io.inputb = intf_mem_inw;
info->io.outputb = intf_mem_outw;
break;
case 4:
info->io.inputb = intf_mem_inl;
info->io.outputb = intf_mem_outl;
break;
#ifdef readq
case 8:
info->io.inputb = mem_inq;
info->io.outputb = mem_outq;
break;
#endif
default:
dev_warn(info->dev, "Invalid register size: %d\n",
info->io.regsize);
return -EINVAL;
}
/*
* Calculate the total amount of memory to claim. This is an
* unusual looking calculation, but it avoids claiming any
* more memory than it has to. It will claim everything
* between the first address to the end of the last full
* register.
*/
mapsize = ((info->io_size * info->io.regspacing)
- (info->io.regspacing - info->io.regsize));
if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
return -EIO;
info->io.addr = ioremap(addr, mapsize);
if (info->io.addr == NULL) {
release_mem_region(addr, mapsize);
return -EIO;
}
return 0;
}
/*
* Parms come in as <op1>[:op2[:op3...]]. ops are:
* add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
* Options are:
* rsp=<regspacing>
* rsi=<regsize>
* rsh=<regshift>
* irq=<irq>
* ipmb=<ipmb addr>
*/
enum hotmod_op { HM_ADD, HM_REMOVE };
struct hotmod_vals {
char *name;
int val;
};
static struct hotmod_vals hotmod_ops[] = {
{ "add", HM_ADD },
{ "remove", HM_REMOVE },
{ NULL }
};
static struct hotmod_vals hotmod_si[] = {
{ "kcs", SI_KCS },
{ "smic", SI_SMIC },
{ "bt", SI_BT },
{ NULL }
};
static struct hotmod_vals hotmod_as[] = {
{ "mem", IPMI_MEM_ADDR_SPACE },
{ "i/o", IPMI_IO_ADDR_SPACE },
{ NULL }
};
static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
{
char *s;
int i;
s = strchr(*curr, ',');
if (!s) {
printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
return -EINVAL;
}
*s = '\0';
s++;
for (i = 0; hotmod_ops[i].name; i++) {
if (strcmp(*curr, v[i].name) == 0) {
*val = v[i].val;
*curr = s;
return 0;
}
}
printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
return -EINVAL;
}
static int check_hotmod_int_op(const char *curr, const char *option,
const char *name, int *val)
{
char *n;
if (strcmp(curr, name) == 0) {
if (!option) {
printk(KERN_WARNING PFX
"No option given for '%s'\n",
curr);
return -EINVAL;
}
*val = simple_strtoul(option, &n, 0);
if ((*n != '\0') || (*option == '\0')) {
printk(KERN_WARNING PFX
"Bad option given for '%s'\n",
curr);
return -EINVAL;
}
return 1;
}
return 0;
}
static struct smi_info *smi_info_alloc(void)
{
struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
if (info)
spin_lock_init(&info->si_lock);
return info;
}
static int hotmod_handler(const char *val, struct kernel_param *kp)
{
char *str = kstrdup(val, GFP_KERNEL);
int rv;
char *next, *curr, *s, *n, *o;
enum hotmod_op op;
enum si_type si_type;
int addr_space;
unsigned long addr;
int regspacing;
int regsize;
int regshift;
int irq;
int ipmb;
int ival;
int len;
struct smi_info *info;
if (!str)
return -ENOMEM;
/* Kill any trailing spaces, as we can get a "\n" from echo. */
len = strlen(str);
ival = len - 1;
while ((ival >= 0) && isspace(str[ival])) {
str[ival] = '\0';
ival--;
}
for (curr = str; curr; curr = next) {
regspacing = 1;
regsize = 1;
regshift = 0;
irq = 0;
ipmb = 0; /* Choose the default if not specified */
next = strchr(curr, ':');
if (next) {
*next = '\0';
next++;
}
rv = parse_str(hotmod_ops, &ival, "operation", &curr);
if (rv)
break;
op = ival;
rv = parse_str(hotmod_si, &ival, "interface type", &curr);
if (rv)
break;
si_type = ival;
rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
if (rv)
break;
s = strchr(curr, ',');
if (s) {
*s = '\0';
s++;
}
addr = simple_strtoul(curr, &n, 0);
if ((*n != '\0') || (*curr == '\0')) {
printk(KERN_WARNING PFX "Invalid hotmod address"
" '%s'\n", curr);
break;
}
while (s) {
curr = s;
s = strchr(curr, ',');
if (s) {
*s = '\0';
s++;
}
o = strchr(curr, '=');
if (o) {
*o = '\0';
o++;
}
rv = check_hotmod_int_op(curr, o, "rsp", ®spacing);
if (rv < 0)
goto out;
else if (rv)
continue;
rv = check_hotmod_int_op(curr, o, "rsi", ®size);
if (rv < 0)
goto out;
else if (rv)
continue;
rv = check_hotmod_int_op(curr, o, "rsh", ®shift);
if (rv < 0)
goto out;
else if (rv)
continue;
rv = check_hotmod_int_op(curr, o, "irq", &irq);
if (rv < 0)
goto out;
else if (rv)
continue;
rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
if (rv < 0)
goto out;
else if (rv)
continue;
rv = -EINVAL;
printk(KERN_WARNING PFX
"Invalid hotmod option '%s'\n",
curr);
goto out;
}
if (op == HM_ADD) {
info = smi_info_alloc();
if (!info) {
rv = -ENOMEM;
goto out;
}
info->addr_source = SI_HOTMOD;
info->si_type = si_type;
info->io.addr_data = addr;
info->io.addr_type = addr_space;
if (addr_space == IPMI_MEM_ADDR_SPACE)
info->io_setup = mem_setup;
else
info->io_setup = port_setup;
info->io.addr = NULL;
info->io.regspacing = regspacing;
if (!info->io.regspacing)
info->io.regspacing = DEFAULT_REGSPACING;
info->io.regsize = regsize;
if (!info->io.regsize)
info->io.regsize = DEFAULT_REGSPACING;
info->io.regshift = regshift;
info->irq = irq;
if (info->irq)
info->irq_setup = std_irq_setup;
info->slave_addr = ipmb;
rv = add_smi(info);
if (rv) {
kfree(info);
goto out;
}
rv = try_smi_init(info);
if (rv) {
cleanup_one_si(info);
goto out;
}
} else {
/* remove */
struct smi_info *e, *tmp_e;
mutex_lock(&smi_infos_lock);
list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
if (e->io.addr_type != addr_space)
continue;
if (e->si_type != si_type)
continue;
if (e->io.addr_data == addr)
cleanup_one_si(e);
}
mutex_unlock(&smi_infos_lock);
}
}
rv = len;
out:
kfree(str);
return rv;
}
static int hardcode_find_bmc(void)
{
int ret = -ENODEV;
int i;
struct smi_info *info;
for (i = 0; i < SI_MAX_PARMS; i++) {
if (!ports[i] && !addrs[i])
continue;
info = smi_info_alloc();
if (!info)
return -ENOMEM;
info->addr_source = SI_HARDCODED;
printk(KERN_INFO PFX "probing via hardcoded address\n");
if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
info->si_type = SI_KCS;
} else if (strcmp(si_type[i], "smic") == 0) {
info->si_type = SI_SMIC;
} else if (strcmp(si_type[i], "bt") == 0) {
info->si_type = SI_BT;
} else {
printk(KERN_WARNING PFX "Interface type specified "
"for interface %d, was invalid: %s\n",
i, si_type[i]);
kfree(info);
continue;
}
if (ports[i]) {
/* An I/O port */
info->io_setup = port_setup;
info->io.addr_data = ports[i];
info->io.addr_type = IPMI_IO_ADDR_SPACE;
} else if (addrs[i]) {
/* A memory port */
info->io_setup = mem_setup;
info->io.addr_data = addrs[i];
info->io.addr_type = IPMI_MEM_ADDR_SPACE;
} else {
printk(KERN_WARNING PFX "Interface type specified "
"for interface %d, but port and address were "
"not set or set to zero.\n", i);
kfree(info);
continue;
}
info->io.addr = NULL;
info->io.regspacing = regspacings[i];
if (!info->io.regspacing)
info->io.regspacing = DEFAULT_REGSPACING;
info->io.regsize = regsizes[i];
if (!info->io.regsize)
info->io.regsize = DEFAULT_REGSPACING;
info->io.regshift = regshifts[i];
info->irq = irqs[i];
if (info->irq)
info->irq_setup = std_irq_setup;
info->slave_addr = slave_addrs[i];
if (!add_smi(info)) {
if (try_smi_init(info))
cleanup_one_si(info);
ret = 0;
} else {
kfree(info);
}
}
return ret;
}
#ifdef CONFIG_ACPI
#include <linux/acpi.h>
/*
* Once we get an ACPI failure, we don't try any more, because we go
* through the tables sequentially. Once we don't find a table, there
* are no more.
*/
static int acpi_failure;
/* For GPE-type interrupts. */
static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
u32 gpe_number, void *context)
{
struct smi_info *smi_info = context;
unsigned long flags;
#ifdef DEBUG_TIMING
struct timeval t;
#endif
spin_lock_irqsave(&(smi_info->si_lock), flags);
smi_inc_stat(smi_info, interrupts);
#ifdef DEBUG_TIMING
do_gettimeofday(&t);
printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
#endif
smi_event_handler(smi_info, 0);
spin_unlock_irqrestore(&(smi_info->si_lock), flags);
return ACPI_INTERRUPT_HANDLED;
}
static void acpi_gpe_irq_cleanup(struct smi_info *info)
{
if (!info->irq)
return;
acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
}
static int acpi_gpe_irq_setup(struct smi_info *info)
{
acpi_status status;
if (!info->irq)
return 0;
/* FIXME - is level triggered right? */
status = acpi_install_gpe_handler(NULL,
info->irq,
ACPI_GPE_LEVEL_TRIGGERED,
&ipmi_acpi_gpe,
info);
if (status != AE_OK) {
dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
" running polled\n", DEVICE_NAME, info->irq);
info->irq = 0;
return -EINVAL;
} else {
info->irq_cleanup = acpi_gpe_irq_cleanup;
dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
return 0;
}
}
/*
* Defined at
* http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
*/
struct SPMITable {
s8 Signature[4];
u32 Length;
u8 Revision;
u8 Checksum;
s8 OEMID[6];
s8 OEMTableID[8];
s8 OEMRevision[4];
s8 CreatorID[4];
s8 CreatorRevision[4];
u8 InterfaceType;
u8 IPMIlegacy;
s16 SpecificationRevision;
/*
* Bit 0 - SCI interrupt supported
* Bit 1 - I/O APIC/SAPIC
*/
u8 InterruptType;
/*
* If bit 0 of InterruptType is set, then this is the SCI
* interrupt in the GPEx_STS register.
*/
u8 GPE;
s16 Reserved;
/*
* If bit 1 of InterruptType is set, then this is the I/O
* APIC/SAPIC interrupt.
*/
u32 GlobalSystemInterrupt;
/* The actual register address. */
struct acpi_generic_address addr;
u8 UID[4];
s8 spmi_id[1]; /* A '\0' terminated array starts here. */
};
static int try_init_spmi(struct SPMITable *spmi)
{
struct smi_info *info;
int rv;
if (spmi->IPMIlegacy != 1) {
printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
return -ENODEV;
}
info = smi_info_alloc();
if (!info) {
printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
return -ENOMEM;
}
info->addr_source = SI_SPMI;
printk(KERN_INFO PFX "probing via SPMI\n");
/* Figure out the interface type. */
switch (spmi->InterfaceType) {
case 1: /* KCS */
info->si_type = SI_KCS;
break;
case 2: /* SMIC */
info->si_type = SI_SMIC;
break;
case 3: /* BT */
info->si_type = SI_BT;
break;
default:
printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
spmi->InterfaceType);
kfree(info);
return -EIO;
}
if (spmi->InterruptType & 1) {
/* We've got a GPE interrupt. */
info->irq = spmi->GPE;
info->irq_setup = acpi_gpe_irq_setup;
} else if (spmi->InterruptType & 2) {
/* We've got an APIC/SAPIC interrupt. */
info->irq = spmi->GlobalSystemInterrupt;
info->irq_setup = std_irq_setup;
} else {
/* Use the default interrupt setting. */
info->irq = 0;
info->irq_setup = NULL;
}
if (spmi->addr.bit_width) {
/* A (hopefully) properly formed register bit width. */
info->io.regspacing = spmi->addr.bit_width / 8;
} else {
info->io.regspacing = DEFAULT_REGSPACING;
}
info->io.regsize = info->io.regspacing;
info->io.regshift = spmi->addr.bit_offset;
if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
info->io_setup = mem_setup;
info->io.addr_type = IPMI_MEM_ADDR_SPACE;
} else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
info->io_setup = port_setup;
info->io.addr_type = IPMI_IO_ADDR_SPACE;
} else {
kfree(info);
printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
return -EIO;
}
info->io.addr_data = spmi->addr.address;
pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
(info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
info->io.addr_data, info->io.regsize, info->io.regspacing,
info->irq);
rv = add_smi(info);
if (rv)
kfree(info);
return rv;
}
static void spmi_find_bmc(void)
{
acpi_status status;
struct SPMITable *spmi;
int i;
if (acpi_disabled)
return;
if (acpi_failure)
return;
for (i = 0; ; i++) {
status = acpi_get_table(ACPI_SIG_SPMI, i+1,
(struct acpi_table_header **)&spmi);
if (status != AE_OK)
return;
try_init_spmi(spmi);
}
}
static int ipmi_pnp_probe(struct pnp_dev *dev,
const struct pnp_device_id *dev_id)
{
struct acpi_device *acpi_dev;
struct smi_info *info;
struct resource *res, *res_second;
acpi_handle handle;
acpi_status status;
unsigned long long tmp;
int rv;
acpi_dev = pnp_acpi_device(dev);
if (!acpi_dev)
return -ENODEV;
info = smi_info_alloc();
if (!info)
return -ENOMEM;
info->addr_source = SI_ACPI;
printk(KERN_INFO PFX "probing via ACPI\n");
handle = acpi_dev->handle;
info->addr_info.acpi_info.acpi_handle = handle;
/* _IFT tells us the interface type: KCS, BT, etc */
status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
if (ACPI_FAILURE(status))
goto err_free;
switch (tmp) {
case 1:
info->si_type = SI_KCS;
break;
case 2:
info->si_type = SI_SMIC;
break;
case 3:
info->si_type = SI_BT;
break;
default:
dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
goto err_free;
}
res = pnp_get_resource(dev, IORESOURCE_IO, 0);
if (res) {
info->io_setup = port_setup;
info->io.addr_type = IPMI_IO_ADDR_SPACE;
} else {
res = pnp_get_resource(dev, IORESOURCE_MEM, 0);
if (res) {
info->io_setup = mem_setup;
info->io.addr_type = IPMI_MEM_ADDR_SPACE;
}
}
if (!res) {
dev_err(&dev->dev, "no I/O or memory address\n");
goto err_free;
}
info->io.addr_data = res->start;
info->io.regspacing = DEFAULT_REGSPACING;
res_second = pnp_get_resource(dev,
(info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
IORESOURCE_IO : IORESOURCE_MEM,
1);
if (res_second) {
if (res_second->start > info->io.addr_data)
info->io.regspacing = res_second->start - info->io.addr_data;
}
info->io.regsize = DEFAULT_REGSPACING;
info->io.regshift = 0;
/* If _GPE exists, use it; otherwise use standard interrupts */
status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
if (ACPI_SUCCESS(status)) {
info->irq = tmp;
info->irq_setup = acpi_gpe_irq_setup;
} else if (pnp_irq_valid(dev, 0)) {
info->irq = pnp_irq(dev, 0);
info->irq_setup = std_irq_setup;
}
info->dev = &dev->dev;
pnp_set_drvdata(dev, info);
dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
res, info->io.regsize, info->io.regspacing,
info->irq);
rv = add_smi(info);
if (rv)
kfree(info);
return rv;
err_free:
kfree(info);
return -EINVAL;
}
static void ipmi_pnp_remove(struct pnp_dev *dev)
{
struct smi_info *info = pnp_get_drvdata(dev);
cleanup_one_si(info);
}
static const struct pnp_device_id pnp_dev_table[] = {
{"IPI0001", 0},
{"", 0},
};
static struct pnp_driver ipmi_pnp_driver = {
.name = DEVICE_NAME,
.probe = ipmi_pnp_probe,
.remove = ipmi_pnp_remove,
.id_table = pnp_dev_table,
};
MODULE_DEVICE_TABLE(pnp, pnp_dev_table);
#endif
#ifdef CONFIG_DMI
struct dmi_ipmi_data {
u8 type;
u8 addr_space;
unsigned long base_addr;
u8 irq;
u8 offset;
u8 slave_addr;
};
static int decode_dmi(const struct dmi_header *dm,
struct dmi_ipmi_data *dmi)
{
const u8 *data = (const u8 *)dm;
unsigned long base_addr;
u8 reg_spacing;
u8 len = dm->length;
dmi->type = data[4];
memcpy(&base_addr, data+8, sizeof(unsigned long));
if (len >= 0x11) {
if (base_addr & 1) {
/* I/O */
base_addr &= 0xFFFE;
dmi->addr_space = IPMI_IO_ADDR_SPACE;
} else
/* Memory */
dmi->addr_space = IPMI_MEM_ADDR_SPACE;
/* If bit 4 of byte 0x10 is set, then the lsb for the address
is odd. */
dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
dmi->irq = data[0x11];
/* The top two bits of byte 0x10 hold the register spacing. */
reg_spacing = (data[0x10] & 0xC0) >> 6;
switch (reg_spacing) {
case 0x00: /* Byte boundaries */
dmi->offset = 1;
break;
case 0x01: /* 32-bit boundaries */
dmi->offset = 4;
break;
case 0x02: /* 16-byte boundaries */
dmi->offset = 16;
break;
default:
/* Some other interface, just ignore it. */
return -EIO;
}
} else {
/* Old DMI spec. */
/*
* Note that technically, the lower bit of the base
* address should be 1 if the address is I/O and 0 if
* the address is in memory. So many systems get that
* wrong (and all that I have seen are I/O) so we just
* ignore that bit and assume I/O. Systems that use
* memory should use the newer spec, anyway.
*/
dmi->base_addr = base_addr & 0xfffe;
dmi->addr_space = IPMI_IO_ADDR_SPACE;
dmi->offset = 1;
}
dmi->slave_addr = data[6];
return 0;
}
static void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
{
struct smi_info *info;
info = smi_info_alloc();
if (!info) {
printk(KERN_ERR PFX "Could not allocate SI data\n");
return;
}
info->addr_source = SI_SMBIOS;
printk(KERN_INFO PFX "probing via SMBIOS\n");
switch (ipmi_data->type) {
case 0x01: /* KCS */
info->si_type = SI_KCS;
break;
case 0x02: /* SMIC */
info->si_type = SI_SMIC;
break;
case 0x03: /* BT */
info->si_type = SI_BT;
break;
default:
kfree(info);
return;
}
switch (ipmi_data->addr_space) {
case IPMI_MEM_ADDR_SPACE:
info->io_setup = mem_setup;
info->io.addr_type = IPMI_MEM_ADDR_SPACE;
break;
case IPMI_IO_ADDR_SPACE:
info->io_setup = port_setup;
info->io.addr_type = IPMI_IO_ADDR_SPACE;
break;
default:
kfree(info);
printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
ipmi_data->addr_space);
return;
}
info->io.addr_data = ipmi_data->base_addr;
info->io.regspacing = ipmi_data->offset;
if (!info->io.regspacing)
info->io.regspacing = DEFAULT_REGSPACING;
info->io.regsize = DEFAULT_REGSPACING;
info->io.regshift = 0;
info->slave_addr = ipmi_data->slave_addr;
info->irq = ipmi_data->irq;
if (info->irq)
info->irq_setup = std_irq_setup;
pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
(info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
info->io.addr_data, info->io.regsize, info->io.regspacing,
info->irq);
if (add_smi(info))
kfree(info);
}
static void dmi_find_bmc(void)
{
const struct dmi_device *dev = NULL;
struct dmi_ipmi_data data;
int rv;
while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
memset(&data, 0, sizeof(data));
rv = decode_dmi((const struct dmi_header *) dev->device_data,
&data);
if (!rv)
try_init_dmi(&data);
}
}
#endif /* CONFIG_DMI */
#ifdef CONFIG_PCI
#define PCI_ERMC_CLASSCODE 0x0C0700
#define PCI_ERMC_CLASSCODE_MASK 0xffffff00
#define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff
#define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00
#define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01
#define PCI_ERMC_CLASSCODE_TYPE_BT 0x02
#define PCI_HP_VENDOR_ID 0x103C
#define PCI_MMC_DEVICE_ID 0x121A
#define PCI_MMC_ADDR_CW 0x10
static void ipmi_pci_cleanup(struct smi_info *info)
{
struct pci_dev *pdev = info->addr_source_data;
pci_disable_device(pdev);
}
static int ipmi_pci_probe_regspacing(struct smi_info *info)
{
if (info->si_type == SI_KCS) {
unsigned char status;
int regspacing;
info->io.regsize = DEFAULT_REGSIZE;
info->io.regshift = 0;
info->io_size = 2;
info->handlers = &kcs_smi_handlers;
/* detect 1, 4, 16byte spacing */
for (regspacing = DEFAULT_REGSPACING; regspacing <= 16;) {
info->io.regspacing = regspacing;
if (info->io_setup(info)) {
dev_err(info->dev,
"Could not setup I/O space\n");
return DEFAULT_REGSPACING;
}
/* write invalid cmd */
info->io.outputb(&info->io, 1, 0x10);
/* read status back */
status = info->io.inputb(&info->io, 1);
info->io_cleanup(info);
if (status)
return regspacing;
regspacing *= 4;
}
}
return DEFAULT_REGSPACING;
}
static int ipmi_pci_probe(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
int rv;
int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
struct smi_info *info;
info = smi_info_alloc();
if (!info)
return -ENOMEM;
info->addr_source = SI_PCI;
dev_info(&pdev->dev, "probing via PCI");
switch (class_type) {
case PCI_ERMC_CLASSCODE_TYPE_SMIC:
info->si_type = SI_SMIC;
break;
case PCI_ERMC_CLASSCODE_TYPE_KCS:
info->si_type = SI_KCS;
break;
case PCI_ERMC_CLASSCODE_TYPE_BT:
info->si_type = SI_BT;
break;
default:
kfree(info);
dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
return -ENOMEM;
}
rv = pci_enable_device(pdev);
if (rv) {
dev_err(&pdev->dev, "couldn't enable PCI device\n");
kfree(info);
return rv;
}
info->addr_source_cleanup = ipmi_pci_cleanup;
info->addr_source_data = pdev;
if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
info->io_setup = port_setup;
info->io.addr_type = IPMI_IO_ADDR_SPACE;
} else {
info->io_setup = mem_setup;
info->io.addr_type = IPMI_MEM_ADDR_SPACE;
}
info->io.addr_data = pci_resource_start(pdev, 0);
info->io.regspacing = ipmi_pci_probe_regspacing(info);
info->io.regsize = DEFAULT_REGSIZE;
info->io.regshift = 0;
info->irq = pdev->irq;
if (info->irq)
info->irq_setup = std_irq_setup;
info->dev = &pdev->dev;
pci_set_drvdata(pdev, info);
dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
&pdev->resource[0], info->io.regsize, info->io.regspacing,
info->irq);
rv = add_smi(info);
if (rv) {
kfree(info);
pci_disable_device(pdev);
}
return rv;
}
static void ipmi_pci_remove(struct pci_dev *pdev)
{
struct smi_info *info = pci_get_drvdata(pdev);
cleanup_one_si(info);
pci_disable_device(pdev);
}
static struct pci_device_id ipmi_pci_devices[] = {
{ PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
{ PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
{ 0, }
};
MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
static struct pci_driver ipmi_pci_driver = {
.name = DEVICE_NAME,
.id_table = ipmi_pci_devices,
.probe = ipmi_pci_probe,
.remove = ipmi_pci_remove,
};
#endif /* CONFIG_PCI */
static struct of_device_id ipmi_match[];
static int ipmi_probe(struct platform_device *dev)
{
#ifdef CONFIG_OF
const struct of_device_id *match;
struct smi_info *info;
struct resource resource;
const __be32 *regsize, *regspacing, *regshift;
struct device_node *np = dev->dev.of_node;
int ret;
int proplen;
dev_info(&dev->dev, "probing via device tree\n");
match = of_match_device(ipmi_match, &dev->dev);
if (!match)
return -EINVAL;
ret = of_address_to_resource(np, 0, &resource);
if (ret) {
dev_warn(&dev->dev, PFX "invalid address from OF\n");
return ret;
}
regsize = of_get_property(np, "reg-size", &proplen);
if (regsize && proplen != 4) {
dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
return -EINVAL;
}
regspacing = of_get_property(np, "reg-spacing", &proplen);
if (regspacing && proplen != 4) {
dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
return -EINVAL;
}
regshift = of_get_property(np, "reg-shift", &proplen);
if (regshift && proplen != 4) {
dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
return -EINVAL;
}
info = smi_info_alloc();
if (!info) {
dev_err(&dev->dev,
"could not allocate memory for OF probe\n");
return -ENOMEM;
}
info->si_type = (enum si_type) match->data;
info->addr_source = SI_DEVICETREE;
info->irq_setup = std_irq_setup;
if (resource.flags & IORESOURCE_IO) {
info->io_setup = port_setup;
info->io.addr_type = IPMI_IO_ADDR_SPACE;
} else {
info->io_setup = mem_setup;
info->io.addr_type = IPMI_MEM_ADDR_SPACE;
}
info->io.addr_data = resource.start;
info->io.regsize = regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE;
info->io.regspacing = regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING;
info->io.regshift = regshift ? be32_to_cpup(regshift) : 0;
info->irq = irq_of_parse_and_map(dev->dev.of_node, 0);
info->dev = &dev->dev;
dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
info->io.addr_data, info->io.regsize, info->io.regspacing,
info->irq);
dev_set_drvdata(&dev->dev, info);
ret = add_smi(info);
if (ret) {
kfree(info);
return ret;
}
#endif
return 0;
}
static int ipmi_remove(struct platform_device *dev)
{
#ifdef CONFIG_OF
cleanup_one_si(dev_get_drvdata(&dev->dev));
#endif
return 0;
}
static struct of_device_id ipmi_match[] =
{
{ .type = "ipmi", .compatible = "ipmi-kcs",
.data = (void *)(unsigned long) SI_KCS },
{ .type = "ipmi", .compatible = "ipmi-smic",
.data = (void *)(unsigned long) SI_SMIC },
{ .type = "ipmi", .compatible = "ipmi-bt",
.data = (void *)(unsigned long) SI_BT },
{},
};
static struct platform_driver ipmi_driver = {
.driver = {
.name = DEVICE_NAME,
.owner = THIS_MODULE,
.of_match_table = ipmi_match,
},
.probe = ipmi_probe,
.remove = ipmi_remove,
};
#ifdef CONFIG_PARISC
static int ipmi_parisc_probe(struct parisc_device *dev)
{
struct smi_info *info;
int rv;
info = smi_info_alloc();
if (!info) {
dev_err(&dev->dev,
"could not allocate memory for PARISC probe\n");
return -ENOMEM;
}
info->si_type = SI_KCS;
info->addr_source = SI_DEVICETREE;
info->io_setup = mem_setup;
info->io.addr_type = IPMI_MEM_ADDR_SPACE;
info->io.addr_data = dev->hpa.start;
info->io.regsize = 1;
info->io.regspacing = 1;
info->io.regshift = 0;
info->irq = 0; /* no interrupt */
info->irq_setup = NULL;
info->dev = &dev->dev;
dev_dbg(&dev->dev, "addr 0x%lx\n", info->io.addr_data);
dev_set_drvdata(&dev->dev, info);
rv = add_smi(info);
if (rv) {
kfree(info);
return rv;
}
return 0;
}
static int ipmi_parisc_remove(struct parisc_device *dev)
{
cleanup_one_si(dev_get_drvdata(&dev->dev));
return 0;
}
static struct parisc_device_id ipmi_parisc_tbl[] = {
{ HPHW_MC, HVERSION_REV_ANY_ID, 0x004, 0xC0 },
{ 0, }
};
static struct parisc_driver ipmi_parisc_driver = {
.name = "ipmi",
.id_table = ipmi_parisc_tbl,
.probe = ipmi_parisc_probe,
.remove = ipmi_parisc_remove,
};
#endif /* CONFIG_PARISC */
static int wait_for_msg_done(struct smi_info *smi_info)
{
enum si_sm_result smi_result;
smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
for (;;) {
if (smi_result == SI_SM_CALL_WITH_DELAY ||
smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
schedule_timeout_uninterruptible(1);
smi_result = smi_info->handlers->event(
smi_info->si_sm, jiffies_to_usecs(1));
} else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
smi_result = smi_info->handlers->event(
smi_info->si_sm, 0);
} else
break;
}
if (smi_result == SI_SM_HOSED)
/*
* We couldn't get the state machine to run, so whatever's at
* the port is probably not an IPMI SMI interface.
*/
return -ENODEV;
return 0;
}
static int try_get_dev_id(struct smi_info *smi_info)
{
unsigned char msg[2];
unsigned char *resp;
unsigned long resp_len;
int rv = 0;
resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
if (!resp)
return -ENOMEM;
/*
* Do a Get Device ID command, since it comes back with some
* useful info.
*/
msg[0] = IPMI_NETFN_APP_REQUEST << 2;
msg[1] = IPMI_GET_DEVICE_ID_CMD;
smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
rv = wait_for_msg_done(smi_info);
if (rv)
goto out;
resp_len = smi_info->handlers->get_result(smi_info->si_sm,
resp, IPMI_MAX_MSG_LENGTH);
/* Check and record info from the get device id, in case we need it. */
rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
out:
kfree(resp);
return rv;
}
static int try_enable_event_buffer(struct smi_info *smi_info)
{
unsigned char msg[3];
unsigned char *resp;
unsigned long resp_len;
int rv = 0;
resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
if (!resp)
return -ENOMEM;
msg[0] = IPMI_NETFN_APP_REQUEST << 2;
msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
rv = wait_for_msg_done(smi_info);
if (rv) {
printk(KERN_WARNING PFX "Error getting response from get"
" global enables command, the event buffer is not"
" enabled.\n");
goto out;
}
resp_len = smi_info->handlers->get_result(smi_info->si_sm,
resp, IPMI_MAX_MSG_LENGTH);
if (resp_len < 4 ||
resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD ||
resp[2] != 0) {
printk(KERN_WARNING PFX "Invalid return from get global"
" enables command, cannot enable the event buffer.\n");
rv = -EINVAL;
goto out;
}
if (resp[3] & IPMI_BMC_EVT_MSG_BUFF)
/* buffer is already enabled, nothing to do. */
goto out;
msg[0] = IPMI_NETFN_APP_REQUEST << 2;
msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
rv = wait_for_msg_done(smi_info);
if (rv) {
printk(KERN_WARNING PFX "Error getting response from set"
" global, enables command, the event buffer is not"
" enabled.\n");
goto out;
}
resp_len = smi_info->handlers->get_result(smi_info->si_sm,
resp, IPMI_MAX_MSG_LENGTH);
if (resp_len < 3 ||
resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
printk(KERN_WARNING PFX "Invalid return from get global,"
"enables command, not enable the event buffer.\n");
rv = -EINVAL;
goto out;
}
if (resp[2] != 0)
/*
* An error when setting the event buffer bit means
* that the event buffer is not supported.
*/
rv = -ENOENT;
out:
kfree(resp);
return rv;
}
static int smi_type_proc_show(struct seq_file *m, void *v)
{
struct smi_info *smi = m->private;
return seq_printf(m, "%s\n", si_to_str[smi->si_type]);
}
static int smi_type_proc_open(struct inode *inode, struct file *file)
{
return single_open(file, smi_type_proc_show, PDE_DATA(inode));
}
static const struct file_operations smi_type_proc_ops = {
.open = smi_type_proc_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static int smi_si_stats_proc_show(struct seq_file *m, void *v)
{
struct smi_info *smi = m->private;
seq_printf(m, "interrupts_enabled: %d\n",
smi->irq && !smi->interrupt_disabled);
seq_printf(m, "short_timeouts: %u\n",
smi_get_stat(smi, short_timeouts));
seq_printf(m, "long_timeouts: %u\n",
smi_get_stat(smi, long_timeouts));
seq_printf(m, "idles: %u\n",
smi_get_stat(smi, idles));
seq_printf(m, "interrupts: %u\n",
smi_get_stat(smi, interrupts));
seq_printf(m, "attentions: %u\n",
smi_get_stat(smi, attentions));
seq_printf(m, "flag_fetches: %u\n",
smi_get_stat(smi, flag_fetches));
seq_printf(m, "hosed_count: %u\n",
smi_get_stat(smi, hosed_count));
seq_printf(m, "complete_transactions: %u\n",
smi_get_stat(smi, complete_transactions));
seq_printf(m, "events: %u\n",
smi_get_stat(smi, events));
seq_printf(m, "watchdog_pretimeouts: %u\n",
smi_get_stat(smi, watchdog_pretimeouts));
seq_printf(m, "incoming_messages: %u\n",
smi_get_stat(smi, incoming_messages));
return 0;
}
static int smi_si_stats_proc_open(struct inode *inode, struct file *file)
{
return single_open(file, smi_si_stats_proc_show, PDE_DATA(inode));
}
static const struct file_operations smi_si_stats_proc_ops = {
.open = smi_si_stats_proc_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static int smi_params_proc_show(struct seq_file *m, void *v)
{
struct smi_info *smi = m->private;
return seq_printf(m,
"%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
si_to_str[smi->si_type],
addr_space_to_str[smi->io.addr_type],
smi->io.addr_data,
smi->io.regspacing,
smi->io.regsize,
smi->io.regshift,
smi->irq,
smi->slave_addr);
}
static int smi_params_proc_open(struct inode *inode, struct file *file)
{
return single_open(file, smi_params_proc_show, PDE_DATA(inode));
}
static const struct file_operations smi_params_proc_ops = {
.open = smi_params_proc_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
/*
* oem_data_avail_to_receive_msg_avail
* @info - smi_info structure with msg_flags set
*
* Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
* Returns 1 indicating need to re-run handle_flags().
*/
static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
{
smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
RECEIVE_MSG_AVAIL);
return 1;
}
/*
* setup_dell_poweredge_oem_data_handler
* @info - smi_info.device_id must be populated
*
* Systems that match, but have firmware version < 1.40 may assert
* OEM0_DATA_AVAIL on their own, without being told via Set Flags that
* it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL
* upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
* as RECEIVE_MSG_AVAIL instead.
*
* As Dell has no plans to release IPMI 1.5 firmware that *ever*
* assert the OEM[012] bits, and if it did, the driver would have to
* change to handle that properly, we don't actually check for the
* firmware version.
* Device ID = 0x20 BMC on PowerEdge 8G servers
* Device Revision = 0x80
* Firmware Revision1 = 0x01 BMC version 1.40
* Firmware Revision2 = 0x40 BCD encoded
* IPMI Version = 0x51 IPMI 1.5
* Manufacturer ID = A2 02 00 Dell IANA
*
* Additionally, PowerEdge systems with IPMI < 1.5 may also assert
* OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
*
*/
#define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
#define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
#define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
#define DELL_IANA_MFR_ID 0x0002a2
static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
{
struct ipmi_device_id *id = &smi_info->device_id;
if (id->manufacturer_id == DELL_IANA_MFR_ID) {
if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID &&
id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
smi_info->oem_data_avail_handler =
oem_data_avail_to_receive_msg_avail;
} else if (ipmi_version_major(id) < 1 ||
(ipmi_version_major(id) == 1 &&
ipmi_version_minor(id) < 5)) {
smi_info->oem_data_avail_handler =
oem_data_avail_to_receive_msg_avail;
}
}
}
#define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
static void return_hosed_msg_badsize(struct smi_info *smi_info)
{
struct ipmi_smi_msg *msg = smi_info->curr_msg;
/* Make it a response */
msg->rsp[0] = msg->data[0] | 4;
msg->rsp[1] = msg->data[1];
msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
msg->rsp_size = 3;
smi_info->curr_msg = NULL;
deliver_recv_msg(smi_info, msg);
}
/*
* dell_poweredge_bt_xaction_handler
* @info - smi_info.device_id must be populated
*
* Dell PowerEdge servers with the BT interface (x6xx and 1750) will
* not respond to a Get SDR command if the length of the data
* requested is exactly 0x3A, which leads to command timeouts and no
* data returned. This intercepts such commands, and causes userspace
* callers to try again with a different-sized buffer, which succeeds.
*/
#define STORAGE_NETFN 0x0A
#define STORAGE_CMD_GET_SDR 0x23
static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
unsigned long unused,
void *in)
{
struct smi_info *smi_info = in;
unsigned char *data = smi_info->curr_msg->data;
unsigned int size = smi_info->curr_msg->data_size;
if (size >= 8 &&
(data[0]>>2) == STORAGE_NETFN &&
data[1] == STORAGE_CMD_GET_SDR &&
data[7] == 0x3A) {
return_hosed_msg_badsize(smi_info);
return NOTIFY_STOP;
}
return NOTIFY_DONE;
}
static struct notifier_block dell_poweredge_bt_xaction_notifier = {
.notifier_call = dell_poweredge_bt_xaction_handler,
};
/*
* setup_dell_poweredge_bt_xaction_handler
* @info - smi_info.device_id must be filled in already
*
* Fills in smi_info.device_id.start_transaction_pre_hook
* when we know what function to use there.
*/
static void
setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
{
struct ipmi_device_id *id = &smi_info->device_id;
if (id->manufacturer_id == DELL_IANA_MFR_ID &&
smi_info->si_type == SI_BT)
register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
}
/*
* setup_oem_data_handler
* @info - smi_info.device_id must be filled in already
*
* Fills in smi_info.device_id.oem_data_available_handler
* when we know what function to use there.
*/
static void setup_oem_data_handler(struct smi_info *smi_info)
{
setup_dell_poweredge_oem_data_handler(smi_info);
}
static void setup_xaction_handlers(struct smi_info *smi_info)
{
setup_dell_poweredge_bt_xaction_handler(smi_info);
}
static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
{
if (smi_info->intf) {
/*
* The timer and thread are only running if the
* interface has been started up and registered.
*/
if (smi_info->thread != NULL)
kthread_stop(smi_info->thread);
del_timer_sync(&smi_info->si_timer);
}
}
static struct ipmi_default_vals
{
int type;
int port;
} ipmi_defaults[] =
{
{ .type = SI_KCS, .port = 0xca2 },
{ .type = SI_SMIC, .port = 0xca9 },
{ .type = SI_BT, .port = 0xe4 },
{ .port = 0 }
};
static void default_find_bmc(void)
{
struct smi_info *info;
int i;
for (i = 0; ; i++) {
if (!ipmi_defaults[i].port)
break;
#ifdef CONFIG_PPC
if (check_legacy_ioport(ipmi_defaults[i].port))
continue;
#endif
info = smi_info_alloc();
if (!info)
return;
info->addr_source = SI_DEFAULT;
info->si_type = ipmi_defaults[i].type;
info->io_setup = port_setup;
info->io.addr_data = ipmi_defaults[i].port;
info->io.addr_type = IPMI_IO_ADDR_SPACE;
info->io.addr = NULL;
info->io.regspacing = DEFAULT_REGSPACING;
info->io.regsize = DEFAULT_REGSPACING;
info->io.regshift = 0;
if (add_smi(info) == 0) {
if ((try_smi_init(info)) == 0) {
/* Found one... */
printk(KERN_INFO PFX "Found default %s"
" state machine at %s address 0x%lx\n",
si_to_str[info->si_type],
addr_space_to_str[info->io.addr_type],
info->io.addr_data);
} else
cleanup_one_si(info);
} else {
kfree(info);
}
}
}
static int is_new_interface(struct smi_info *info)
{
struct smi_info *e;
list_for_each_entry(e, &smi_infos, link) {
if (e->io.addr_type != info->io.addr_type)
continue;
if (e->io.addr_data == info->io.addr_data)
return 0;
}
return 1;
}
static int add_smi(struct smi_info *new_smi)
{
int rv = 0;
printk(KERN_INFO PFX "Adding %s-specified %s state machine",
ipmi_addr_src_to_str[new_smi->addr_source],
si_to_str[new_smi->si_type]);
mutex_lock(&smi_infos_lock);
if (!is_new_interface(new_smi)) {
printk(KERN_CONT " duplicate interface\n");
rv = -EBUSY;
goto out_err;
}
printk(KERN_CONT "\n");
/* So we know not to free it unless we have allocated one. */
new_smi->intf = NULL;
new_smi->si_sm = NULL;
new_smi->handlers = NULL;
list_add_tail(&new_smi->link, &smi_infos);
out_err:
mutex_unlock(&smi_infos_lock);
return rv;
}
static int try_smi_init(struct smi_info *new_smi)
{
int rv = 0;
int i;
printk(KERN_INFO PFX "Trying %s-specified %s state"
" machine at %s address 0x%lx, slave address 0x%x,"
" irq %d\n",
ipmi_addr_src_to_str[new_smi->addr_source],
si_to_str[new_smi->si_type],
addr_space_to_str[new_smi->io.addr_type],
new_smi->io.addr_data,
new_smi->slave_addr, new_smi->irq);
switch (new_smi->si_type) {
case SI_KCS:
new_smi->handlers = &kcs_smi_handlers;
break;
case SI_SMIC:
new_smi->handlers = &smic_smi_handlers;
break;
case SI_BT:
new_smi->handlers = &bt_smi_handlers;
break;
default:
/* No support for anything else yet. */
rv = -EIO;
goto out_err;
}
/* Allocate the state machine's data and initialize it. */
new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
if (!new_smi->si_sm) {
printk(KERN_ERR PFX
"Could not allocate state machine memory\n");
rv = -ENOMEM;
goto out_err;
}
new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
&new_smi->io);
/* Now that we know the I/O size, we can set up the I/O. */
rv = new_smi->io_setup(new_smi);
if (rv) {
printk(KERN_ERR PFX "Could not set up I/O space\n");
goto out_err;
}
/* Do low-level detection first. */
if (new_smi->handlers->detect(new_smi->si_sm)) {
if (new_smi->addr_source)
printk(KERN_INFO PFX "Interface detection failed\n");
rv = -ENODEV;
goto out_err;
}
/*
* Attempt a get device id command. If it fails, we probably
* don't have a BMC here.
*/
rv = try_get_dev_id(new_smi);
if (rv) {
if (new_smi->addr_source)
printk(KERN_INFO PFX "There appears to be no BMC"
" at this location\n");
goto out_err;
}
setup_oem_data_handler(new_smi);
setup_xaction_handlers(new_smi);
INIT_LIST_HEAD(&(new_smi->xmit_msgs));
INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
new_smi->curr_msg = NULL;
atomic_set(&new_smi->req_events, 0);
new_smi->run_to_completion = 0;
for (i = 0; i < SI_NUM_STATS; i++)
atomic_set(&new_smi->stats[i], 0);
new_smi->interrupt_disabled = 1;
atomic_set(&new_smi->stop_operation, 0);
new_smi->intf_num = smi_num;
smi_num++;
rv = try_enable_event_buffer(new_smi);
if (rv == 0)
new_smi->has_event_buffer = 1;
/*
* Start clearing the flags before we enable interrupts or the
* timer to avoid racing with the timer.
*/
start_clear_flags(new_smi);
/* IRQ is defined to be set when non-zero. */
if (new_smi->irq)
new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
if (!new_smi->dev) {
/*
* If we don't already have a device from something
* else (like PCI), then register a new one.
*/
new_smi->pdev = platform_device_alloc("ipmi_si",
new_smi->intf_num);
if (!new_smi->pdev) {
printk(KERN_ERR PFX
"Unable to allocate platform device\n");
goto out_err;
}
new_smi->dev = &new_smi->pdev->dev;
new_smi->dev->driver = &ipmi_driver.driver;
rv = platform_device_add(new_smi->pdev);
if (rv) {
printk(KERN_ERR PFX
"Unable to register system interface device:"
" %d\n",
rv);
goto out_err;
}
new_smi->dev_registered = 1;
}
rv = ipmi_register_smi(&handlers,
new_smi,
&new_smi->device_id,
new_smi->dev,
"bmc",
new_smi->slave_addr);
if (rv) {
dev_err(new_smi->dev, "Unable to register device: error %d\n",
rv);
goto out_err_stop_timer;
}
rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
&smi_type_proc_ops,
new_smi);
if (rv) {
dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
goto out_err_stop_timer;
}
rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
&smi_si_stats_proc_ops,
new_smi);
if (rv) {
dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
goto out_err_stop_timer;
}
rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
&smi_params_proc_ops,
new_smi);
if (rv) {
dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
goto out_err_stop_timer;
}
dev_info(new_smi->dev, "IPMI %s interface initialized\n",
si_to_str[new_smi->si_type]);
return 0;
out_err_stop_timer:
atomic_inc(&new_smi->stop_operation);
wait_for_timer_and_thread(new_smi);
out_err:
new_smi->interrupt_disabled = 1;
if (new_smi->intf) {
ipmi_unregister_smi(new_smi->intf);
new_smi->intf = NULL;
}
if (new_smi->irq_cleanup) {
new_smi->irq_cleanup(new_smi);
new_smi->irq_cleanup = NULL;
}
/*
* Wait until we know that we are out of any interrupt
* handlers might have been running before we freed the
* interrupt.
*/
synchronize_sched();
if (new_smi->si_sm) {
if (new_smi->handlers)
new_smi->handlers->cleanup(new_smi->si_sm);
kfree(new_smi->si_sm);
new_smi->si_sm = NULL;
}
if (new_smi->addr_source_cleanup) {
new_smi->addr_source_cleanup(new_smi);
new_smi->addr_source_cleanup = NULL;
}
if (new_smi->io_cleanup) {
new_smi->io_cleanup(new_smi);
new_smi->io_cleanup = NULL;
}
if (new_smi->dev_registered) {
platform_device_unregister(new_smi->pdev);
new_smi->dev_registered = 0;
}
return rv;
}
static int init_ipmi_si(void)
{
int i;
char *str;
int rv;
struct smi_info *e;
enum ipmi_addr_src type = SI_INVALID;
if (initialized)
return 0;
initialized = 1;
if (si_tryplatform) {
rv = platform_driver_register(&ipmi_driver);
if (rv) {
printk(KERN_ERR PFX "Unable to register "
"driver: %d\n", rv);
return rv;
}
}
/* Parse out the si_type string into its components. */
str = si_type_str;
if (*str != '\0') {
for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
si_type[i] = str;
str = strchr(str, ',');
if (str) {
*str = '\0';
str++;
} else {
break;
}
}
}
printk(KERN_INFO "IPMI System Interface driver.\n");
/* If the user gave us a device, they presumably want us to use it */
if (!hardcode_find_bmc())
return 0;
#ifdef CONFIG_PCI
if (si_trypci) {
rv = pci_register_driver(&ipmi_pci_driver);
if (rv)
printk(KERN_ERR PFX "Unable to register "
"PCI driver: %d\n", rv);
else
pci_registered = 1;
}
#endif
#ifdef CONFIG_ACPI
if (si_tryacpi) {
pnp_register_driver(&ipmi_pnp_driver);
pnp_registered = 1;
}
#endif
#ifdef CONFIG_DMI
if (si_trydmi)
dmi_find_bmc();
#endif
#ifdef CONFIG_ACPI
if (si_tryacpi)
spmi_find_bmc();
#endif
#ifdef CONFIG_PARISC
register_parisc_driver(&ipmi_parisc_driver);
parisc_registered = 1;
/* poking PC IO addresses will crash machine, don't do it */
si_trydefaults = 0;
#endif
/* We prefer devices with interrupts, but in the case of a machine
with multiple BMCs we assume that there will be several instances
of a given type so if we succeed in registering a type then also
try to register everything else of the same type */
mutex_lock(&smi_infos_lock);
list_for_each_entry(e, &smi_infos, link) {
/* Try to register a device if it has an IRQ and we either
haven't successfully registered a device yet or this
device has the same type as one we successfully registered */
if (e->irq && (!type || e->addr_source == type)) {
if (!try_smi_init(e)) {
type = e->addr_source;
}
}
}
/* type will only have been set if we successfully registered an si */
if (type) {
mutex_unlock(&smi_infos_lock);
return 0;
}
/* Fall back to the preferred device */
list_for_each_entry(e, &smi_infos, link) {
if (!e->irq && (!type || e->addr_source == type)) {
if (!try_smi_init(e)) {
type = e->addr_source;
}
}
}
mutex_unlock(&smi_infos_lock);
if (type)
return 0;
if (si_trydefaults) {
mutex_lock(&smi_infos_lock);
if (list_empty(&smi_infos)) {
/* No BMC was found, try defaults. */
mutex_unlock(&smi_infos_lock);
default_find_bmc();
} else
mutex_unlock(&smi_infos_lock);
}
mutex_lock(&smi_infos_lock);
if (unload_when_empty && list_empty(&smi_infos)) {
mutex_unlock(&smi_infos_lock);
cleanup_ipmi_si();
printk(KERN_WARNING PFX
"Unable to find any System Interface(s)\n");
return -ENODEV;
} else {
mutex_unlock(&smi_infos_lock);
return 0;
}
}
module_init(init_ipmi_si);
static void cleanup_one_si(struct smi_info *to_clean)
{
int rv = 0;
unsigned long flags;
if (!to_clean)
return;
list_del(&to_clean->link);
/* Tell the driver that we are shutting down. */
atomic_inc(&to_clean->stop_operation);
/*
* Make sure the timer and thread are stopped and will not run
* again.
*/
wait_for_timer_and_thread(to_clean);
/*
* Timeouts are stopped, now make sure the interrupts are off
* for the device. A little tricky with locks to make sure
* there are no races.
*/
spin_lock_irqsave(&to_clean->si_lock, flags);
while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
spin_unlock_irqrestore(&to_clean->si_lock, flags);
poll(to_clean);
schedule_timeout_uninterruptible(1);
spin_lock_irqsave(&to_clean->si_lock, flags);
}
disable_si_irq(to_clean);
spin_unlock_irqrestore(&to_clean->si_lock, flags);
while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
poll(to_clean);
schedule_timeout_uninterruptible(1);
}
/* Clean up interrupts and make sure that everything is done. */
if (to_clean->irq_cleanup)
to_clean->irq_cleanup(to_clean);
while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
poll(to_clean);
schedule_timeout_uninterruptible(1);
}
if (to_clean->intf)
rv = ipmi_unregister_smi(to_clean->intf);
if (rv) {
printk(KERN_ERR PFX "Unable to unregister device: errno=%d\n",
rv);
}
if (to_clean->handlers)
to_clean->handlers->cleanup(to_clean->si_sm);
kfree(to_clean->si_sm);
if (to_clean->addr_source_cleanup)
to_clean->addr_source_cleanup(to_clean);
if (to_clean->io_cleanup)
to_clean->io_cleanup(to_clean);
if (to_clean->dev_registered)
platform_device_unregister(to_clean->pdev);
kfree(to_clean);
}
static void cleanup_ipmi_si(void)
{
struct smi_info *e, *tmp_e;
if (!initialized)
return;
#ifdef CONFIG_PCI
if (pci_registered)
pci_unregister_driver(&ipmi_pci_driver);
#endif
#ifdef CONFIG_ACPI
if (pnp_registered)
pnp_unregister_driver(&ipmi_pnp_driver);
#endif
#ifdef CONFIG_PARISC
if (parisc_registered)
unregister_parisc_driver(&ipmi_parisc_driver);
#endif
platform_driver_unregister(&ipmi_driver);
mutex_lock(&smi_infos_lock);
list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
cleanup_one_si(e);
mutex_unlock(&smi_infos_lock);
}
module_exit(cleanup_ipmi_si);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
" system interfaces.");