- 根目录:
- arch
- metag
- kernel
- smp.c
/*
* Copyright (C) 2009,2010,2011 Imagination Technologies Ltd.
*
* Copyright (C) 2002 ARM Limited, All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/atomic.h>
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/sched.h>
#include <linux/interrupt.h>
#include <linux/cache.h>
#include <linux/profile.h>
#include <linux/errno.h>
#include <linux/mm.h>
#include <linux/err.h>
#include <linux/cpu.h>
#include <linux/smp.h>
#include <linux/seq_file.h>
#include <linux/irq.h>
#include <linux/bootmem.h>
#include <asm/cacheflush.h>
#include <asm/cachepart.h>
#include <asm/core_reg.h>
#include <asm/cpu.h>
#include <asm/global_lock.h>
#include <asm/metag_mem.h>
#include <asm/mmu_context.h>
#include <asm/pgtable.h>
#include <asm/pgalloc.h>
#include <asm/processor.h>
#include <asm/setup.h>
#include <asm/tlbflush.h>
#include <asm/hwthread.h>
#include <asm/traps.h>
#define SYSC_DCPART(n) (SYSC_DCPART0 + SYSC_xCPARTn_STRIDE * (n))
#define SYSC_ICPART(n) (SYSC_ICPART0 + SYSC_xCPARTn_STRIDE * (n))
DECLARE_PER_CPU(PTBI, pTBI);
void *secondary_data_stack;
/*
* structures for inter-processor calls
* - A collection of single bit ipi messages.
*/
struct ipi_data {
spinlock_t lock;
unsigned long ipi_count;
unsigned long bits;
};
static DEFINE_PER_CPU(struct ipi_data, ipi_data) = {
.lock = __SPIN_LOCK_UNLOCKED(ipi_data.lock),
};
static DEFINE_SPINLOCK(boot_lock);
static DECLARE_COMPLETION(cpu_running);
/*
* "thread" is assumed to be a valid Meta hardware thread ID.
*/
static int boot_secondary(unsigned int thread, struct task_struct *idle)
{
u32 val;
/*
* set synchronisation state between this boot processor
* and the secondary one
*/
spin_lock(&boot_lock);
core_reg_write(TXUPC_ID, 0, thread, (unsigned int)secondary_startup);
core_reg_write(TXUPC_ID, 1, thread, 0);
/*
* Give the thread privilege (PSTAT) and clear potentially problematic
* bits in the process (namely ISTAT, CBMarker, CBMarkerI, LSM_STEP).
*/
core_reg_write(TXUCT_ID, TXSTATUS_REGNUM, thread, TXSTATUS_PSTAT_BIT);
/* Clear the minim enable bit. */
val = core_reg_read(TXUCT_ID, TXPRIVEXT_REGNUM, thread);
core_reg_write(TXUCT_ID, TXPRIVEXT_REGNUM, thread, val & ~0x80);
/*
* set the ThreadEnable bit (0x1) in the TXENABLE register
* for the specified thread - off it goes!
*/
val = core_reg_read(TXUCT_ID, TXENABLE_REGNUM, thread);
core_reg_write(TXUCT_ID, TXENABLE_REGNUM, thread, val | 0x1);
/*
* now the secondary core is starting up let it run its
* calibrations, then wait for it to finish
*/
spin_unlock(&boot_lock);
return 0;
}
/**
* describe_cachepart_change: describe a change to cache partitions.
* @thread: Hardware thread number.
* @label: Label of cache type, e.g. "dcache" or "icache".
* @sz: Total size of the cache.
* @old: Old cache partition configuration (*CPART* register).
* @new: New cache partition configuration (*CPART* register).
*
* If the cache partition has changed, prints a message to the log describing
* those changes.
*/
static void describe_cachepart_change(unsigned int thread, const char *label,
unsigned int sz, unsigned int old,
unsigned int new)
{
unsigned int lor1, land1, gor1, gand1;
unsigned int lor2, land2, gor2, gand2;
unsigned int diff = old ^ new;
if (!diff)
return;
pr_info("Thread %d: %s partition changed:", thread, label);
if (diff & (SYSC_xCPARTL_OR_BITS | SYSC_xCPARTL_AND_BITS)) {
lor1 = (old & SYSC_xCPARTL_OR_BITS) >> SYSC_xCPARTL_OR_S;
lor2 = (new & SYSC_xCPARTL_OR_BITS) >> SYSC_xCPARTL_OR_S;
land1 = (old & SYSC_xCPARTL_AND_BITS) >> SYSC_xCPARTL_AND_S;
land2 = (new & SYSC_xCPARTL_AND_BITS) >> SYSC_xCPARTL_AND_S;
pr_cont(" L:%#x+%#x->%#x+%#x",
(lor1 * sz) >> 4,
((land1 + 1) * sz) >> 4,
(lor2 * sz) >> 4,
((land2 + 1) * sz) >> 4);
}
if (diff & (SYSC_xCPARTG_OR_BITS | SYSC_xCPARTG_AND_BITS)) {
gor1 = (old & SYSC_xCPARTG_OR_BITS) >> SYSC_xCPARTG_OR_S;
gor2 = (new & SYSC_xCPARTG_OR_BITS) >> SYSC_xCPARTG_OR_S;
gand1 = (old & SYSC_xCPARTG_AND_BITS) >> SYSC_xCPARTG_AND_S;
gand2 = (new & SYSC_xCPARTG_AND_BITS) >> SYSC_xCPARTG_AND_S;
pr_cont(" G:%#x+%#x->%#x+%#x",
(gor1 * sz) >> 4,
((gand1 + 1) * sz) >> 4,
(gor2 * sz) >> 4,
((gand2 + 1) * sz) >> 4);
}
if (diff & SYSC_CWRMODE_BIT)
pr_cont(" %sWR",
(new & SYSC_CWRMODE_BIT) ? "+" : "-");
if (diff & SYSC_DCPART_GCON_BIT)
pr_cont(" %sGCOn",
(new & SYSC_DCPART_GCON_BIT) ? "+" : "-");
pr_cont("\n");
}
/**
* setup_smp_cache: ensure cache coherency for new SMP thread.
* @thread: New hardware thread number.
*
* Ensures that coherency is enabled and that the threads share the same cache
* partitions.
*/
static void setup_smp_cache(unsigned int thread)
{
unsigned int this_thread, lflags;
unsigned int dcsz, dcpart_this, dcpart_old, dcpart_new;
unsigned int icsz, icpart_old, icpart_new;
/*
* Copy over the current thread's cache partition configuration to the
* new thread so that they share cache partitions.
*/
__global_lock2(lflags);
this_thread = hard_processor_id();
/* Share dcache partition */
dcpart_this = metag_in32(SYSC_DCPART(this_thread));
dcpart_old = metag_in32(SYSC_DCPART(thread));
dcpart_new = dcpart_this;
#if PAGE_OFFSET < LINGLOBAL_BASE
/*
* For the local data cache to be coherent the threads must also have
* GCOn enabled.
*/
dcpart_new |= SYSC_DCPART_GCON_BIT;
metag_out32(dcpart_new, SYSC_DCPART(this_thread));
#endif
metag_out32(dcpart_new, SYSC_DCPART(thread));
/* Share icache partition too */
icpart_new = metag_in32(SYSC_ICPART(this_thread));
icpart_old = metag_in32(SYSC_ICPART(thread));
metag_out32(icpart_new, SYSC_ICPART(thread));
__global_unlock2(lflags);
/*
* Log if the cache partitions were altered so the user is aware of any
* potential unintentional cache wastage.
*/
dcsz = get_dcache_size();
icsz = get_dcache_size();
describe_cachepart_change(this_thread, "dcache", dcsz,
dcpart_this, dcpart_new);
describe_cachepart_change(thread, "dcache", dcsz,
dcpart_old, dcpart_new);
describe_cachepart_change(thread, "icache", icsz,
icpart_old, icpart_new);
}
int __cpu_up(unsigned int cpu, struct task_struct *idle)
{
unsigned int thread = cpu_2_hwthread_id[cpu];
int ret;
load_pgd(swapper_pg_dir, thread);
flush_tlb_all();
setup_smp_cache(thread);
/*
* Tell the secondary CPU where to find its idle thread's stack.
*/
secondary_data_stack = task_stack_page(idle);
wmb();
/*
* Now bring the CPU into our world.
*/
ret = boot_secondary(thread, idle);
if (ret == 0) {
/*
* CPU was successfully started, wait for it
* to come online or time out.
*/
wait_for_completion_timeout(&cpu_running,
msecs_to_jiffies(1000));
if (!cpu_online(cpu))
ret = -EIO;
}
secondary_data_stack = NULL;
if (ret) {
pr_crit("CPU%u: processor failed to boot\n", cpu);
/*
* FIXME: We need to clean up the new idle thread. --rmk
*/
}
return ret;
}
#ifdef CONFIG_HOTPLUG_CPU
static DECLARE_COMPLETION(cpu_killed);
/*
* __cpu_disable runs on the processor to be shutdown.
*/
int __cpu_disable(void)
{
unsigned int cpu = smp_processor_id();
/*
* Take this CPU offline. Once we clear this, we can't return,
* and we must not schedule until we're ready to give up the cpu.
*/
set_cpu_online(cpu, false);
/*
* OK - migrate IRQs away from this CPU
*/
migrate_irqs();
/*
* Flush user cache and TLB mappings, and then remove this CPU
* from the vm mask set of all processes.
*/
flush_cache_all();
local_flush_tlb_all();
clear_tasks_mm_cpumask(cpu);
return 0;
}
/*
* called on the thread which is asking for a CPU to be shutdown -
* waits until shutdown has completed, or it is timed out.
*/
void __cpu_die(unsigned int cpu)
{
if (!wait_for_completion_timeout(&cpu_killed, msecs_to_jiffies(1)))
pr_err("CPU%u: unable to kill\n", cpu);
}
/*
* Called from the idle thread for the CPU which has been shutdown.
*
* Note that we do not return from this function. If this cpu is
* brought online again it will need to run secondary_startup().
*/
void cpu_die(void)
{
local_irq_disable();
idle_task_exit();
complete(&cpu_killed);
asm ("XOR TXENABLE, D0Re0,D0Re0\n");
}
#endif /* CONFIG_HOTPLUG_CPU */
/*
* Called by both boot and secondaries to move global data into
* per-processor storage.
*/
void smp_store_cpu_info(unsigned int cpuid)
{
struct cpuinfo_metag *cpu_info = &per_cpu(cpu_data, cpuid);
cpu_info->loops_per_jiffy = loops_per_jiffy;
}
/*
* This is the secondary CPU boot entry. We're using this CPUs
* idle thread stack and the global page tables.
*/
asmlinkage void secondary_start_kernel(void)
{
struct mm_struct *mm = &init_mm;
unsigned int cpu = smp_processor_id();
/*
* All kernel threads share the same mm context; grab a
* reference and switch to it.
*/
atomic_inc(&mm->mm_users);
atomic_inc(&mm->mm_count);
current->active_mm = mm;
cpumask_set_cpu(cpu, mm_cpumask(mm));
enter_lazy_tlb(mm, current);
local_flush_tlb_all();
/*
* TODO: Some day it might be useful for each Linux CPU to
* have its own TBI structure. That would allow each Linux CPU
* to run different interrupt handlers for the same IRQ
* number.
*
* For now, simply copying the pointer to the boot CPU's TBI
* structure is sufficient because we always want to run the
* same interrupt handler whatever CPU takes the interrupt.
*/
per_cpu(pTBI, cpu) = __TBI(TBID_ISTAT_BIT);
if (!per_cpu(pTBI, cpu))
panic("No TBI found!");
per_cpu_trap_init(cpu);
preempt_disable();
setup_priv();
notify_cpu_starting(cpu);
pr_info("CPU%u (thread %u): Booted secondary processor\n",
cpu, cpu_2_hwthread_id[cpu]);
calibrate_delay();
smp_store_cpu_info(cpu);
/*
* OK, now it's safe to let the boot CPU continue
*/
set_cpu_online(cpu, true);
complete(&cpu_running);
/*
* Enable local interrupts.
*/
tbi_startup_interrupt(TBID_SIGNUM_TRT);
local_irq_enable();
/*
* OK, it's off to the idle thread for us
*/
cpu_startup_entry(CPUHP_ONLINE);
}
void __init smp_cpus_done(unsigned int max_cpus)
{
int cpu;
unsigned long bogosum = 0;
for_each_online_cpu(cpu)
bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
pr_info("SMP: Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
num_online_cpus(),
bogosum / (500000/HZ),
(bogosum / (5000/HZ)) % 100);
}
void __init smp_prepare_cpus(unsigned int max_cpus)
{
unsigned int cpu = smp_processor_id();
init_new_context(current, &init_mm);
current_thread_info()->cpu = cpu;
smp_store_cpu_info(cpu);
init_cpu_present(cpu_possible_mask);
}
void __init smp_prepare_boot_cpu(void)
{
unsigned int cpu = smp_processor_id();
per_cpu(pTBI, cpu) = __TBI(TBID_ISTAT_BIT);
if (!per_cpu(pTBI, cpu))
panic("No TBI found!");
}
static void smp_cross_call(cpumask_t callmap, enum ipi_msg_type msg);
static void send_ipi_message(const struct cpumask *mask, enum ipi_msg_type msg)
{
unsigned long flags;
unsigned int cpu;
cpumask_t map;
cpumask_clear(&map);
local_irq_save(flags);
for_each_cpu(cpu, mask) {
struct ipi_data *ipi = &per_cpu(ipi_data, cpu);
spin_lock(&ipi->lock);
/*
* KICK interrupts are queued in hardware so we'll get
* multiple interrupts if we call smp_cross_call()
* multiple times for one msg. The problem is that we
* only have one bit for each message - we can't queue
* them in software.
*
* The first time through ipi_handler() we'll clear
* the msg bit, having done all the work. But when we
* return we'll get _another_ interrupt (and another,
* and another until we've handled all the queued
* KICKs). Running ipi_handler() when there's no work
* to do is bad because that's how kick handler
* chaining detects who the KICK was intended for.
* See arch/metag/kernel/kick.c for more details.
*
* So only add 'cpu' to 'map' if we haven't already
* queued a KICK interrupt for 'msg'.
*/
if (!(ipi->bits & (1 << msg))) {
ipi->bits |= 1 << msg;
cpumask_set_cpu(cpu, &map);
}
spin_unlock(&ipi->lock);
}
/*
* Call the platform specific cross-CPU call function.
*/
smp_cross_call(map, msg);
local_irq_restore(flags);
}
void arch_send_call_function_ipi_mask(const struct cpumask *mask)
{
send_ipi_message(mask, IPI_CALL_FUNC);
}
void arch_send_call_function_single_ipi(int cpu)
{
send_ipi_message(cpumask_of(cpu), IPI_CALL_FUNC);
}
void show_ipi_list(struct seq_file *p)
{
unsigned int cpu;
seq_puts(p, "IPI:");
for_each_present_cpu(cpu)
seq_printf(p, " %10lu", per_cpu(ipi_data, cpu).ipi_count);
seq_putc(p, '\n');
}
static DEFINE_SPINLOCK(stop_lock);
/*
* Main handler for inter-processor interrupts
*
* For Meta, the ipimask now only identifies a single
* category of IPI (Bit 1 IPIs have been replaced by a
* different mechanism):
*
* Bit 0 - Inter-processor function call
*/
static int do_IPI(void)
{
unsigned int cpu = smp_processor_id();
struct ipi_data *ipi = &per_cpu(ipi_data, cpu);
unsigned long msgs, nextmsg;
int handled = 0;
ipi->ipi_count++;
spin_lock(&ipi->lock);
msgs = ipi->bits;
nextmsg = msgs & -msgs;
ipi->bits &= ~nextmsg;
spin_unlock(&ipi->lock);
if (nextmsg) {
handled = 1;
nextmsg = ffz(~nextmsg);
switch (nextmsg) {
case IPI_RESCHEDULE:
scheduler_ipi();
break;
case IPI_CALL_FUNC:
generic_smp_call_function_interrupt();
break;
default:
pr_crit("CPU%u: Unknown IPI message 0x%lx\n",
cpu, nextmsg);
break;
}
}
return handled;
}
void smp_send_reschedule(int cpu)
{
send_ipi_message(cpumask_of(cpu), IPI_RESCHEDULE);
}
static void stop_this_cpu(void *data)
{
unsigned int cpu = smp_processor_id();
if (system_state == SYSTEM_BOOTING ||
system_state == SYSTEM_RUNNING) {
spin_lock(&stop_lock);
pr_crit("CPU%u: stopping\n", cpu);
dump_stack();
spin_unlock(&stop_lock);
}
set_cpu_online(cpu, false);
local_irq_disable();
hard_processor_halt(HALT_OK);
}
void smp_send_stop(void)
{
smp_call_function(stop_this_cpu, NULL, 0);
}
/*
* not supported here
*/
int setup_profiling_timer(unsigned int multiplier)
{
return -EINVAL;
}
/*
* We use KICKs for inter-processor interrupts.
*
* For every CPU in "callmap" the IPI data must already have been
* stored in that CPU's "ipi_data" member prior to calling this
* function.
*/
static void kick_raise_softirq(cpumask_t callmap, unsigned int irq)
{
int cpu;
for_each_cpu(cpu, &callmap) {
unsigned int thread;
thread = cpu_2_hwthread_id[cpu];
BUG_ON(thread == BAD_HWTHREAD_ID);
metag_out32(1, T0KICKI + (thread * TnXKICK_STRIDE));
}
}
static TBIRES ipi_handler(TBIRES State, int SigNum, int Triggers,
int Inst, PTBI pTBI, int *handled)
{
*handled = do_IPI();
return State;
}
static struct kick_irq_handler ipi_irq = {
.func = ipi_handler,
};
static void smp_cross_call(cpumask_t callmap, enum ipi_msg_type msg)
{
kick_raise_softirq(callmap, 1);
}
static inline unsigned int get_core_count(void)
{
int i;
unsigned int ret = 0;
for (i = 0; i < CONFIG_NR_CPUS; i++) {
if (core_reg_read(TXUCT_ID, TXENABLE_REGNUM, i))
ret++;
}
return ret;
}
/*
* Initialise the CPU possible map early - this describes the CPUs
* which may be present or become present in the system.
*/
void __init smp_init_cpus(void)
{
unsigned int i, ncores = get_core_count();
/* If no hwthread_map early param was set use default mapping */
for (i = 0; i < NR_CPUS; i++)
if (cpu_2_hwthread_id[i] == BAD_HWTHREAD_ID) {
cpu_2_hwthread_id[i] = i;
hwthread_id_2_cpu[i] = i;
}
for (i = 0; i < ncores; i++)
set_cpu_possible(i, true);
kick_register_func(&ipi_irq);
}