- 根目录:
- arch
- blackfin
- mm
- sram-alloc.c
/*
* SRAM allocator for Blackfin on-chip memory
*
* Copyright 2004-2009 Analog Devices Inc.
*
* Licensed under the GPL-2 or later.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/miscdevice.h>
#include <linux/ioport.h>
#include <linux/fcntl.h>
#include <linux/init.h>
#include <linux/poll.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/spinlock.h>
#include <linux/rtc.h>
#include <linux/slab.h>
#include <asm/blackfin.h>
#include <asm/mem_map.h>
#include "blackfin_sram.h"
/* the data structure for L1 scratchpad and DATA SRAM */
struct sram_piece {
void *paddr;
int size;
pid_t pid;
struct sram_piece *next;
};
static DEFINE_PER_CPU_SHARED_ALIGNED(spinlock_t, l1sram_lock);
static DEFINE_PER_CPU(struct sram_piece, free_l1_ssram_head);
static DEFINE_PER_CPU(struct sram_piece, used_l1_ssram_head);
#if L1_DATA_A_LENGTH != 0
static DEFINE_PER_CPU(struct sram_piece, free_l1_data_A_sram_head);
static DEFINE_PER_CPU(struct sram_piece, used_l1_data_A_sram_head);
#endif
#if L1_DATA_B_LENGTH != 0
static DEFINE_PER_CPU(struct sram_piece, free_l1_data_B_sram_head);
static DEFINE_PER_CPU(struct sram_piece, used_l1_data_B_sram_head);
#endif
#if L1_DATA_A_LENGTH || L1_DATA_B_LENGTH
static DEFINE_PER_CPU_SHARED_ALIGNED(spinlock_t, l1_data_sram_lock);
#endif
#if L1_CODE_LENGTH != 0
static DEFINE_PER_CPU_SHARED_ALIGNED(spinlock_t, l1_inst_sram_lock);
static DEFINE_PER_CPU(struct sram_piece, free_l1_inst_sram_head);
static DEFINE_PER_CPU(struct sram_piece, used_l1_inst_sram_head);
#endif
#if L2_LENGTH != 0
static spinlock_t l2_sram_lock ____cacheline_aligned_in_smp;
static struct sram_piece free_l2_sram_head, used_l2_sram_head;
#endif
static struct kmem_cache *sram_piece_cache;
/* L1 Scratchpad SRAM initialization function */
static void __init l1sram_init(void)
{
unsigned int cpu;
unsigned long reserve;
#ifdef CONFIG_SMP
reserve = 0;
#else
reserve = sizeof(struct l1_scratch_task_info);
#endif
for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
per_cpu(free_l1_ssram_head, cpu).next =
kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
if (!per_cpu(free_l1_ssram_head, cpu).next) {
printk(KERN_INFO "Fail to initialize Scratchpad data SRAM.\n");
return;
}
per_cpu(free_l1_ssram_head, cpu).next->paddr = (void *)get_l1_scratch_start_cpu(cpu) + reserve;
per_cpu(free_l1_ssram_head, cpu).next->size = L1_SCRATCH_LENGTH - reserve;
per_cpu(free_l1_ssram_head, cpu).next->pid = 0;
per_cpu(free_l1_ssram_head, cpu).next->next = NULL;
per_cpu(used_l1_ssram_head, cpu).next = NULL;
/* mutex initialize */
spin_lock_init(&per_cpu(l1sram_lock, cpu));
printk(KERN_INFO "Blackfin Scratchpad data SRAM: %d KB\n",
L1_SCRATCH_LENGTH >> 10);
}
}
static void __init l1_data_sram_init(void)
{
#if L1_DATA_A_LENGTH != 0 || L1_DATA_B_LENGTH != 0
unsigned int cpu;
#endif
#if L1_DATA_A_LENGTH != 0
for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
per_cpu(free_l1_data_A_sram_head, cpu).next =
kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
if (!per_cpu(free_l1_data_A_sram_head, cpu).next) {
printk(KERN_INFO "Fail to initialize L1 Data A SRAM.\n");
return;
}
per_cpu(free_l1_data_A_sram_head, cpu).next->paddr =
(void *)get_l1_data_a_start_cpu(cpu) + (_ebss_l1 - _sdata_l1);
per_cpu(free_l1_data_A_sram_head, cpu).next->size =
L1_DATA_A_LENGTH - (_ebss_l1 - _sdata_l1);
per_cpu(free_l1_data_A_sram_head, cpu).next->pid = 0;
per_cpu(free_l1_data_A_sram_head, cpu).next->next = NULL;
per_cpu(used_l1_data_A_sram_head, cpu).next = NULL;
printk(KERN_INFO "Blackfin L1 Data A SRAM: %d KB (%d KB free)\n",
L1_DATA_A_LENGTH >> 10,
per_cpu(free_l1_data_A_sram_head, cpu).next->size >> 10);
}
#endif
#if L1_DATA_B_LENGTH != 0
for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
per_cpu(free_l1_data_B_sram_head, cpu).next =
kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
if (!per_cpu(free_l1_data_B_sram_head, cpu).next) {
printk(KERN_INFO "Fail to initialize L1 Data B SRAM.\n");
return;
}
per_cpu(free_l1_data_B_sram_head, cpu).next->paddr =
(void *)get_l1_data_b_start_cpu(cpu) + (_ebss_b_l1 - _sdata_b_l1);
per_cpu(free_l1_data_B_sram_head, cpu).next->size =
L1_DATA_B_LENGTH - (_ebss_b_l1 - _sdata_b_l1);
per_cpu(free_l1_data_B_sram_head, cpu).next->pid = 0;
per_cpu(free_l1_data_B_sram_head, cpu).next->next = NULL;
per_cpu(used_l1_data_B_sram_head, cpu).next = NULL;
printk(KERN_INFO "Blackfin L1 Data B SRAM: %d KB (%d KB free)\n",
L1_DATA_B_LENGTH >> 10,
per_cpu(free_l1_data_B_sram_head, cpu).next->size >> 10);
/* mutex initialize */
}
#endif
#if L1_DATA_A_LENGTH != 0 || L1_DATA_B_LENGTH != 0
for (cpu = 0; cpu < num_possible_cpus(); ++cpu)
spin_lock_init(&per_cpu(l1_data_sram_lock, cpu));
#endif
}
static void __init l1_inst_sram_init(void)
{
#if L1_CODE_LENGTH != 0
unsigned int cpu;
for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
per_cpu(free_l1_inst_sram_head, cpu).next =
kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
if (!per_cpu(free_l1_inst_sram_head, cpu).next) {
printk(KERN_INFO "Failed to initialize L1 Instruction SRAM\n");
return;
}
per_cpu(free_l1_inst_sram_head, cpu).next->paddr =
(void *)get_l1_code_start_cpu(cpu) + (_etext_l1 - _stext_l1);
per_cpu(free_l1_inst_sram_head, cpu).next->size =
L1_CODE_LENGTH - (_etext_l1 - _stext_l1);
per_cpu(free_l1_inst_sram_head, cpu).next->pid = 0;
per_cpu(free_l1_inst_sram_head, cpu).next->next = NULL;
per_cpu(used_l1_inst_sram_head, cpu).next = NULL;
printk(KERN_INFO "Blackfin L1 Instruction SRAM: %d KB (%d KB free)\n",
L1_CODE_LENGTH >> 10,
per_cpu(free_l1_inst_sram_head, cpu).next->size >> 10);
/* mutex initialize */
spin_lock_init(&per_cpu(l1_inst_sram_lock, cpu));
}
#endif
}
#ifdef __ADSPBF60x__
static irqreturn_t l2_ecc_err(int irq, void *dev_id)
{
int status;
printk(KERN_ERR "L2 ecc error happened\n");
status = bfin_read32(L2CTL0_STAT);
if (status & 0x1)
printk(KERN_ERR "Core channel error type:0x%x, addr:0x%x\n",
bfin_read32(L2CTL0_ET0), bfin_read32(L2CTL0_EADDR0));
if (status & 0x2)
printk(KERN_ERR "System channel error type:0x%x, addr:0x%x\n",
bfin_read32(L2CTL0_ET1), bfin_read32(L2CTL0_EADDR1));
status = status >> 8;
if (status)
printk(KERN_ERR "L2 Bank%d error, addr:0x%x\n",
status, bfin_read32(L2CTL0_ERRADDR0 + status));
panic("L2 Ecc error");
return IRQ_HANDLED;
}
#endif
static void __init l2_sram_init(void)
{
#if L2_LENGTH != 0
#ifdef __ADSPBF60x__
int ret;
ret = request_irq(IRQ_L2CTL0_ECC_ERR, l2_ecc_err, 0, "l2-ecc-err",
NULL);
if (unlikely(ret < 0)) {
printk(KERN_INFO "Fail to request l2 ecc error interrupt");
return;
}
#endif
free_l2_sram_head.next =
kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
if (!free_l2_sram_head.next) {
printk(KERN_INFO "Fail to initialize L2 SRAM.\n");
return;
}
free_l2_sram_head.next->paddr =
(void *)L2_START + (_ebss_l2 - _stext_l2);
free_l2_sram_head.next->size =
L2_LENGTH - (_ebss_l2 - _stext_l2);
free_l2_sram_head.next->pid = 0;
free_l2_sram_head.next->next = NULL;
used_l2_sram_head.next = NULL;
printk(KERN_INFO "Blackfin L2 SRAM: %d KB (%d KB free)\n",
L2_LENGTH >> 10,
free_l2_sram_head.next->size >> 10);
/* mutex initialize */
spin_lock_init(&l2_sram_lock);
#endif
}
static int __init bfin_sram_init(void)
{
sram_piece_cache = kmem_cache_create("sram_piece_cache",
sizeof(struct sram_piece),
0, SLAB_PANIC, NULL);
l1sram_init();
l1_data_sram_init();
l1_inst_sram_init();
l2_sram_init();
return 0;
}
pure_initcall(bfin_sram_init);
/* SRAM allocate function */
static void *_sram_alloc(size_t size, struct sram_piece *pfree_head,
struct sram_piece *pused_head)
{
struct sram_piece *pslot, *plast, *pavail;
if (size <= 0 || !pfree_head || !pused_head)
return NULL;
/* Align the size */
size = (size + 3) & ~3;
pslot = pfree_head->next;
plast = pfree_head;
/* search an available piece slot */
while (pslot != NULL && size > pslot->size) {
plast = pslot;
pslot = pslot->next;
}
if (!pslot)
return NULL;
if (pslot->size == size) {
plast->next = pslot->next;
pavail = pslot;
} else {
/* use atomic so our L1 allocator can be used atomically */
pavail = kmem_cache_alloc(sram_piece_cache, GFP_ATOMIC);
if (!pavail)
return NULL;
pavail->paddr = pslot->paddr;
pavail->size = size;
pslot->paddr += size;
pslot->size -= size;
}
pavail->pid = current->pid;
pslot = pused_head->next;
plast = pused_head;
/* insert new piece into used piece list !!! */
while (pslot != NULL && pavail->paddr < pslot->paddr) {
plast = pslot;
pslot = pslot->next;
}
pavail->next = pslot;
plast->next = pavail;
return pavail->paddr;
}
/* Allocate the largest available block. */
static void *_sram_alloc_max(struct sram_piece *pfree_head,
struct sram_piece *pused_head,
unsigned long *psize)
{
struct sram_piece *pslot, *pmax;
if (!pfree_head || !pused_head)
return NULL;
pmax = pslot = pfree_head->next;
/* search an available piece slot */
while (pslot != NULL) {
if (pslot->size > pmax->size)
pmax = pslot;
pslot = pslot->next;
}
if (!pmax)
return NULL;
*psize = pmax->size;
return _sram_alloc(*psize, pfree_head, pused_head);
}
/* SRAM free function */
static int _sram_free(const void *addr,
struct sram_piece *pfree_head,
struct sram_piece *pused_head)
{
struct sram_piece *pslot, *plast, *pavail;
if (!pfree_head || !pused_head)
return -1;
/* search the relevant memory slot */
pslot = pused_head->next;
plast = pused_head;
/* search an available piece slot */
while (pslot != NULL && pslot->paddr != addr) {
plast = pslot;
pslot = pslot->next;
}
if (!pslot)
return -1;
plast->next = pslot->next;
pavail = pslot;
pavail->pid = 0;
/* insert free pieces back to the free list */
pslot = pfree_head->next;
plast = pfree_head;
while (pslot != NULL && addr > pslot->paddr) {
plast = pslot;
pslot = pslot->next;
}
if (plast != pfree_head && plast->paddr + plast->size == pavail->paddr) {
plast->size += pavail->size;
kmem_cache_free(sram_piece_cache, pavail);
} else {
pavail->next = plast->next;
plast->next = pavail;
plast = pavail;
}
if (pslot && plast->paddr + plast->size == pslot->paddr) {
plast->size += pslot->size;
plast->next = pslot->next;
kmem_cache_free(sram_piece_cache, pslot);
}
return 0;
}
int sram_free(const void *addr)
{
#if L1_CODE_LENGTH != 0
if (addr >= (void *)get_l1_code_start()
&& addr < (void *)(get_l1_code_start() + L1_CODE_LENGTH))
return l1_inst_sram_free(addr);
else
#endif
#if L1_DATA_A_LENGTH != 0
if (addr >= (void *)get_l1_data_a_start()
&& addr < (void *)(get_l1_data_a_start() + L1_DATA_A_LENGTH))
return l1_data_A_sram_free(addr);
else
#endif
#if L1_DATA_B_LENGTH != 0
if (addr >= (void *)get_l1_data_b_start()
&& addr < (void *)(get_l1_data_b_start() + L1_DATA_B_LENGTH))
return l1_data_B_sram_free(addr);
else
#endif
#if L2_LENGTH != 0
if (addr >= (void *)L2_START
&& addr < (void *)(L2_START + L2_LENGTH))
return l2_sram_free(addr);
else
#endif
return -1;
}
EXPORT_SYMBOL(sram_free);
void *l1_data_A_sram_alloc(size_t size)
{
#if L1_DATA_A_LENGTH != 0
unsigned long flags;
void *addr;
unsigned int cpu;
cpu = smp_processor_id();
/* add mutex operation */
spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
addr = _sram_alloc(size, &per_cpu(free_l1_data_A_sram_head, cpu),
&per_cpu(used_l1_data_A_sram_head, cpu));
/* add mutex operation */
spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
pr_debug("Allocated address in l1_data_A_sram_alloc is 0x%lx+0x%lx\n",
(long unsigned int)addr, size);
return addr;
#else
return NULL;
#endif
}
EXPORT_SYMBOL(l1_data_A_sram_alloc);
int l1_data_A_sram_free(const void *addr)
{
#if L1_DATA_A_LENGTH != 0
unsigned long flags;
int ret;
unsigned int cpu;
cpu = smp_processor_id();
/* add mutex operation */
spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
ret = _sram_free(addr, &per_cpu(free_l1_data_A_sram_head, cpu),
&per_cpu(used_l1_data_A_sram_head, cpu));
/* add mutex operation */
spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
return ret;
#else
return -1;
#endif
}
EXPORT_SYMBOL(l1_data_A_sram_free);
void *l1_data_B_sram_alloc(size_t size)
{
#if L1_DATA_B_LENGTH != 0
unsigned long flags;
void *addr;
unsigned int cpu;
cpu = smp_processor_id();
/* add mutex operation */
spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
addr = _sram_alloc(size, &per_cpu(free_l1_data_B_sram_head, cpu),
&per_cpu(used_l1_data_B_sram_head, cpu));
/* add mutex operation */
spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
pr_debug("Allocated address in l1_data_B_sram_alloc is 0x%lx+0x%lx\n",
(long unsigned int)addr, size);
return addr;
#else
return NULL;
#endif
}
EXPORT_SYMBOL(l1_data_B_sram_alloc);
int l1_data_B_sram_free(const void *addr)
{
#if L1_DATA_B_LENGTH != 0
unsigned long flags;
int ret;
unsigned int cpu;
cpu = smp_processor_id();
/* add mutex operation */
spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
ret = _sram_free(addr, &per_cpu(free_l1_data_B_sram_head, cpu),
&per_cpu(used_l1_data_B_sram_head, cpu));
/* add mutex operation */
spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
return ret;
#else
return -1;
#endif
}
EXPORT_SYMBOL(l1_data_B_sram_free);
void *l1_data_sram_alloc(size_t size)
{
void *addr = l1_data_A_sram_alloc(size);
if (!addr)
addr = l1_data_B_sram_alloc(size);
return addr;
}
EXPORT_SYMBOL(l1_data_sram_alloc);
void *l1_data_sram_zalloc(size_t size)
{
void *addr = l1_data_sram_alloc(size);
if (addr)
memset(addr, 0x00, size);
return addr;
}
EXPORT_SYMBOL(l1_data_sram_zalloc);
int l1_data_sram_free(const void *addr)
{
int ret;
ret = l1_data_A_sram_free(addr);
if (ret == -1)
ret = l1_data_B_sram_free(addr);
return ret;
}
EXPORT_SYMBOL(l1_data_sram_free);
void *l1_inst_sram_alloc(size_t size)
{
#if L1_CODE_LENGTH != 0
unsigned long flags;
void *addr;
unsigned int cpu;
cpu = smp_processor_id();
/* add mutex operation */
spin_lock_irqsave(&per_cpu(l1_inst_sram_lock, cpu), flags);
addr = _sram_alloc(size, &per_cpu(free_l1_inst_sram_head, cpu),
&per_cpu(used_l1_inst_sram_head, cpu));
/* add mutex operation */
spin_unlock_irqrestore(&per_cpu(l1_inst_sram_lock, cpu), flags);
pr_debug("Allocated address in l1_inst_sram_alloc is 0x%lx+0x%lx\n",
(long unsigned int)addr, size);
return addr;
#else
return NULL;
#endif
}
EXPORT_SYMBOL(l1_inst_sram_alloc);
int l1_inst_sram_free(const void *addr)
{
#if L1_CODE_LENGTH != 0
unsigned long flags;
int ret;
unsigned int cpu;
cpu = smp_processor_id();
/* add mutex operation */
spin_lock_irqsave(&per_cpu(l1_inst_sram_lock, cpu), flags);
ret = _sram_free(addr, &per_cpu(free_l1_inst_sram_head, cpu),
&per_cpu(used_l1_inst_sram_head, cpu));
/* add mutex operation */
spin_unlock_irqrestore(&per_cpu(l1_inst_sram_lock, cpu), flags);
return ret;
#else
return -1;
#endif
}
EXPORT_SYMBOL(l1_inst_sram_free);
/* L1 Scratchpad memory allocate function */
void *l1sram_alloc(size_t size)
{
unsigned long flags;
void *addr;
unsigned int cpu;
cpu = smp_processor_id();
/* add mutex operation */
spin_lock_irqsave(&per_cpu(l1sram_lock, cpu), flags);
addr = _sram_alloc(size, &per_cpu(free_l1_ssram_head, cpu),
&per_cpu(used_l1_ssram_head, cpu));
/* add mutex operation */
spin_unlock_irqrestore(&per_cpu(l1sram_lock, cpu), flags);
return addr;
}
/* L1 Scratchpad memory allocate function */
void *l1sram_alloc_max(size_t *psize)
{
unsigned long flags;
void *addr;
unsigned int cpu;
cpu = smp_processor_id();
/* add mutex operation */
spin_lock_irqsave(&per_cpu(l1sram_lock, cpu), flags);
addr = _sram_alloc_max(&per_cpu(free_l1_ssram_head, cpu),
&per_cpu(used_l1_ssram_head, cpu), psize);
/* add mutex operation */
spin_unlock_irqrestore(&per_cpu(l1sram_lock, cpu), flags);
return addr;
}
/* L1 Scratchpad memory free function */
int l1sram_free(const void *addr)
{
unsigned long flags;
int ret;
unsigned int cpu;
cpu = smp_processor_id();
/* add mutex operation */
spin_lock_irqsave(&per_cpu(l1sram_lock, cpu), flags);
ret = _sram_free(addr, &per_cpu(free_l1_ssram_head, cpu),
&per_cpu(used_l1_ssram_head, cpu));
/* add mutex operation */
spin_unlock_irqrestore(&per_cpu(l1sram_lock, cpu), flags);
return ret;
}
void *l2_sram_alloc(size_t size)
{
#if L2_LENGTH != 0
unsigned long flags;
void *addr;
/* add mutex operation */
spin_lock_irqsave(&l2_sram_lock, flags);
addr = _sram_alloc(size, &free_l2_sram_head,
&used_l2_sram_head);
/* add mutex operation */
spin_unlock_irqrestore(&l2_sram_lock, flags);
pr_debug("Allocated address in l2_sram_alloc is 0x%lx+0x%lx\n",
(long unsigned int)addr, size);
return addr;
#else
return NULL;
#endif
}
EXPORT_SYMBOL(l2_sram_alloc);
void *l2_sram_zalloc(size_t size)
{
void *addr = l2_sram_alloc(size);
if (addr)
memset(addr, 0x00, size);
return addr;
}
EXPORT_SYMBOL(l2_sram_zalloc);
int l2_sram_free(const void *addr)
{
#if L2_LENGTH != 0
unsigned long flags;
int ret;
/* add mutex operation */
spin_lock_irqsave(&l2_sram_lock, flags);
ret = _sram_free(addr, &free_l2_sram_head,
&used_l2_sram_head);
/* add mutex operation */
spin_unlock_irqrestore(&l2_sram_lock, flags);
return ret;
#else
return -1;
#endif
}
EXPORT_SYMBOL(l2_sram_free);
int sram_free_with_lsl(const void *addr)
{
struct sram_list_struct *lsl, **tmp;
struct mm_struct *mm = current->mm;
int ret = -1;
for (tmp = &mm->context.sram_list; *tmp; tmp = &(*tmp)->next)
if ((*tmp)->addr == addr) {
lsl = *tmp;
ret = sram_free(addr);
*tmp = lsl->next;
kfree(lsl);
break;
}
return ret;
}
EXPORT_SYMBOL(sram_free_with_lsl);
/* Allocate memory and keep in L1 SRAM List (lsl) so that the resources are
* tracked. These are designed for userspace so that when a process exits,
* we can safely reap their resources.
*/
void *sram_alloc_with_lsl(size_t size, unsigned long flags)
{
void *addr = NULL;
struct sram_list_struct *lsl = NULL;
struct mm_struct *mm = current->mm;
lsl = kzalloc(sizeof(struct sram_list_struct), GFP_KERNEL);
if (!lsl)
return NULL;
if (flags & L1_INST_SRAM)
addr = l1_inst_sram_alloc(size);
if (addr == NULL && (flags & L1_DATA_A_SRAM))
addr = l1_data_A_sram_alloc(size);
if (addr == NULL && (flags & L1_DATA_B_SRAM))
addr = l1_data_B_sram_alloc(size);
if (addr == NULL && (flags & L2_SRAM))
addr = l2_sram_alloc(size);
if (addr == NULL) {
kfree(lsl);
return NULL;
}
lsl->addr = addr;
lsl->length = size;
lsl->next = mm->context.sram_list;
mm->context.sram_list = lsl;
return addr;
}
EXPORT_SYMBOL(sram_alloc_with_lsl);
#ifdef CONFIG_PROC_FS
/* Once we get a real allocator, we'll throw all of this away.
* Until then, we need some sort of visibility into the L1 alloc.
*/
/* Need to keep line of output the same. Currently, that is 44 bytes
* (including newline).
*/
static int _sram_proc_show(struct seq_file *m, const char *desc,
struct sram_piece *pfree_head,
struct sram_piece *pused_head)
{
struct sram_piece *pslot;
if (!pfree_head || !pused_head)
return -1;
seq_printf(m, "--- SRAM %-14s Size PID State \n", desc);
/* search the relevant memory slot */
pslot = pused_head->next;
while (pslot != NULL) {
seq_printf(m, "%p-%p %10i %5i %-10s\n",
pslot->paddr, pslot->paddr + pslot->size,
pslot->size, pslot->pid, "ALLOCATED");
pslot = pslot->next;
}
pslot = pfree_head->next;
while (pslot != NULL) {
seq_printf(m, "%p-%p %10i %5i %-10s\n",
pslot->paddr, pslot->paddr + pslot->size,
pslot->size, pslot->pid, "FREE");
pslot = pslot->next;
}
return 0;
}
static int sram_proc_show(struct seq_file *m, void *v)
{
unsigned int cpu;
for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
if (_sram_proc_show(m, "Scratchpad",
&per_cpu(free_l1_ssram_head, cpu), &per_cpu(used_l1_ssram_head, cpu)))
goto not_done;
#if L1_DATA_A_LENGTH != 0
if (_sram_proc_show(m, "L1 Data A",
&per_cpu(free_l1_data_A_sram_head, cpu),
&per_cpu(used_l1_data_A_sram_head, cpu)))
goto not_done;
#endif
#if L1_DATA_B_LENGTH != 0
if (_sram_proc_show(m, "L1 Data B",
&per_cpu(free_l1_data_B_sram_head, cpu),
&per_cpu(used_l1_data_B_sram_head, cpu)))
goto not_done;
#endif
#if L1_CODE_LENGTH != 0
if (_sram_proc_show(m, "L1 Instruction",
&per_cpu(free_l1_inst_sram_head, cpu),
&per_cpu(used_l1_inst_sram_head, cpu)))
goto not_done;
#endif
}
#if L2_LENGTH != 0
if (_sram_proc_show(m, "L2", &free_l2_sram_head, &used_l2_sram_head))
goto not_done;
#endif
not_done:
return 0;
}
static int sram_proc_open(struct inode *inode, struct file *file)
{
return single_open(file, sram_proc_show, NULL);
}
static const struct file_operations sram_proc_ops = {
.open = sram_proc_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static int __init sram_proc_init(void)
{
struct proc_dir_entry *ptr;
ptr = proc_create("sram", S_IRUGO, NULL, &sram_proc_ops);
if (!ptr) {
printk(KERN_WARNING "unable to create /proc/sram\n");
return -1;
}
return 0;
}
late_initcall(sram_proc_init);
#endif