/* * numa.c * * numa: Simulate NUMA-sensitive workload and measure their NUMA performance */ #include "../perf.h" #include "../builtin.h" #include "../util/util.h" #include "../util/parse-options.h" #include "bench.h" #include <errno.h> #include <sched.h> #include <stdio.h> #include <assert.h> #include <malloc.h> #include <signal.h> #include <stdlib.h> #include <string.h> #include <unistd.h> #include <pthread.h> #include <sys/mman.h> #include <sys/time.h> #include <sys/wait.h> #include <sys/prctl.h> #include <sys/types.h> #include <numa.h> #include <numaif.h> /* * Regular printout to the terminal, supressed if -q is specified: */ #define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0) /* * Debug printf: */ #define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0) struct thread_data { int curr_cpu; cpu_set_t bind_cpumask; int bind_node; u8 *process_data; int process_nr; int thread_nr; int task_nr; unsigned int loops_done; u64 val; u64 runtime_ns; pthread_mutex_t *process_lock; }; /* Parameters set by options: */ struct params { /* Startup synchronization: */ bool serialize_startup; /* Task hierarchy: */ int nr_proc; int nr_threads; /* Working set sizes: */ const char *mb_global_str; const char *mb_proc_str; const char *mb_proc_locked_str; const char *mb_thread_str; double mb_global; double mb_proc; double mb_proc_locked; double mb_thread; /* Access patterns to the working set: */ bool data_reads; bool data_writes; bool data_backwards; bool data_zero_memset; bool data_rand_walk; u32 nr_loops; u32 nr_secs; u32 sleep_usecs; /* Working set initialization: */ bool init_zero; bool init_random; bool init_cpu0; /* Misc options: */ int show_details; int run_all; int thp; long bytes_global; long bytes_process; long bytes_process_locked; long bytes_thread; int nr_tasks; bool show_quiet; bool show_convergence; bool measure_convergence; int perturb_secs; int nr_cpus; int nr_nodes; /* Affinity options -C and -N: */ char *cpu_list_str; char *node_list_str; }; /* Global, read-writable area, accessible to all processes and threads: */ struct global_info { u8 *data; pthread_mutex_t startup_mutex; int nr_tasks_started; pthread_mutex_t startup_done_mutex; pthread_mutex_t start_work_mutex; int nr_tasks_working; pthread_mutex_t stop_work_mutex; u64 bytes_done; struct thread_data *threads; /* Convergence latency measurement: */ bool all_converged; bool stop_work; int print_once; struct params p; }; static struct global_info *g = NULL; static int parse_cpus_opt(const struct option *opt, const char *arg, int unset); static int parse_nodes_opt(const struct option *opt, const char *arg, int unset); struct params p0; static const struct option options[] = { OPT_INTEGER('p', "nr_proc" , &p0.nr_proc, "number of processes"), OPT_INTEGER('t', "nr_threads" , &p0.nr_threads, "number of threads per process"), OPT_STRING('G', "mb_global" , &p0.mb_global_str, "MB", "global memory (MBs)"), OPT_STRING('P', "mb_proc" , &p0.mb_proc_str, "MB", "process memory (MBs)"), OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"), OPT_STRING('T', "mb_thread" , &p0.mb_thread_str, "MB", "thread memory (MBs)"), OPT_UINTEGER('l', "nr_loops" , &p0.nr_loops, "max number of loops to run"), OPT_UINTEGER('s', "nr_secs" , &p0.nr_secs, "max number of seconds to run"), OPT_UINTEGER('u', "usleep" , &p0.sleep_usecs, "usecs to sleep per loop iteration"), OPT_BOOLEAN('R', "data_reads" , &p0.data_reads, "access the data via writes (can be mixed with -W)"), OPT_BOOLEAN('W', "data_writes" , &p0.data_writes, "access the data via writes (can be mixed with -R)"), OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards, "access the data backwards as well"), OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"), OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk, "access the data with random (32bit LFSR) walk"), OPT_BOOLEAN('z', "init_zero" , &p0.init_zero, "bzero the initial allocations"), OPT_BOOLEAN('I', "init_random" , &p0.init_random, "randomize the contents of the initial allocations"), OPT_BOOLEAN('0', "init_cpu0" , &p0.init_cpu0, "do the initial allocations on CPU#0"), OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs, "perturb thread 0/0 every X secs, to test convergence stability"), OPT_INCR ('d', "show_details" , &p0.show_details, "Show details"), OPT_INCR ('a', "all" , &p0.run_all, "Run all tests in the suite"), OPT_INTEGER('H', "thp" , &p0.thp, "MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"), OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details"), OPT_BOOLEAN('m', "measure_convergence", &p0.measure_convergence, "measure convergence latency"), OPT_BOOLEAN('q', "quiet" , &p0.show_quiet, "bzero the initial allocations"), OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"), /* Special option string parsing callbacks: */ OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]", "bind the first N tasks to these specific cpus (the rest is unbound)", parse_cpus_opt), OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]", "bind the first N tasks to these specific memory nodes (the rest is unbound)", parse_nodes_opt), OPT_END() }; static const char * const bench_numa_usage[] = { "perf bench numa <options>", NULL }; static const char * const numa_usage[] = { "perf bench numa mem [<options>]", NULL }; static cpu_set_t bind_to_cpu(int target_cpu) { cpu_set_t orig_mask, mask; int ret; ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask); BUG_ON(ret); CPU_ZERO(&mask); if (target_cpu == -1) { int cpu; for (cpu = 0; cpu < g->p.nr_cpus; cpu++) CPU_SET(cpu, &mask); } else { BUG_ON(target_cpu < 0 || target_cpu >= g->p.nr_cpus); CPU_SET(target_cpu, &mask); } ret = sched_setaffinity(0, sizeof(mask), &mask); BUG_ON(ret); return orig_mask; } static cpu_set_t bind_to_node(int target_node) { int cpus_per_node = g->p.nr_cpus/g->p.nr_nodes; cpu_set_t orig_mask, mask; int cpu; int ret; BUG_ON(cpus_per_node*g->p.nr_nodes != g->p.nr_cpus); BUG_ON(!cpus_per_node); ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask); BUG_ON(ret); CPU_ZERO(&mask); if (target_node == -1) { for (cpu = 0; cpu < g->p.nr_cpus; cpu++) CPU_SET(cpu, &mask); } else { int cpu_start = (target_node + 0) * cpus_per_node; int cpu_stop = (target_node + 1) * cpus_per_node; BUG_ON(cpu_stop > g->p.nr_cpus); for (cpu = cpu_start; cpu < cpu_stop; cpu++) CPU_SET(cpu, &mask); } ret = sched_setaffinity(0, sizeof(mask), &mask); BUG_ON(ret); return orig_mask; } static void bind_to_cpumask(cpu_set_t mask) { int ret; ret = sched_setaffinity(0, sizeof(mask), &mask); BUG_ON(ret); } static void mempol_restore(void) { int ret; ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1); BUG_ON(ret); } static void bind_to_memnode(int node) { unsigned long nodemask; int ret; if (node == -1) return; BUG_ON(g->p.nr_nodes > (int)sizeof(nodemask)); nodemask = 1L << node; ret = set_mempolicy(MPOL_BIND, &nodemask, sizeof(nodemask)*8); dprintf("binding to node %d, mask: %016lx => %d\n", node, nodemask, ret); BUG_ON(ret); } #define HPSIZE (2*1024*1024) #define set_taskname(fmt...) \ do { \ char name[20]; \ \ snprintf(name, 20, fmt); \ prctl(PR_SET_NAME, name); \ } while (0) static u8 *alloc_data(ssize_t bytes0, int map_flags, int init_zero, int init_cpu0, int thp, int init_random) { cpu_set_t orig_mask; ssize_t bytes; u8 *buf; int ret; if (!bytes0) return NULL; /* Allocate and initialize all memory on CPU#0: */ if (init_cpu0) { orig_mask = bind_to_node(0); bind_to_memnode(0); } bytes = bytes0 + HPSIZE; buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0); BUG_ON(buf == (void *)-1); if (map_flags == MAP_PRIVATE) { if (thp > 0) { ret = madvise(buf, bytes, MADV_HUGEPAGE); if (ret && !g->print_once) { g->print_once = 1; printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n"); } } if (thp < 0) { ret = madvise(buf, bytes, MADV_NOHUGEPAGE); if (ret && !g->print_once) { g->print_once = 1; printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n"); } } } if (init_zero) { bzero(buf, bytes); } else { /* Initialize random contents, different in each word: */ if (init_random) { u64 *wbuf = (void *)buf; long off = rand(); long i; for (i = 0; i < bytes/8; i++) wbuf[i] = i + off; } } /* Align to 2MB boundary: */ buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1)); /* Restore affinity: */ if (init_cpu0) { bind_to_cpumask(orig_mask); mempol_restore(); } return buf; } static void free_data(void *data, ssize_t bytes) { int ret; if (!data) return; ret = munmap(data, bytes); BUG_ON(ret); } /* * Create a shared memory buffer that can be shared between processes, zeroed: */ static void * zalloc_shared_data(ssize_t bytes) { return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0, g->p.thp, g->p.init_random); } /* * Create a shared memory buffer that can be shared between processes: */ static void * setup_shared_data(ssize_t bytes) { return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0, g->p.thp, g->p.init_random); } /* * Allocate process-local memory - this will either be shared between * threads of this process, or only be accessed by this thread: */ static void * setup_private_data(ssize_t bytes) { return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0, g->p.thp, g->p.init_random); } /* * Return a process-shared (global) mutex: */ static void init_global_mutex(pthread_mutex_t *mutex) { pthread_mutexattr_t attr; pthread_mutexattr_init(&attr); pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED); pthread_mutex_init(mutex, &attr); } static int parse_cpu_list(const char *arg) { p0.cpu_list_str = strdup(arg); dprintf("got CPU list: {%s}\n", p0.cpu_list_str); return 0; } static int parse_setup_cpu_list(void) { struct thread_data *td; char *str0, *str; int t; if (!g->p.cpu_list_str) return 0; dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks); str0 = str = strdup(g->p.cpu_list_str); t = 0; BUG_ON(!str); tprintf("# binding tasks to CPUs:\n"); tprintf("# "); while (true) { int bind_cpu, bind_cpu_0, bind_cpu_1; char *tok, *tok_end, *tok_step, *tok_len, *tok_mul; int bind_len; int step; int mul; tok = strsep(&str, ","); if (!tok) break; tok_end = strstr(tok, "-"); dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end); if (!tok_end) { /* Single CPU specified: */ bind_cpu_0 = bind_cpu_1 = atol(tok); } else { /* CPU range specified (for example: "5-11"): */ bind_cpu_0 = atol(tok); bind_cpu_1 = atol(tok_end + 1); } step = 1; tok_step = strstr(tok, "#"); if (tok_step) { step = atol(tok_step + 1); BUG_ON(step <= 0 || step >= g->p.nr_cpus); } /* * Mask length. * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4', * where the _4 means the next 4 CPUs are allowed. */ bind_len = 1; tok_len = strstr(tok, "_"); if (tok_len) { bind_len = atol(tok_len + 1); BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus); } /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */ mul = 1; tok_mul = strstr(tok, "x"); if (tok_mul) { mul = atol(tok_mul + 1); BUG_ON(mul <= 0); } dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul); if (bind_cpu_0 >= g->p.nr_cpus || bind_cpu_1 >= g->p.nr_cpus) { printf("\nTest not applicable, system has only %d CPUs.\n", g->p.nr_cpus); return -1; } BUG_ON(bind_cpu_0 < 0 || bind_cpu_1 < 0); BUG_ON(bind_cpu_0 > bind_cpu_1); for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) { int i; for (i = 0; i < mul; i++) { int cpu; if (t >= g->p.nr_tasks) { printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu); goto out; } td = g->threads + t; if (t) tprintf(","); if (bind_len > 1) { tprintf("%2d/%d", bind_cpu, bind_len); } else { tprintf("%2d", bind_cpu); } CPU_ZERO(&td->bind_cpumask); for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) { BUG_ON(cpu < 0 || cpu >= g->p.nr_cpus); CPU_SET(cpu, &td->bind_cpumask); } t++; } } } out: tprintf("\n"); if (t < g->p.nr_tasks) printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t); free(str0); return 0; } static int parse_cpus_opt(const struct option *opt __maybe_unused, const char *arg, int unset __maybe_unused) { if (!arg) return -1; return parse_cpu_list(arg); } static int parse_node_list(const char *arg) { p0.node_list_str = strdup(arg); dprintf("got NODE list: {%s}\n", p0.node_list_str); return 0; } static int parse_setup_node_list(void) { struct thread_data *td; char *str0, *str; int t; if (!g->p.node_list_str) return 0; dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks); str0 = str = strdup(g->p.node_list_str); t = 0; BUG_ON(!str); tprintf("# binding tasks to NODEs:\n"); tprintf("# "); while (true) { int bind_node, bind_node_0, bind_node_1; char *tok, *tok_end, *tok_step, *tok_mul; int step; int mul; tok = strsep(&str, ","); if (!tok) break; tok_end = strstr(tok, "-"); dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end); if (!tok_end) { /* Single NODE specified: */ bind_node_0 = bind_node_1 = atol(tok); } else { /* NODE range specified (for example: "5-11"): */ bind_node_0 = atol(tok); bind_node_1 = atol(tok_end + 1); } step = 1; tok_step = strstr(tok, "#"); if (tok_step) { step = atol(tok_step + 1); BUG_ON(step <= 0 || step >= g->p.nr_nodes); } /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */ mul = 1; tok_mul = strstr(tok, "x"); if (tok_mul) { mul = atol(tok_mul + 1); BUG_ON(mul <= 0); } dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step); if (bind_node_0 >= g->p.nr_nodes || bind_node_1 >= g->p.nr_nodes) { printf("\nTest not applicable, system has only %d nodes.\n", g->p.nr_nodes); return -1; } BUG_ON(bind_node_0 < 0 || bind_node_1 < 0); BUG_ON(bind_node_0 > bind_node_1); for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) { int i; for (i = 0; i < mul; i++) { if (t >= g->p.nr_tasks) { printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node); goto out; } td = g->threads + t; if (!t) tprintf(" %2d", bind_node); else tprintf(",%2d", bind_node); td->bind_node = bind_node; t++; } } } out: tprintf("\n"); if (t < g->p.nr_tasks) printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t); free(str0); return 0; } static int parse_nodes_opt(const struct option *opt __maybe_unused, const char *arg, int unset __maybe_unused) { if (!arg) return -1; return parse_node_list(arg); return 0; } #define BIT(x) (1ul << x) static inline uint32_t lfsr_32(uint32_t lfsr) { const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31); return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps); } /* * Make sure there's real data dependency to RAM (when read * accesses are enabled), so the compiler, the CPU and the * kernel (KSM, zero page, etc.) cannot optimize away RAM * accesses: */ static inline u64 access_data(u64 *data __attribute__((unused)), u64 val) { if (g->p.data_reads) val += *data; if (g->p.data_writes) *data = val + 1; return val; } /* * The worker process does two types of work, a forwards going * loop and a backwards going loop. * * We do this so that on multiprocessor systems we do not create * a 'train' of processing, with highly synchronized processes, * skewing the whole benchmark. */ static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val) { long words = bytes/sizeof(u64); u64 *data = (void *)__data; long chunk_0, chunk_1; u64 *d0, *d, *d1; long off; long i; BUG_ON(!data && words); BUG_ON(data && !words); if (!data) return val; /* Very simple memset() work variant: */ if (g->p.data_zero_memset && !g->p.data_rand_walk) { bzero(data, bytes); return val; } /* Spread out by PID/TID nr and by loop nr: */ chunk_0 = words/nr_max; chunk_1 = words/g->p.nr_loops; off = nr*chunk_0 + loop*chunk_1; while (off >= words) off -= words; if (g->p.data_rand_walk) { u32 lfsr = nr + loop + val; int j; for (i = 0; i < words/1024; i++) { long start, end; lfsr = lfsr_32(lfsr); start = lfsr % words; end = min(start + 1024, words-1); if (g->p.data_zero_memset) { bzero(data + start, (end-start) * sizeof(u64)); } else { for (j = start; j < end; j++) val = access_data(data + j, val); } } } else if (!g->p.data_backwards || (nr + loop) & 1) { d0 = data + off; d = data + off + 1; d1 = data + words; /* Process data forwards: */ for (;;) { if (unlikely(d >= d1)) d = data; if (unlikely(d == d0)) break; val = access_data(d, val); d++; } } else { /* Process data backwards: */ d0 = data + off; d = data + off - 1; d1 = data + words; /* Process data forwards: */ for (;;) { if (unlikely(d < data)) d = data + words-1; if (unlikely(d == d0)) break; val = access_data(d, val); d--; } } return val; } static void update_curr_cpu(int task_nr, unsigned long bytes_worked) { unsigned int cpu; cpu = sched_getcpu(); g->threads[task_nr].curr_cpu = cpu; prctl(0, bytes_worked); } #define MAX_NR_NODES 64 /* * Count the number of nodes a process's threads * are spread out on. * * A count of 1 means that the process is compressed * to a single node. A count of g->p.nr_nodes means it's * spread out on the whole system. */ static int count_process_nodes(int process_nr) { char node_present[MAX_NR_NODES] = { 0, }; int nodes; int n, t; for (t = 0; t < g->p.nr_threads; t++) { struct thread_data *td; int task_nr; int node; task_nr = process_nr*g->p.nr_threads + t; td = g->threads + task_nr; node = numa_node_of_cpu(td->curr_cpu); node_present[node] = 1; } nodes = 0; for (n = 0; n < MAX_NR_NODES; n++) nodes += node_present[n]; return nodes; } /* * Count the number of distinct process-threads a node contains. * * A count of 1 means that the node contains only a single * process. If all nodes on the system contain at most one * process then we are well-converged. */ static int count_node_processes(int node) { int processes = 0; int t, p; for (p = 0; p < g->p.nr_proc; p++) { for (t = 0; t < g->p.nr_threads; t++) { struct thread_data *td; int task_nr; int n; task_nr = p*g->p.nr_threads + t; td = g->threads + task_nr; n = numa_node_of_cpu(td->curr_cpu); if (n == node) { processes++; break; } } } return processes; } static void calc_convergence_compression(int *strong) { unsigned int nodes_min, nodes_max; int p; nodes_min = -1; nodes_max = 0; for (p = 0; p < g->p.nr_proc; p++) { unsigned int nodes = count_process_nodes(p); nodes_min = min(nodes, nodes_min); nodes_max = max(nodes, nodes_max); } /* Strong convergence: all threads compress on a single node: */ if (nodes_min == 1 && nodes_max == 1) { *strong = 1; } else { *strong = 0; tprintf(" {%d-%d}", nodes_min, nodes_max); } } static void calc_convergence(double runtime_ns_max, double *convergence) { unsigned int loops_done_min, loops_done_max; int process_groups; int nodes[MAX_NR_NODES]; int distance; int nr_min; int nr_max; int strong; int sum; int nr; int node; int cpu; int t; if (!g->p.show_convergence && !g->p.measure_convergence) return; for (node = 0; node < g->p.nr_nodes; node++) nodes[node] = 0; loops_done_min = -1; loops_done_max = 0; for (t = 0; t < g->p.nr_tasks; t++) { struct thread_data *td = g->threads + t; unsigned int loops_done; cpu = td->curr_cpu; /* Not all threads have written it yet: */ if (cpu < 0) continue; node = numa_node_of_cpu(cpu); nodes[node]++; loops_done = td->loops_done; loops_done_min = min(loops_done, loops_done_min); loops_done_max = max(loops_done, loops_done_max); } nr_max = 0; nr_min = g->p.nr_tasks; sum = 0; for (node = 0; node < g->p.nr_nodes; node++) { nr = nodes[node]; nr_min = min(nr, nr_min); nr_max = max(nr, nr_max); sum += nr; } BUG_ON(nr_min > nr_max); BUG_ON(sum > g->p.nr_tasks); if (0 && (sum < g->p.nr_tasks)) return; /* * Count the number of distinct process groups present * on nodes - when we are converged this will decrease * to g->p.nr_proc: */ process_groups = 0; for (node = 0; node < g->p.nr_nodes; node++) { int processes = count_node_processes(node); nr = nodes[node]; tprintf(" %2d/%-2d", nr, processes); process_groups += processes; } distance = nr_max - nr_min; tprintf(" [%2d/%-2d]", distance, process_groups); tprintf(" l:%3d-%-3d (%3d)", loops_done_min, loops_done_max, loops_done_max-loops_done_min); if (loops_done_min && loops_done_max) { double skew = 1.0 - (double)loops_done_min/loops_done_max; tprintf(" [%4.1f%%]", skew * 100.0); } calc_convergence_compression(&strong); if (strong && process_groups == g->p.nr_proc) { if (!*convergence) { *convergence = runtime_ns_max; tprintf(" (%6.1fs converged)\n", *convergence/1e9); if (g->p.measure_convergence) { g->all_converged = true; g->stop_work = true; } } } else { if (*convergence) { tprintf(" (%6.1fs de-converged)", runtime_ns_max/1e9); *convergence = 0; } tprintf("\n"); } } static void show_summary(double runtime_ns_max, int l, double *convergence) { tprintf("\r # %5.1f%% [%.1f mins]", (double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max/1e9 / 60.0); calc_convergence(runtime_ns_max, convergence); if (g->p.show_details >= 0) fflush(stdout); } static void *worker_thread(void *__tdata) { struct thread_data *td = __tdata; struct timeval start0, start, stop, diff; int process_nr = td->process_nr; int thread_nr = td->thread_nr; unsigned long last_perturbance; int task_nr = td->task_nr; int details = g->p.show_details; int first_task, last_task; double convergence = 0; u64 val = td->val; double runtime_ns_max; u8 *global_data; u8 *process_data; u8 *thread_data; u64 bytes_done; long work_done; u32 l; bind_to_cpumask(td->bind_cpumask); bind_to_memnode(td->bind_node); set_taskname("thread %d/%d", process_nr, thread_nr); global_data = g->data; process_data = td->process_data; thread_data = setup_private_data(g->p.bytes_thread); bytes_done = 0; last_task = 0; if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1) last_task = 1; first_task = 0; if (process_nr == 0 && thread_nr == 0) first_task = 1; if (details >= 2) { printf("# thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n", process_nr, thread_nr, global_data, process_data, thread_data); } if (g->p.serialize_startup) { pthread_mutex_lock(&g->startup_mutex); g->nr_tasks_started++; pthread_mutex_unlock(&g->startup_mutex); /* Here we will wait for the main process to start us all at once: */ pthread_mutex_lock(&g->start_work_mutex); g->nr_tasks_working++; /* Last one wake the main process: */ if (g->nr_tasks_working == g->p.nr_tasks) pthread_mutex_unlock(&g->startup_done_mutex); pthread_mutex_unlock(&g->start_work_mutex); } gettimeofday(&start0, NULL); start = stop = start0; last_perturbance = start.tv_sec; for (l = 0; l < g->p.nr_loops; l++) { start = stop; if (g->stop_work) break; val += do_work(global_data, g->p.bytes_global, process_nr, g->p.nr_proc, l, val); val += do_work(process_data, g->p.bytes_process, thread_nr, g->p.nr_threads, l, val); val += do_work(thread_data, g->p.bytes_thread, 0, 1, l, val); if (g->p.sleep_usecs) { pthread_mutex_lock(td->process_lock); usleep(g->p.sleep_usecs); pthread_mutex_unlock(td->process_lock); } /* * Amount of work to be done under a process-global lock: */ if (g->p.bytes_process_locked) { pthread_mutex_lock(td->process_lock); val += do_work(process_data, g->p.bytes_process_locked, thread_nr, g->p.nr_threads, l, val); pthread_mutex_unlock(td->process_lock); } work_done = g->p.bytes_global + g->p.bytes_process + g->p.bytes_process_locked + g->p.bytes_thread; update_curr_cpu(task_nr, work_done); bytes_done += work_done; if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs) continue; td->loops_done = l; gettimeofday(&stop, NULL); /* Check whether our max runtime timed out: */ if (g->p.nr_secs) { timersub(&stop, &start0, &diff); if ((u32)diff.tv_sec >= g->p.nr_secs) { g->stop_work = true; break; } } /* Update the summary at most once per second: */ if (start.tv_sec == stop.tv_sec) continue; /* * Perturb the first task's equilibrium every g->p.perturb_secs seconds, * by migrating to CPU#0: */ if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) { cpu_set_t orig_mask; int target_cpu; int this_cpu; last_perturbance = stop.tv_sec; /* * Depending on where we are running, move into * the other half of the system, to create some * real disturbance: */ this_cpu = g->threads[task_nr].curr_cpu; if (this_cpu < g->p.nr_cpus/2) target_cpu = g->p.nr_cpus-1; else target_cpu = 0; orig_mask = bind_to_cpu(target_cpu); /* Here we are running on the target CPU already */ if (details >= 1) printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu); bind_to_cpumask(orig_mask); } if (details >= 3) { timersub(&stop, &start, &diff); runtime_ns_max = diff.tv_sec * 1000000000; runtime_ns_max += diff.tv_usec * 1000; if (details >= 0) { printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64"]\n", process_nr, thread_nr, runtime_ns_max / bytes_done, val); } fflush(stdout); } if (!last_task) continue; timersub(&stop, &start0, &diff); runtime_ns_max = diff.tv_sec * 1000000000ULL; runtime_ns_max += diff.tv_usec * 1000ULL; show_summary(runtime_ns_max, l, &convergence); } gettimeofday(&stop, NULL); timersub(&stop, &start0, &diff); td->runtime_ns = diff.tv_sec * 1000000000ULL; td->runtime_ns += diff.tv_usec * 1000ULL; free_data(thread_data, g->p.bytes_thread); pthread_mutex_lock(&g->stop_work_mutex); g->bytes_done += bytes_done; pthread_mutex_unlock(&g->stop_work_mutex); return NULL; } /* * A worker process starts a couple of threads: */ static void worker_process(int process_nr) { pthread_mutex_t process_lock; struct thread_data *td; pthread_t *pthreads; u8 *process_data; int task_nr; int ret; int t; pthread_mutex_init(&process_lock, NULL); set_taskname("process %d", process_nr); /* * Pick up the memory policy and the CPU binding of our first thread, * so that we initialize memory accordingly: */ task_nr = process_nr*g->p.nr_threads; td = g->threads + task_nr; bind_to_memnode(td->bind_node); bind_to_cpumask(td->bind_cpumask); pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t)); process_data = setup_private_data(g->p.bytes_process); if (g->p.show_details >= 3) { printf(" # process %2d global mem: %p, process mem: %p\n", process_nr, g->data, process_data); } for (t = 0; t < g->p.nr_threads; t++) { task_nr = process_nr*g->p.nr_threads + t; td = g->threads + task_nr; td->process_data = process_data; td->process_nr = process_nr; td->thread_nr = t; td->task_nr = task_nr; td->val = rand(); td->curr_cpu = -1; td->process_lock = &process_lock; ret = pthread_create(pthreads + t, NULL, worker_thread, td); BUG_ON(ret); } for (t = 0; t < g->p.nr_threads; t++) { ret = pthread_join(pthreads[t], NULL); BUG_ON(ret); } free_data(process_data, g->p.bytes_process); free(pthreads); } static void print_summary(void) { if (g->p.show_details < 0) return; printf("\n ###\n"); printf(" # %d %s will execute (on %d nodes, %d CPUs):\n", g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", g->p.nr_nodes, g->p.nr_cpus); printf(" # %5dx %5ldMB global shared mem operations\n", g->p.nr_loops, g->p.bytes_global/1024/1024); printf(" # %5dx %5ldMB process shared mem operations\n", g->p.nr_loops, g->p.bytes_process/1024/1024); printf(" # %5dx %5ldMB thread local mem operations\n", g->p.nr_loops, g->p.bytes_thread/1024/1024); printf(" ###\n"); printf("\n ###\n"); fflush(stdout); } static void init_thread_data(void) { ssize_t size = sizeof(*g->threads)*g->p.nr_tasks; int t; g->threads = zalloc_shared_data(size); for (t = 0; t < g->p.nr_tasks; t++) { struct thread_data *td = g->threads + t; int cpu; /* Allow all nodes by default: */ td->bind_node = -1; /* Allow all CPUs by default: */ CPU_ZERO(&td->bind_cpumask); for (cpu = 0; cpu < g->p.nr_cpus; cpu++) CPU_SET(cpu, &td->bind_cpumask); } } static void deinit_thread_data(void) { ssize_t size = sizeof(*g->threads)*g->p.nr_tasks; free_data(g->threads, size); } static int init(void) { g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0); /* Copy over options: */ g->p = p0; g->p.nr_cpus = numa_num_configured_cpus(); g->p.nr_nodes = numa_max_node() + 1; /* char array in count_process_nodes(): */ BUG_ON(g->p.nr_nodes > MAX_NR_NODES || g->p.nr_nodes < 0); if (g->p.show_quiet && !g->p.show_details) g->p.show_details = -1; /* Some memory should be specified: */ if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str) return -1; if (g->p.mb_global_str) { g->p.mb_global = atof(g->p.mb_global_str); BUG_ON(g->p.mb_global < 0); } if (g->p.mb_proc_str) { g->p.mb_proc = atof(g->p.mb_proc_str); BUG_ON(g->p.mb_proc < 0); } if (g->p.mb_proc_locked_str) { g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str); BUG_ON(g->p.mb_proc_locked < 0); BUG_ON(g->p.mb_proc_locked > g->p.mb_proc); } if (g->p.mb_thread_str) { g->p.mb_thread = atof(g->p.mb_thread_str); BUG_ON(g->p.mb_thread < 0); } BUG_ON(g->p.nr_threads <= 0); BUG_ON(g->p.nr_proc <= 0); g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads; g->p.bytes_global = g->p.mb_global *1024L*1024L; g->p.bytes_process = g->p.mb_proc *1024L*1024L; g->p.bytes_process_locked = g->p.mb_proc_locked *1024L*1024L; g->p.bytes_thread = g->p.mb_thread *1024L*1024L; g->data = setup_shared_data(g->p.bytes_global); /* Startup serialization: */ init_global_mutex(&g->start_work_mutex); init_global_mutex(&g->startup_mutex); init_global_mutex(&g->startup_done_mutex); init_global_mutex(&g->stop_work_mutex); init_thread_data(); tprintf("#\n"); if (parse_setup_cpu_list() || parse_setup_node_list()) return -1; tprintf("#\n"); print_summary(); return 0; } static void deinit(void) { free_data(g->data, g->p.bytes_global); g->data = NULL; deinit_thread_data(); free_data(g, sizeof(*g)); g = NULL; } /* * Print a short or long result, depending on the verbosity setting: */ static void print_res(const char *name, double val, const char *txt_unit, const char *txt_short, const char *txt_long) { if (!name) name = "main,"; if (g->p.show_quiet) printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short); else printf(" %14.3f %s\n", val, txt_long); } static int __bench_numa(const char *name) { struct timeval start, stop, diff; u64 runtime_ns_min, runtime_ns_sum; pid_t *pids, pid, wpid; double delta_runtime; double runtime_avg; double runtime_sec_max; double runtime_sec_min; int wait_stat; double bytes; int i, t; if (init()) return -1; pids = zalloc(g->p.nr_proc * sizeof(*pids)); pid = -1; /* All threads try to acquire it, this way we can wait for them to start up: */ pthread_mutex_lock(&g->start_work_mutex); if (g->p.serialize_startup) { tprintf(" #\n"); tprintf(" # Startup synchronization: ..."); fflush(stdout); } gettimeofday(&start, NULL); for (i = 0; i < g->p.nr_proc; i++) { pid = fork(); dprintf(" # process %2d: PID %d\n", i, pid); BUG_ON(pid < 0); if (!pid) { /* Child process: */ worker_process(i); exit(0); } pids[i] = pid; } /* Wait for all the threads to start up: */ while (g->nr_tasks_started != g->p.nr_tasks) usleep(1000); BUG_ON(g->nr_tasks_started != g->p.nr_tasks); if (g->p.serialize_startup) { double startup_sec; pthread_mutex_lock(&g->startup_done_mutex); /* This will start all threads: */ pthread_mutex_unlock(&g->start_work_mutex); /* This mutex is locked - the last started thread will wake us: */ pthread_mutex_lock(&g->startup_done_mutex); gettimeofday(&stop, NULL); timersub(&stop, &start, &diff); startup_sec = diff.tv_sec * 1000000000.0; startup_sec += diff.tv_usec * 1000.0; startup_sec /= 1e9; tprintf(" threads initialized in %.6f seconds.\n", startup_sec); tprintf(" #\n"); start = stop; pthread_mutex_unlock(&g->startup_done_mutex); } else { gettimeofday(&start, NULL); } /* Parent process: */ for (i = 0; i < g->p.nr_proc; i++) { wpid = waitpid(pids[i], &wait_stat, 0); BUG_ON(wpid < 0); BUG_ON(!WIFEXITED(wait_stat)); } runtime_ns_sum = 0; runtime_ns_min = -1LL; for (t = 0; t < g->p.nr_tasks; t++) { u64 thread_runtime_ns = g->threads[t].runtime_ns; runtime_ns_sum += thread_runtime_ns; runtime_ns_min = min(thread_runtime_ns, runtime_ns_min); } gettimeofday(&stop, NULL); timersub(&stop, &start, &diff); BUG_ON(bench_format != BENCH_FORMAT_DEFAULT); tprintf("\n ###\n"); tprintf("\n"); runtime_sec_max = diff.tv_sec * 1000000000.0; runtime_sec_max += diff.tv_usec * 1000.0; runtime_sec_max /= 1e9; runtime_sec_min = runtime_ns_min/1e9; bytes = g->bytes_done; runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / 1e9; if (g->p.measure_convergence) { print_res(name, runtime_sec_max, "secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge"); } print_res(name, runtime_sec_max, "secs,", "runtime-max/thread", "secs slowest (max) thread-runtime"); print_res(name, runtime_sec_min, "secs,", "runtime-min/thread", "secs fastest (min) thread-runtime"); print_res(name, runtime_avg, "secs,", "runtime-avg/thread", "secs average thread-runtime"); delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0; print_res(name, delta_runtime / runtime_sec_max * 100.0, "%,", "spread-runtime/thread", "% difference between max/avg runtime"); print_res(name, bytes / g->p.nr_tasks / 1e9, "GB,", "data/thread", "GB data processed, per thread"); print_res(name, bytes / 1e9, "GB,", "data-total", "GB data processed, total"); print_res(name, runtime_sec_max * 1e9 / (bytes / g->p.nr_tasks), "nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime"); print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max, "GB/sec,", "thread-speed", "GB/sec/thread speed"); print_res(name, bytes / runtime_sec_max / 1e9, "GB/sec,", "total-speed", "GB/sec total speed"); free(pids); deinit(); return 0; } #define MAX_ARGS 50 static int command_size(const char **argv) { int size = 0; while (*argv) { size++; argv++; } BUG_ON(size >= MAX_ARGS); return size; } static void init_params(struct params *p, const char *name, int argc, const char **argv) { int i; printf("\n # Running %s \"perf bench numa", name); for (i = 0; i < argc; i++) printf(" %s", argv[i]); printf("\"\n"); memset(p, 0, sizeof(*p)); /* Initialize nonzero defaults: */ p->serialize_startup = 1; p->data_reads = true; p->data_writes = true; p->data_backwards = true; p->data_rand_walk = true; p->nr_loops = -1; p->init_random = true; p->run_all = argc == 1; } static int run_bench_numa(const char *name, const char **argv) { int argc = command_size(argv); init_params(&p0, name, argc, argv); argc = parse_options(argc, argv, options, bench_numa_usage, 0); if (argc) goto err; if (__bench_numa(name)) goto err; return 0; err: return -1; } #define OPT_BW_RAM "-s", "20", "-zZq", "--thp", " 1", "--no-data_rand_walk" #define OPT_BW_RAM_NOTHP OPT_BW_RAM, "--thp", "-1" #define OPT_CONV "-s", "100", "-zZ0qcm", "--thp", " 1" #define OPT_CONV_NOTHP OPT_CONV, "--thp", "-1" #define OPT_BW "-s", "20", "-zZ0q", "--thp", " 1" #define OPT_BW_NOTHP OPT_BW, "--thp", "-1" /* * The built-in test-suite executed by "perf bench numa -a". * * (A minimum of 4 nodes and 16 GB of RAM is recommended.) */ static const char *tests[][MAX_ARGS] = { /* Basic single-stream NUMA bandwidth measurements: */ { "RAM-bw-local,", "mem", "-p", "1", "-t", "1", "-P", "1024", "-C" , "0", "-M", "0", OPT_BW_RAM }, { "RAM-bw-local-NOTHP,", "mem", "-p", "1", "-t", "1", "-P", "1024", "-C" , "0", "-M", "0", OPT_BW_RAM_NOTHP }, { "RAM-bw-remote,", "mem", "-p", "1", "-t", "1", "-P", "1024", "-C" , "0", "-M", "1", OPT_BW_RAM }, /* 2-stream NUMA bandwidth measurements: */ { "RAM-bw-local-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024", "-C", "0,2", "-M", "0x2", OPT_BW_RAM }, { "RAM-bw-remote-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024", "-C", "0,2", "-M", "1x2", OPT_BW_RAM }, /* Cross-stream NUMA bandwidth measurement: */ { "RAM-bw-cross,", "mem", "-p", "2", "-t", "1", "-P", "1024", "-C", "0,8", "-M", "1,0", OPT_BW_RAM }, /* Convergence latency measurements: */ { " 1x3-convergence,", "mem", "-p", "1", "-t", "3", "-P", "512", OPT_CONV }, { " 1x4-convergence,", "mem", "-p", "1", "-t", "4", "-P", "512", OPT_CONV }, { " 1x6-convergence,", "mem", "-p", "1", "-t", "6", "-P", "1020", OPT_CONV }, { " 2x3-convergence,", "mem", "-p", "3", "-t", "3", "-P", "1020", OPT_CONV }, { " 3x3-convergence,", "mem", "-p", "3", "-t", "3", "-P", "1020", OPT_CONV }, { " 4x4-convergence,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV }, { " 4x4-convergence-NOTHP,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV_NOTHP }, { " 4x6-convergence,", "mem", "-p", "4", "-t", "6", "-P", "1020", OPT_CONV }, { " 4x8-convergence,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_CONV }, { " 8x4-convergence,", "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV }, { " 8x4-convergence-NOTHP,", "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV_NOTHP }, { " 3x1-convergence,", "mem", "-p", "3", "-t", "1", "-P", "512", OPT_CONV }, { " 4x1-convergence,", "mem", "-p", "4", "-t", "1", "-P", "512", OPT_CONV }, { " 8x1-convergence,", "mem", "-p", "8", "-t", "1", "-P", "512", OPT_CONV }, { "16x1-convergence,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_CONV }, { "32x1-convergence,", "mem", "-p", "32", "-t", "1", "-P", "128", OPT_CONV }, /* Various NUMA process/thread layout bandwidth measurements: */ { " 2x1-bw-process,", "mem", "-p", "2", "-t", "1", "-P", "1024", OPT_BW }, { " 3x1-bw-process,", "mem", "-p", "3", "-t", "1", "-P", "1024", OPT_BW }, { " 4x1-bw-process,", "mem", "-p", "4", "-t", "1", "-P", "1024", OPT_BW }, { " 8x1-bw-process,", "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW }, { " 8x1-bw-process-NOTHP,", "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW_NOTHP }, { "16x1-bw-process,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_BW }, { " 4x1-bw-thread,", "mem", "-p", "1", "-t", "4", "-T", "256", OPT_BW }, { " 8x1-bw-thread,", "mem", "-p", "1", "-t", "8", "-T", "256", OPT_BW }, { "16x1-bw-thread,", "mem", "-p", "1", "-t", "16", "-T", "128", OPT_BW }, { "32x1-bw-thread,", "mem", "-p", "1", "-t", "32", "-T", "64", OPT_BW }, { " 2x3-bw-thread,", "mem", "-p", "2", "-t", "3", "-P", "512", OPT_BW }, { " 4x4-bw-thread,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_BW }, { " 4x6-bw-thread,", "mem", "-p", "4", "-t", "6", "-P", "512", OPT_BW }, { " 4x8-bw-thread,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW }, { " 4x8-bw-thread-NOTHP,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW_NOTHP }, { " 3x3-bw-thread,", "mem", "-p", "3", "-t", "3", "-P", "512", OPT_BW }, { " 5x5-bw-thread,", "mem", "-p", "5", "-t", "5", "-P", "512", OPT_BW }, { "2x16-bw-thread,", "mem", "-p", "2", "-t", "16", "-P", "512", OPT_BW }, { "1x32-bw-thread,", "mem", "-p", "1", "-t", "32", "-P", "2048", OPT_BW }, { "numa02-bw,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW }, { "numa02-bw-NOTHP,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW_NOTHP }, { "numa01-bw-thread,", "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW }, { "numa01-bw-thread-NOTHP,", "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW_NOTHP }, }; static int bench_all(void) { int nr = ARRAY_SIZE(tests); int ret; int i; ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'"); BUG_ON(ret < 0); for (i = 0; i < nr; i++) { run_bench_numa(tests[i][0], tests[i] + 1); } printf("\n"); return 0; } int bench_numa(int argc, const char **argv, const char *prefix __maybe_unused) { init_params(&p0, "main,", argc, argv); argc = parse_options(argc, argv, options, bench_numa_usage, 0); if (argc) goto err; if (p0.run_all) return bench_all(); if (__bench_numa(NULL)) goto err; return 0; err: usage_with_options(numa_usage, options); return -1; }