#define __NO_VERSION__ /* * Driver for Digigram pcxhr compatible soundcards * * mixer callbacks * * Copyright (c) 2004 by Digigram <alsa@digigram.com> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include <linux/time.h> #include <linux/interrupt.h> #include <linux/init.h> #include <linux/mutex.h> #include <sound/core.h> #include "pcxhr.h" #include "pcxhr_hwdep.h" #include "pcxhr_core.h" #include <sound/control.h> #include <sound/tlv.h> #include <sound/asoundef.h> #include "pcxhr_mixer.h" #include "pcxhr_mix22.h" #define PCXHR_LINE_CAPTURE_LEVEL_MIN 0 /* -112.0 dB */ #define PCXHR_LINE_CAPTURE_LEVEL_MAX 255 /* +15.5 dB */ #define PCXHR_LINE_CAPTURE_ZERO_LEVEL 224 /* 0.0 dB ( 0 dBu -> 0 dBFS ) */ #define PCXHR_LINE_PLAYBACK_LEVEL_MIN 0 /* -104.0 dB */ #define PCXHR_LINE_PLAYBACK_LEVEL_MAX 128 /* +24.0 dB */ #define PCXHR_LINE_PLAYBACK_ZERO_LEVEL 104 /* 0.0 dB ( 0 dBFS -> 0 dBu ) */ static const DECLARE_TLV_DB_SCALE(db_scale_analog_capture, -11200, 50, 1550); static const DECLARE_TLV_DB_SCALE(db_scale_analog_playback, -10400, 100, 2400); static const DECLARE_TLV_DB_SCALE(db_scale_a_hr222_capture, -11150, 50, 1600); static const DECLARE_TLV_DB_SCALE(db_scale_a_hr222_playback, -2550, 50, 2400); static int pcxhr_update_analog_audio_level(struct snd_pcxhr *chip, int is_capture, int channel) { int err, vol; struct pcxhr_rmh rmh; pcxhr_init_rmh(&rmh, CMD_ACCESS_IO_WRITE); if (is_capture) { rmh.cmd[0] |= IO_NUM_REG_IN_ANA_LEVEL; rmh.cmd[2] = chip->analog_capture_volume[channel]; } else { rmh.cmd[0] |= IO_NUM_REG_OUT_ANA_LEVEL; if (chip->analog_playback_active[channel]) vol = chip->analog_playback_volume[channel]; else vol = PCXHR_LINE_PLAYBACK_LEVEL_MIN; /* playback analog levels are inversed */ rmh.cmd[2] = PCXHR_LINE_PLAYBACK_LEVEL_MAX - vol; } rmh.cmd[1] = 1 << ((2 * chip->chip_idx) + channel); /* audio mask */ rmh.cmd_len = 3; err = pcxhr_send_msg(chip->mgr, &rmh); if (err < 0) { snd_printk(KERN_DEBUG "error update_analog_audio_level card(%d)" " is_capture(%d) err(%x)\n", chip->chip_idx, is_capture, err); return -EINVAL; } return 0; } /* * analog level control */ static int pcxhr_analog_vol_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { struct snd_pcxhr *chip = snd_kcontrol_chip(kcontrol); uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 2; if (kcontrol->private_value == 0) { /* playback */ if (chip->mgr->is_hr_stereo) { uinfo->value.integer.min = HR222_LINE_PLAYBACK_LEVEL_MIN; /* -25 dB */ uinfo->value.integer.max = HR222_LINE_PLAYBACK_LEVEL_MAX; /* +24 dB */ } else { uinfo->value.integer.min = PCXHR_LINE_PLAYBACK_LEVEL_MIN; /*-104 dB */ uinfo->value.integer.max = PCXHR_LINE_PLAYBACK_LEVEL_MAX; /* +24 dB */ } } else { /* capture */ if (chip->mgr->is_hr_stereo) { uinfo->value.integer.min = HR222_LINE_CAPTURE_LEVEL_MIN; /*-112 dB */ uinfo->value.integer.max = HR222_LINE_CAPTURE_LEVEL_MAX; /* +15.5 dB */ } else { uinfo->value.integer.min = PCXHR_LINE_CAPTURE_LEVEL_MIN; /*-112 dB */ uinfo->value.integer.max = PCXHR_LINE_CAPTURE_LEVEL_MAX; /* +15.5 dB */ } } return 0; } static int pcxhr_analog_vol_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_pcxhr *chip = snd_kcontrol_chip(kcontrol); mutex_lock(&chip->mgr->mixer_mutex); if (kcontrol->private_value == 0) { /* playback */ ucontrol->value.integer.value[0] = chip->analog_playback_volume[0]; ucontrol->value.integer.value[1] = chip->analog_playback_volume[1]; } else { /* capture */ ucontrol->value.integer.value[0] = chip->analog_capture_volume[0]; ucontrol->value.integer.value[1] = chip->analog_capture_volume[1]; } mutex_unlock(&chip->mgr->mixer_mutex); return 0; } static int pcxhr_analog_vol_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_pcxhr *chip = snd_kcontrol_chip(kcontrol); int changed = 0; int is_capture, i; mutex_lock(&chip->mgr->mixer_mutex); is_capture = (kcontrol->private_value != 0); for (i = 0; i < 2; i++) { int new_volume = ucontrol->value.integer.value[i]; int *stored_volume = is_capture ? &chip->analog_capture_volume[i] : &chip->analog_playback_volume[i]; if (is_capture) { if (chip->mgr->is_hr_stereo) { if (new_volume < HR222_LINE_CAPTURE_LEVEL_MIN || new_volume > HR222_LINE_CAPTURE_LEVEL_MAX) continue; } else { if (new_volume < PCXHR_LINE_CAPTURE_LEVEL_MIN || new_volume > PCXHR_LINE_CAPTURE_LEVEL_MAX) continue; } } else { if (chip->mgr->is_hr_stereo) { if (new_volume < HR222_LINE_PLAYBACK_LEVEL_MIN || new_volume > HR222_LINE_PLAYBACK_LEVEL_MAX) continue; } else { if (new_volume < PCXHR_LINE_PLAYBACK_LEVEL_MIN || new_volume > PCXHR_LINE_PLAYBACK_LEVEL_MAX) continue; } } if (*stored_volume != new_volume) { *stored_volume = new_volume; changed = 1; if (chip->mgr->is_hr_stereo) hr222_update_analog_audio_level(chip, is_capture, i); else pcxhr_update_analog_audio_level(chip, is_capture, i); } } mutex_unlock(&chip->mgr->mixer_mutex); return changed; } static struct snd_kcontrol_new pcxhr_control_analog_level = { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .access = (SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_TLV_READ), /* name will be filled later */ .info = pcxhr_analog_vol_info, .get = pcxhr_analog_vol_get, .put = pcxhr_analog_vol_put, /* tlv will be filled later */ }; /* shared */ #define pcxhr_sw_info snd_ctl_boolean_stereo_info static int pcxhr_audio_sw_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_pcxhr *chip = snd_kcontrol_chip(kcontrol); mutex_lock(&chip->mgr->mixer_mutex); ucontrol->value.integer.value[0] = chip->analog_playback_active[0]; ucontrol->value.integer.value[1] = chip->analog_playback_active[1]; mutex_unlock(&chip->mgr->mixer_mutex); return 0; } static int pcxhr_audio_sw_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_pcxhr *chip = snd_kcontrol_chip(kcontrol); int i, changed = 0; mutex_lock(&chip->mgr->mixer_mutex); for(i = 0; i < 2; i++) { if (chip->analog_playback_active[i] != ucontrol->value.integer.value[i]) { chip->analog_playback_active[i] = !!ucontrol->value.integer.value[i]; changed = 1; /* update playback levels */ if (chip->mgr->is_hr_stereo) hr222_update_analog_audio_level(chip, 0, i); else pcxhr_update_analog_audio_level(chip, 0, i); } } mutex_unlock(&chip->mgr->mixer_mutex); return changed; } static struct snd_kcontrol_new pcxhr_control_output_switch = { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Master Playback Switch", .info = pcxhr_sw_info, /* shared */ .get = pcxhr_audio_sw_get, .put = pcxhr_audio_sw_put }; #define PCXHR_DIGITAL_LEVEL_MIN 0x000 /* -110 dB */ #define PCXHR_DIGITAL_LEVEL_MAX 0x1ff /* +18 dB */ #define PCXHR_DIGITAL_ZERO_LEVEL 0x1b7 /* 0 dB */ static const DECLARE_TLV_DB_SCALE(db_scale_digital, -10975, 25, 1800); #define MORE_THAN_ONE_STREAM_LEVEL 0x000001 #define VALID_STREAM_PAN_LEVEL_MASK 0x800000 #define VALID_STREAM_LEVEL_MASK 0x400000 #define VALID_STREAM_LEVEL_1_MASK 0x200000 #define VALID_STREAM_LEVEL_2_MASK 0x100000 static int pcxhr_update_playback_stream_level(struct snd_pcxhr* chip, int idx) { int err; struct pcxhr_rmh rmh; struct pcxhr_pipe *pipe = &chip->playback_pipe; int left, right; if (chip->digital_playback_active[idx][0]) left = chip->digital_playback_volume[idx][0]; else left = PCXHR_DIGITAL_LEVEL_MIN; if (chip->digital_playback_active[idx][1]) right = chip->digital_playback_volume[idx][1]; else right = PCXHR_DIGITAL_LEVEL_MIN; pcxhr_init_rmh(&rmh, CMD_STREAM_OUT_LEVEL_ADJUST); /* add pipe and stream mask */ pcxhr_set_pipe_cmd_params(&rmh, 0, pipe->first_audio, 0, 1<<idx); /* volume left->left / right->right panoramic level */ rmh.cmd[0] |= MORE_THAN_ONE_STREAM_LEVEL; rmh.cmd[2] = VALID_STREAM_PAN_LEVEL_MASK | VALID_STREAM_LEVEL_1_MASK; rmh.cmd[2] |= (left << 10); rmh.cmd[3] = VALID_STREAM_PAN_LEVEL_MASK | VALID_STREAM_LEVEL_2_MASK; rmh.cmd[3] |= right; rmh.cmd_len = 4; err = pcxhr_send_msg(chip->mgr, &rmh); if (err < 0) { snd_printk(KERN_DEBUG "error update_playback_stream_level " "card(%d) err(%x)\n", chip->chip_idx, err); return -EINVAL; } return 0; } #define AUDIO_IO_HAS_MUTE_LEVEL 0x400000 #define AUDIO_IO_HAS_MUTE_MONITOR_1 0x200000 #define VALID_AUDIO_IO_DIGITAL_LEVEL 0x000001 #define VALID_AUDIO_IO_MONITOR_LEVEL 0x000002 #define VALID_AUDIO_IO_MUTE_LEVEL 0x000004 #define VALID_AUDIO_IO_MUTE_MONITOR_1 0x000008 static int pcxhr_update_audio_pipe_level(struct snd_pcxhr *chip, int capture, int channel) { int err; struct pcxhr_rmh rmh; struct pcxhr_pipe *pipe; if (capture) pipe = &chip->capture_pipe[0]; else pipe = &chip->playback_pipe; pcxhr_init_rmh(&rmh, CMD_AUDIO_LEVEL_ADJUST); /* add channel mask */ pcxhr_set_pipe_cmd_params(&rmh, capture, 0, 0, 1 << (channel + pipe->first_audio)); /* TODO : if mask (3 << pipe->first_audio) is used, left and right * channel will be programmed to the same params */ if (capture) { rmh.cmd[0] |= VALID_AUDIO_IO_DIGITAL_LEVEL; /* VALID_AUDIO_IO_MUTE_LEVEL not yet handled * (capture pipe level) */ rmh.cmd[2] = chip->digital_capture_volume[channel]; } else { rmh.cmd[0] |= VALID_AUDIO_IO_MONITOR_LEVEL | VALID_AUDIO_IO_MUTE_MONITOR_1; /* VALID_AUDIO_IO_DIGITAL_LEVEL and VALID_AUDIO_IO_MUTE_LEVEL * not yet handled (playback pipe level) */ rmh.cmd[2] = chip->monitoring_volume[channel] << 10; if (chip->monitoring_active[channel] == 0) rmh.cmd[2] |= AUDIO_IO_HAS_MUTE_MONITOR_1; } rmh.cmd_len = 3; err = pcxhr_send_msg(chip->mgr, &rmh); if (err < 0) { snd_printk(KERN_DEBUG "error update_audio_level(%d) err=%x\n", chip->chip_idx, err); return -EINVAL; } return 0; } /* shared */ static int pcxhr_digital_vol_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 2; uinfo->value.integer.min = PCXHR_DIGITAL_LEVEL_MIN; /* -109.5 dB */ uinfo->value.integer.max = PCXHR_DIGITAL_LEVEL_MAX; /* 18.0 dB */ return 0; } static int pcxhr_pcm_vol_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_pcxhr *chip = snd_kcontrol_chip(kcontrol); int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id); /* index */ int *stored_volume; int is_capture = kcontrol->private_value; mutex_lock(&chip->mgr->mixer_mutex); if (is_capture) /* digital capture */ stored_volume = chip->digital_capture_volume; else /* digital playback */ stored_volume = chip->digital_playback_volume[idx]; ucontrol->value.integer.value[0] = stored_volume[0]; ucontrol->value.integer.value[1] = stored_volume[1]; mutex_unlock(&chip->mgr->mixer_mutex); return 0; } static int pcxhr_pcm_vol_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_pcxhr *chip = snd_kcontrol_chip(kcontrol); int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id); /* index */ int changed = 0; int is_capture = kcontrol->private_value; int *stored_volume; int i; mutex_lock(&chip->mgr->mixer_mutex); if (is_capture) /* digital capture */ stored_volume = chip->digital_capture_volume; else /* digital playback */ stored_volume = chip->digital_playback_volume[idx]; for (i = 0; i < 2; i++) { int vol = ucontrol->value.integer.value[i]; if (vol < PCXHR_DIGITAL_LEVEL_MIN || vol > PCXHR_DIGITAL_LEVEL_MAX) continue; if (stored_volume[i] != vol) { stored_volume[i] = vol; changed = 1; if (is_capture) /* update capture volume */ pcxhr_update_audio_pipe_level(chip, 1, i); } } if (!is_capture && changed) /* update playback volume */ pcxhr_update_playback_stream_level(chip, idx); mutex_unlock(&chip->mgr->mixer_mutex); return changed; } static struct snd_kcontrol_new snd_pcxhr_pcm_vol = { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .access = (SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_TLV_READ), /* name will be filled later */ /* count will be filled later */ .info = pcxhr_digital_vol_info, /* shared */ .get = pcxhr_pcm_vol_get, .put = pcxhr_pcm_vol_put, .tlv = { .p = db_scale_digital }, }; static int pcxhr_pcm_sw_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_pcxhr *chip = snd_kcontrol_chip(kcontrol); int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id); /* index */ mutex_lock(&chip->mgr->mixer_mutex); ucontrol->value.integer.value[0] = chip->digital_playback_active[idx][0]; ucontrol->value.integer.value[1] = chip->digital_playback_active[idx][1]; mutex_unlock(&chip->mgr->mixer_mutex); return 0; } static int pcxhr_pcm_sw_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_pcxhr *chip = snd_kcontrol_chip(kcontrol); int changed = 0; int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id); /* index */ int i, j; mutex_lock(&chip->mgr->mixer_mutex); j = idx; for (i = 0; i < 2; i++) { if (chip->digital_playback_active[j][i] != ucontrol->value.integer.value[i]) { chip->digital_playback_active[j][i] = !!ucontrol->value.integer.value[i]; changed = 1; } } if (changed) pcxhr_update_playback_stream_level(chip, idx); mutex_unlock(&chip->mgr->mixer_mutex); return changed; } static struct snd_kcontrol_new pcxhr_control_pcm_switch = { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "PCM Playback Switch", .count = PCXHR_PLAYBACK_STREAMS, .info = pcxhr_sw_info, /* shared */ .get = pcxhr_pcm_sw_get, .put = pcxhr_pcm_sw_put }; /* * monitoring level control */ static int pcxhr_monitor_vol_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_pcxhr *chip = snd_kcontrol_chip(kcontrol); mutex_lock(&chip->mgr->mixer_mutex); ucontrol->value.integer.value[0] = chip->monitoring_volume[0]; ucontrol->value.integer.value[1] = chip->monitoring_volume[1]; mutex_unlock(&chip->mgr->mixer_mutex); return 0; } static int pcxhr_monitor_vol_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_pcxhr *chip = snd_kcontrol_chip(kcontrol); int changed = 0; int i; mutex_lock(&chip->mgr->mixer_mutex); for (i = 0; i < 2; i++) { if (chip->monitoring_volume[i] != ucontrol->value.integer.value[i]) { chip->monitoring_volume[i] = ucontrol->value.integer.value[i]; if (chip->monitoring_active[i]) /* update monitoring volume and mute */ /* do only when monitoring is unmuted */ pcxhr_update_audio_pipe_level(chip, 0, i); changed = 1; } } mutex_unlock(&chip->mgr->mixer_mutex); return changed; } static struct snd_kcontrol_new pcxhr_control_monitor_vol = { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .access = (SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_TLV_READ), .name = "Monitoring Playback Volume", .info = pcxhr_digital_vol_info, /* shared */ .get = pcxhr_monitor_vol_get, .put = pcxhr_monitor_vol_put, .tlv = { .p = db_scale_digital }, }; /* * monitoring switch control */ static int pcxhr_monitor_sw_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_pcxhr *chip = snd_kcontrol_chip(kcontrol); mutex_lock(&chip->mgr->mixer_mutex); ucontrol->value.integer.value[0] = chip->monitoring_active[0]; ucontrol->value.integer.value[1] = chip->monitoring_active[1]; mutex_unlock(&chip->mgr->mixer_mutex); return 0; } static int pcxhr_monitor_sw_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_pcxhr *chip = snd_kcontrol_chip(kcontrol); int changed = 0; int i; mutex_lock(&chip->mgr->mixer_mutex); for (i = 0; i < 2; i++) { if (chip->monitoring_active[i] != ucontrol->value.integer.value[i]) { chip->monitoring_active[i] = !!ucontrol->value.integer.value[i]; changed |= (1<<i); /* mask 0x01 and 0x02 */ } } if (changed & 0x01) /* update left monitoring volume and mute */ pcxhr_update_audio_pipe_level(chip, 0, 0); if (changed & 0x02) /* update right monitoring volume and mute */ pcxhr_update_audio_pipe_level(chip, 0, 1); mutex_unlock(&chip->mgr->mixer_mutex); return (changed != 0); } static struct snd_kcontrol_new pcxhr_control_monitor_sw = { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Monitoring Playback Switch", .info = pcxhr_sw_info, /* shared */ .get = pcxhr_monitor_sw_get, .put = pcxhr_monitor_sw_put }; /* * audio source select */ #define PCXHR_SOURCE_AUDIO01_UER 0x000100 #define PCXHR_SOURCE_AUDIO01_SYNC 0x000200 #define PCXHR_SOURCE_AUDIO23_UER 0x000400 #define PCXHR_SOURCE_AUDIO45_UER 0x001000 #define PCXHR_SOURCE_AUDIO67_UER 0x040000 static int pcxhr_set_audio_source(struct snd_pcxhr* chip) { struct pcxhr_rmh rmh; unsigned int mask, reg; unsigned int codec; int err, changed; switch (chip->chip_idx) { case 0 : mask = PCXHR_SOURCE_AUDIO01_UER; codec = CS8420_01_CS; break; case 1 : mask = PCXHR_SOURCE_AUDIO23_UER; codec = CS8420_23_CS; break; case 2 : mask = PCXHR_SOURCE_AUDIO45_UER; codec = CS8420_45_CS; break; case 3 : mask = PCXHR_SOURCE_AUDIO67_UER; codec = CS8420_67_CS; break; default: return -EINVAL; } if (chip->audio_capture_source != 0) { reg = mask; /* audio source from digital plug */ } else { reg = 0; /* audio source from analog plug */ } /* set the input source */ pcxhr_write_io_num_reg_cont(chip->mgr, mask, reg, &changed); /* resync them (otherwise channel inversion possible) */ if (changed) { pcxhr_init_rmh(&rmh, CMD_RESYNC_AUDIO_INPUTS); rmh.cmd[0] |= (1 << chip->chip_idx); err = pcxhr_send_msg(chip->mgr, &rmh); if (err) return err; } if (chip->mgr->board_aes_in_192k) { int i; unsigned int src_config = 0xC0; /* update all src configs with one call */ for (i = 0; (i < 4) && (i < chip->mgr->capture_chips); i++) { if (chip->mgr->chip[i]->audio_capture_source == 2) src_config |= (1 << (3 - i)); } /* set codec SRC on off */ pcxhr_init_rmh(&rmh, CMD_ACCESS_IO_WRITE); rmh.cmd_len = 2; rmh.cmd[0] |= IO_NUM_REG_CONFIG_SRC; rmh.cmd[1] = src_config; err = pcxhr_send_msg(chip->mgr, &rmh); } else { int use_src = 0; if (chip->audio_capture_source == 2) use_src = 1; /* set codec SRC on off */ pcxhr_init_rmh(&rmh, CMD_ACCESS_IO_WRITE); rmh.cmd_len = 3; rmh.cmd[0] |= IO_NUM_UER_CHIP_REG; rmh.cmd[1] = codec; rmh.cmd[2] = ((CS8420_DATA_FLOW_CTL & CHIP_SIG_AND_MAP_SPI) | (use_src ? 0x41 : 0x54)); err = pcxhr_send_msg(chip->mgr, &rmh); if (err) return err; rmh.cmd[2] = ((CS8420_CLOCK_SRC_CTL & CHIP_SIG_AND_MAP_SPI) | (use_src ? 0x41 : 0x49)); err = pcxhr_send_msg(chip->mgr, &rmh); } return err; } static int pcxhr_audio_src_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { static const char *texts[5] = { "Line", "Digital", "Digi+SRC", "Mic", "Line+Mic" }; int i; struct snd_pcxhr *chip = snd_kcontrol_chip(kcontrol); i = 2; /* no SRC, no Mic available */ if (chip->mgr->board_has_aes1) { i = 3; /* SRC available */ if (chip->mgr->board_has_mic) i = 5; /* Mic and MicroMix available */ } uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; uinfo->count = 1; uinfo->value.enumerated.items = i; if (uinfo->value.enumerated.item > (i-1)) uinfo->value.enumerated.item = i-1; strcpy(uinfo->value.enumerated.name, texts[uinfo->value.enumerated.item]); return 0; } static int pcxhr_audio_src_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_pcxhr *chip = snd_kcontrol_chip(kcontrol); ucontrol->value.enumerated.item[0] = chip->audio_capture_source; return 0; } static int pcxhr_audio_src_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_pcxhr *chip = snd_kcontrol_chip(kcontrol); int ret = 0; int i = 2; /* no SRC, no Mic available */ if (chip->mgr->board_has_aes1) { i = 3; /* SRC available */ if (chip->mgr->board_has_mic) i = 5; /* Mic and MicroMix available */ } if (ucontrol->value.enumerated.item[0] >= i) return -EINVAL; mutex_lock(&chip->mgr->mixer_mutex); if (chip->audio_capture_source != ucontrol->value.enumerated.item[0]) { chip->audio_capture_source = ucontrol->value.enumerated.item[0]; if (chip->mgr->is_hr_stereo) hr222_set_audio_source(chip); else pcxhr_set_audio_source(chip); ret = 1; } mutex_unlock(&chip->mgr->mixer_mutex); return ret; } static struct snd_kcontrol_new pcxhr_control_audio_src = { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Capture Source", .info = pcxhr_audio_src_info, .get = pcxhr_audio_src_get, .put = pcxhr_audio_src_put, }; /* * clock type selection * enum pcxhr_clock_type { * PCXHR_CLOCK_TYPE_INTERNAL = 0, * PCXHR_CLOCK_TYPE_WORD_CLOCK, * PCXHR_CLOCK_TYPE_AES_SYNC, * PCXHR_CLOCK_TYPE_AES_1, * PCXHR_CLOCK_TYPE_AES_2, * PCXHR_CLOCK_TYPE_AES_3, * PCXHR_CLOCK_TYPE_AES_4, * PCXHR_CLOCK_TYPE_MAX = PCXHR_CLOCK_TYPE_AES_4, * HR22_CLOCK_TYPE_INTERNAL = PCXHR_CLOCK_TYPE_INTERNAL, * HR22_CLOCK_TYPE_AES_SYNC, * HR22_CLOCK_TYPE_AES_1, * HR22_CLOCK_TYPE_MAX = HR22_CLOCK_TYPE_AES_1, * }; */ static int pcxhr_clock_type_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { static const char *textsPCXHR[7] = { "Internal", "WordClock", "AES Sync", "AES 1", "AES 2", "AES 3", "AES 4" }; static const char *textsHR22[3] = { "Internal", "AES Sync", "AES 1" }; const char **texts; struct pcxhr_mgr *mgr = snd_kcontrol_chip(kcontrol); int clock_items = 2; /* at least Internal and AES Sync clock */ if (mgr->board_has_aes1) { clock_items += mgr->capture_chips; /* add AES x */ if (!mgr->is_hr_stereo) clock_items += 1; /* add word clock */ } if (mgr->is_hr_stereo) { texts = textsHR22; snd_BUG_ON(clock_items > (HR22_CLOCK_TYPE_MAX+1)); } else { texts = textsPCXHR; snd_BUG_ON(clock_items > (PCXHR_CLOCK_TYPE_MAX+1)); } uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; uinfo->count = 1; uinfo->value.enumerated.items = clock_items; if (uinfo->value.enumerated.item >= clock_items) uinfo->value.enumerated.item = clock_items-1; strcpy(uinfo->value.enumerated.name, texts[uinfo->value.enumerated.item]); return 0; } static int pcxhr_clock_type_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct pcxhr_mgr *mgr = snd_kcontrol_chip(kcontrol); ucontrol->value.enumerated.item[0] = mgr->use_clock_type; return 0; } static int pcxhr_clock_type_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct pcxhr_mgr *mgr = snd_kcontrol_chip(kcontrol); int rate, ret = 0; unsigned int clock_items = 2; /* at least Internal and AES Sync clock */ if (mgr->board_has_aes1) { clock_items += mgr->capture_chips; /* add AES x */ if (!mgr->is_hr_stereo) clock_items += 1; /* add word clock */ } if (ucontrol->value.enumerated.item[0] >= clock_items) return -EINVAL; mutex_lock(&mgr->mixer_mutex); if (mgr->use_clock_type != ucontrol->value.enumerated.item[0]) { mutex_lock(&mgr->setup_mutex); mgr->use_clock_type = ucontrol->value.enumerated.item[0]; rate = 0; if (mgr->use_clock_type != PCXHR_CLOCK_TYPE_INTERNAL) { pcxhr_get_external_clock(mgr, mgr->use_clock_type, &rate); } else { rate = mgr->sample_rate; if (!rate) rate = 48000; } if (rate) { pcxhr_set_clock(mgr, rate); if (mgr->sample_rate) mgr->sample_rate = rate; } mutex_unlock(&mgr->setup_mutex); ret = 1; /* return 1 even if the set was not done. ok ? */ } mutex_unlock(&mgr->mixer_mutex); return ret; } static struct snd_kcontrol_new pcxhr_control_clock_type = { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Clock Mode", .info = pcxhr_clock_type_info, .get = pcxhr_clock_type_get, .put = pcxhr_clock_type_put, }; /* * clock rate control * specific control that scans the sample rates on the external plugs */ static int pcxhr_clock_rate_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { struct pcxhr_mgr *mgr = snd_kcontrol_chip(kcontrol); uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 3 + mgr->capture_chips; uinfo->value.integer.min = 0; /* clock not present */ uinfo->value.integer.max = 192000; /* max sample rate 192 kHz */ return 0; } static int pcxhr_clock_rate_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct pcxhr_mgr *mgr = snd_kcontrol_chip(kcontrol); int i, err, rate; mutex_lock(&mgr->mixer_mutex); for(i = 0; i < 3 + mgr->capture_chips; i++) { if (i == PCXHR_CLOCK_TYPE_INTERNAL) rate = mgr->sample_rate_real; else { err = pcxhr_get_external_clock(mgr, i, &rate); if (err) break; } ucontrol->value.integer.value[i] = rate; } mutex_unlock(&mgr->mixer_mutex); return 0; } static struct snd_kcontrol_new pcxhr_control_clock_rate = { .access = SNDRV_CTL_ELEM_ACCESS_READ, .iface = SNDRV_CTL_ELEM_IFACE_CARD, .name = "Clock Rates", .info = pcxhr_clock_rate_info, .get = pcxhr_clock_rate_get, }; /* * IEC958 status bits */ static int pcxhr_iec958_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; uinfo->count = 1; return 0; } static int pcxhr_iec958_capture_byte(struct snd_pcxhr *chip, int aes_idx, unsigned char *aes_bits) { int i, err; unsigned char temp; struct pcxhr_rmh rmh; pcxhr_init_rmh(&rmh, CMD_ACCESS_IO_READ); rmh.cmd[0] |= IO_NUM_UER_CHIP_REG; switch (chip->chip_idx) { /* instead of CS8420_01_CS use CS8416_01_CS for AES SYNC plug */ case 0: rmh.cmd[1] = CS8420_01_CS; break; case 1: rmh.cmd[1] = CS8420_23_CS; break; case 2: rmh.cmd[1] = CS8420_45_CS; break; case 3: rmh.cmd[1] = CS8420_67_CS; break; default: return -EINVAL; } if (chip->mgr->board_aes_in_192k) { switch (aes_idx) { case 0: rmh.cmd[2] = CS8416_CSB0; break; case 1: rmh.cmd[2] = CS8416_CSB1; break; case 2: rmh.cmd[2] = CS8416_CSB2; break; case 3: rmh.cmd[2] = CS8416_CSB3; break; case 4: rmh.cmd[2] = CS8416_CSB4; break; default: return -EINVAL; } } else { switch (aes_idx) { /* instead of CS8420_CSB0 use CS8416_CSBx for AES SYNC plug */ case 0: rmh.cmd[2] = CS8420_CSB0; break; case 1: rmh.cmd[2] = CS8420_CSB1; break; case 2: rmh.cmd[2] = CS8420_CSB2; break; case 3: rmh.cmd[2] = CS8420_CSB3; break; case 4: rmh.cmd[2] = CS8420_CSB4; break; default: return -EINVAL; } } /* size and code the chip id for the fpga */ rmh.cmd[1] &= 0x0fffff; /* chip signature + map for spi read */ rmh.cmd[2] &= CHIP_SIG_AND_MAP_SPI; rmh.cmd_len = 3; err = pcxhr_send_msg(chip->mgr, &rmh); if (err) return err; if (chip->mgr->board_aes_in_192k) { temp = (unsigned char)rmh.stat[1]; } else { temp = 0; /* reversed bit order (not with CS8416_01_CS) */ for (i = 0; i < 8; i++) { temp <<= 1; if (rmh.stat[1] & (1 << i)) temp |= 1; } } snd_printdd("read iec958 AES %d byte %d = 0x%x\n", chip->chip_idx, aes_idx, temp); *aes_bits = temp; return 0; } static int pcxhr_iec958_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_pcxhr *chip = snd_kcontrol_chip(kcontrol); unsigned char aes_bits; int i, err; mutex_lock(&chip->mgr->mixer_mutex); for(i = 0; i < 5; i++) { if (kcontrol->private_value == 0) /* playback */ aes_bits = chip->aes_bits[i]; else { /* capture */ if (chip->mgr->is_hr_stereo) err = hr222_iec958_capture_byte(chip, i, &aes_bits); else err = pcxhr_iec958_capture_byte(chip, i, &aes_bits); if (err) break; } ucontrol->value.iec958.status[i] = aes_bits; } mutex_unlock(&chip->mgr->mixer_mutex); return 0; } static int pcxhr_iec958_mask_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { int i; for (i = 0; i < 5; i++) ucontrol->value.iec958.status[i] = 0xff; return 0; } static int pcxhr_iec958_update_byte(struct snd_pcxhr *chip, int aes_idx, unsigned char aes_bits) { int i, err, cmd; unsigned char new_bits = aes_bits; unsigned char old_bits = chip->aes_bits[aes_idx]; struct pcxhr_rmh rmh; for (i = 0; i < 8; i++) { if ((old_bits & 0x01) != (new_bits & 0x01)) { cmd = chip->chip_idx & 0x03; /* chip index 0..3 */ if (chip->chip_idx > 3) /* new bit used if chip_idx>3 (PCX1222HR) */ cmd |= 1 << 22; cmd |= ((aes_idx << 3) + i) << 2; /* add bit offset */ cmd |= (new_bits & 0x01) << 23; /* add bit value */ pcxhr_init_rmh(&rmh, CMD_ACCESS_IO_WRITE); rmh.cmd[0] |= IO_NUM_REG_CUER; rmh.cmd[1] = cmd; rmh.cmd_len = 2; snd_printdd("write iec958 AES %d byte %d bit %d (cmd %x)\n", chip->chip_idx, aes_idx, i, cmd); err = pcxhr_send_msg(chip->mgr, &rmh); if (err) return err; } old_bits >>= 1; new_bits >>= 1; } chip->aes_bits[aes_idx] = aes_bits; return 0; } static int pcxhr_iec958_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_pcxhr *chip = snd_kcontrol_chip(kcontrol); int i, changed = 0; /* playback */ mutex_lock(&chip->mgr->mixer_mutex); for (i = 0; i < 5; i++) { if (ucontrol->value.iec958.status[i] != chip->aes_bits[i]) { if (chip->mgr->is_hr_stereo) hr222_iec958_update_byte(chip, i, ucontrol->value.iec958.status[i]); else pcxhr_iec958_update_byte(chip, i, ucontrol->value.iec958.status[i]); changed = 1; } } mutex_unlock(&chip->mgr->mixer_mutex); return changed; } static struct snd_kcontrol_new pcxhr_control_playback_iec958_mask = { .access = SNDRV_CTL_ELEM_ACCESS_READ, .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,MASK), .info = pcxhr_iec958_info, .get = pcxhr_iec958_mask_get }; static struct snd_kcontrol_new pcxhr_control_playback_iec958 = { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT), .info = pcxhr_iec958_info, .get = pcxhr_iec958_get, .put = pcxhr_iec958_put, .private_value = 0 /* playback */ }; static struct snd_kcontrol_new pcxhr_control_capture_iec958_mask = { .access = SNDRV_CTL_ELEM_ACCESS_READ, .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = SNDRV_CTL_NAME_IEC958("",CAPTURE,MASK), .info = pcxhr_iec958_info, .get = pcxhr_iec958_mask_get }; static struct snd_kcontrol_new pcxhr_control_capture_iec958 = { .access = SNDRV_CTL_ELEM_ACCESS_READ, .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = SNDRV_CTL_NAME_IEC958("",CAPTURE,DEFAULT), .info = pcxhr_iec958_info, .get = pcxhr_iec958_get, .private_value = 1 /* capture */ }; static void pcxhr_init_audio_levels(struct snd_pcxhr *chip) { int i; for (i = 0; i < 2; i++) { if (chip->nb_streams_play) { int j; /* at boot time the digital volumes are unmuted 0dB */ for (j = 0; j < PCXHR_PLAYBACK_STREAMS; j++) { chip->digital_playback_active[j][i] = 1; chip->digital_playback_volume[j][i] = PCXHR_DIGITAL_ZERO_LEVEL; } /* after boot, only two bits are set on the uer * interface */ chip->aes_bits[0] = (IEC958_AES0_PROFESSIONAL | IEC958_AES0_PRO_FS_48000); #ifdef CONFIG_SND_DEBUG /* analog volumes for playback * (is LEVEL_MIN after boot) */ chip->analog_playback_active[i] = 1; if (chip->mgr->is_hr_stereo) chip->analog_playback_volume[i] = HR222_LINE_PLAYBACK_ZERO_LEVEL; else { chip->analog_playback_volume[i] = PCXHR_LINE_PLAYBACK_ZERO_LEVEL; pcxhr_update_analog_audio_level(chip, 0, i); } #endif /* stereo cards need to be initialised after boot */ if (chip->mgr->is_hr_stereo) hr222_update_analog_audio_level(chip, 0, i); } if (chip->nb_streams_capt) { /* at boot time the digital volumes are unmuted 0dB */ chip->digital_capture_volume[i] = PCXHR_DIGITAL_ZERO_LEVEL; chip->analog_capture_active = 1; #ifdef CONFIG_SND_DEBUG /* analog volumes for playback * (is LEVEL_MIN after boot) */ if (chip->mgr->is_hr_stereo) chip->analog_capture_volume[i] = HR222_LINE_CAPTURE_ZERO_LEVEL; else { chip->analog_capture_volume[i] = PCXHR_LINE_CAPTURE_ZERO_LEVEL; pcxhr_update_analog_audio_level(chip, 1, i); } #endif /* stereo cards need to be initialised after boot */ if (chip->mgr->is_hr_stereo) hr222_update_analog_audio_level(chip, 1, i); } } return; } int pcxhr_create_mixer(struct pcxhr_mgr *mgr) { struct snd_pcxhr *chip; int err, i; mutex_init(&mgr->mixer_mutex); /* can be in another place */ for (i = 0; i < mgr->num_cards; i++) { struct snd_kcontrol_new temp; chip = mgr->chip[i]; if (chip->nb_streams_play) { /* analog output level control */ temp = pcxhr_control_analog_level; temp.name = "Master Playback Volume"; temp.private_value = 0; /* playback */ if (mgr->is_hr_stereo) temp.tlv.p = db_scale_a_hr222_playback; else temp.tlv.p = db_scale_analog_playback; err = snd_ctl_add(chip->card, snd_ctl_new1(&temp, chip)); if (err < 0) return err; /* output mute controls */ err = snd_ctl_add(chip->card, snd_ctl_new1(&pcxhr_control_output_switch, chip)); if (err < 0) return err; temp = snd_pcxhr_pcm_vol; temp.name = "PCM Playback Volume"; temp.count = PCXHR_PLAYBACK_STREAMS; temp.private_value = 0; /* playback */ err = snd_ctl_add(chip->card, snd_ctl_new1(&temp, chip)); if (err < 0) return err; err = snd_ctl_add(chip->card, snd_ctl_new1(&pcxhr_control_pcm_switch, chip)); if (err < 0) return err; /* IEC958 controls */ err = snd_ctl_add(chip->card, snd_ctl_new1(&pcxhr_control_playback_iec958_mask, chip)); if (err < 0) return err; err = snd_ctl_add(chip->card, snd_ctl_new1(&pcxhr_control_playback_iec958, chip)); if (err < 0) return err; } if (chip->nb_streams_capt) { /* analog input level control */ temp = pcxhr_control_analog_level; temp.name = "Line Capture Volume"; temp.private_value = 1; /* capture */ if (mgr->is_hr_stereo) temp.tlv.p = db_scale_a_hr222_capture; else temp.tlv.p = db_scale_analog_capture; err = snd_ctl_add(chip->card, snd_ctl_new1(&temp, chip)); if (err < 0) return err; temp = snd_pcxhr_pcm_vol; temp.name = "PCM Capture Volume"; temp.count = 1; temp.private_value = 1; /* capture */ err = snd_ctl_add(chip->card, snd_ctl_new1(&temp, chip)); if (err < 0) return err; /* Audio source */ err = snd_ctl_add(chip->card, snd_ctl_new1(&pcxhr_control_audio_src, chip)); if (err < 0) return err; /* IEC958 controls */ err = snd_ctl_add(chip->card, snd_ctl_new1(&pcxhr_control_capture_iec958_mask, chip)); if (err < 0) return err; err = snd_ctl_add(chip->card, snd_ctl_new1(&pcxhr_control_capture_iec958, chip)); if (err < 0) return err; if (mgr->is_hr_stereo) { err = hr222_add_mic_controls(chip); if (err < 0) return err; } } /* monitoring only if playback and capture device available */ if (chip->nb_streams_capt > 0 && chip->nb_streams_play > 0) { /* monitoring */ err = snd_ctl_add(chip->card, snd_ctl_new1(&pcxhr_control_monitor_vol, chip)); if (err < 0) return err; err = snd_ctl_add(chip->card, snd_ctl_new1(&pcxhr_control_monitor_sw, chip)); if (err < 0) return err; } if (i == 0) { /* clock mode only one control per pcxhr */ err = snd_ctl_add(chip->card, snd_ctl_new1(&pcxhr_control_clock_type, mgr)); if (err < 0) return err; /* non standard control used to scan * the external clock presence/frequencies */ err = snd_ctl_add(chip->card, snd_ctl_new1(&pcxhr_control_clock_rate, mgr)); if (err < 0) return err; } /* init values for the mixer data */ pcxhr_init_audio_levels(chip); } return 0; }