/* * Driver for Digigram pcxhr compatible soundcards * * mixer interface for stereo cards * * Copyright (c) 2004 by Digigram <alsa@digigram.com> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include <linux/delay.h> #include <linux/io.h> #include <sound/core.h> #include <sound/control.h> #include <sound/tlv.h> #include <sound/asoundef.h> #include "pcxhr.h" #include "pcxhr_core.h" #include "pcxhr_mix22.h" /* registers used on the DSP and Xilinx (port 2) : HR stereo cards only */ #define PCXHR_DSP_RESET 0x20 #define PCXHR_XLX_CFG 0x24 #define PCXHR_XLX_RUER 0x28 #define PCXHR_XLX_DATA 0x2C #define PCXHR_XLX_STATUS 0x30 #define PCXHR_XLX_LOFREQ 0x34 #define PCXHR_XLX_HIFREQ 0x38 #define PCXHR_XLX_CSUER 0x3C #define PCXHR_XLX_SELMIC 0x40 #define PCXHR_DSP 2 /* byte access only ! */ #define PCXHR_INPB(mgr, x) inb((mgr)->port[PCXHR_DSP] + (x)) #define PCXHR_OUTPB(mgr, x, data) outb((data), (mgr)->port[PCXHR_DSP] + (x)) /* values for PCHR_DSP_RESET register */ #define PCXHR_DSP_RESET_DSP 0x01 #define PCXHR_DSP_RESET_MUTE 0x02 #define PCXHR_DSP_RESET_CODEC 0x08 #define PCXHR_DSP_RESET_SMPTE 0x10 #define PCXHR_DSP_RESET_GPO_OFFSET 5 #define PCXHR_DSP_RESET_GPO_MASK 0x60 /* values for PCHR_XLX_CFG register */ #define PCXHR_CFG_SYNCDSP_MASK 0x80 #define PCXHR_CFG_DEPENDENCY_MASK 0x60 #define PCXHR_CFG_INDEPENDANT_SEL 0x00 #define PCXHR_CFG_MASTER_SEL 0x40 #define PCXHR_CFG_SLAVE_SEL 0x20 #define PCXHR_CFG_DATA_UER1_SEL_MASK 0x10 /* 0 (UER0), 1(UER1) */ #define PCXHR_CFG_DATAIN_SEL_MASK 0x08 /* 0 (ana), 1 (UER) */ #define PCXHR_CFG_SRC_MASK 0x04 /* 0 (Bypass), 1 (SRC Actif) */ #define PCXHR_CFG_CLOCK_UER1_SEL_MASK 0x02 /* 0 (UER0), 1(UER1) */ #define PCXHR_CFG_CLOCKIN_SEL_MASK 0x01 /* 0 (internal), 1 (AES/EBU) */ /* values for PCHR_XLX_DATA register */ #define PCXHR_DATA_CODEC 0x80 #define AKM_POWER_CONTROL_CMD 0xA007 #define AKM_RESET_ON_CMD 0xA100 #define AKM_RESET_OFF_CMD 0xA103 #define AKM_CLOCK_INF_55K_CMD 0xA240 #define AKM_CLOCK_SUP_55K_CMD 0xA24D #define AKM_MUTE_CMD 0xA38D #define AKM_UNMUTE_CMD 0xA30D #define AKM_LEFT_LEVEL_CMD 0xA600 #define AKM_RIGHT_LEVEL_CMD 0xA700 /* values for PCHR_XLX_STATUS register - READ */ #define PCXHR_STAT_SRC_LOCK 0x01 #define PCXHR_STAT_LEVEL_IN 0x02 #define PCXHR_STAT_GPI_OFFSET 2 #define PCXHR_STAT_GPI_MASK 0x0C #define PCXHR_STAT_MIC_CAPS 0x10 /* values for PCHR_XLX_STATUS register - WRITE */ #define PCXHR_STAT_FREQ_SYNC_MASK 0x01 #define PCXHR_STAT_FREQ_UER1_MASK 0x02 #define PCXHR_STAT_FREQ_SAVE_MASK 0x80 /* values for PCHR_XLX_CSUER register */ #define PCXHR_SUER1_BIT_U_READ_MASK 0x80 #define PCXHR_SUER1_BIT_C_READ_MASK 0x40 #define PCXHR_SUER1_DATA_PRESENT_MASK 0x20 #define PCXHR_SUER1_CLOCK_PRESENT_MASK 0x10 #define PCXHR_SUER_BIT_U_READ_MASK 0x08 #define PCXHR_SUER_BIT_C_READ_MASK 0x04 #define PCXHR_SUER_DATA_PRESENT_MASK 0x02 #define PCXHR_SUER_CLOCK_PRESENT_MASK 0x01 #define PCXHR_SUER_BIT_U_WRITE_MASK 0x02 #define PCXHR_SUER_BIT_C_WRITE_MASK 0x01 /* values for PCXHR_XLX_SELMIC register - WRITE */ #define PCXHR_SELMIC_PREAMPLI_OFFSET 2 #define PCXHR_SELMIC_PREAMPLI_MASK 0x0C #define PCXHR_SELMIC_PHANTOM_ALIM 0x80 static const unsigned char g_hr222_p_level[] = { 0x00, /* [000] -49.5 dB: AKM[000] = -1.#INF dB (mute) */ 0x01, /* [001] -49.0 dB: AKM[001] = -48.131 dB (diff=0.86920 dB) */ 0x01, /* [002] -48.5 dB: AKM[001] = -48.131 dB (diff=0.36920 dB) */ 0x01, /* [003] -48.0 dB: AKM[001] = -48.131 dB (diff=0.13080 dB) */ 0x01, /* [004] -47.5 dB: AKM[001] = -48.131 dB (diff=0.63080 dB) */ 0x01, /* [005] -46.5 dB: AKM[001] = -48.131 dB (diff=1.63080 dB) */ 0x01, /* [006] -47.0 dB: AKM[001] = -48.131 dB (diff=1.13080 dB) */ 0x01, /* [007] -46.0 dB: AKM[001] = -48.131 dB (diff=2.13080 dB) */ 0x01, /* [008] -45.5 dB: AKM[001] = -48.131 dB (diff=2.63080 dB) */ 0x02, /* [009] -45.0 dB: AKM[002] = -42.110 dB (diff=2.88980 dB) */ 0x02, /* [010] -44.5 dB: AKM[002] = -42.110 dB (diff=2.38980 dB) */ 0x02, /* [011] -44.0 dB: AKM[002] = -42.110 dB (diff=1.88980 dB) */ 0x02, /* [012] -43.5 dB: AKM[002] = -42.110 dB (diff=1.38980 dB) */ 0x02, /* [013] -43.0 dB: AKM[002] = -42.110 dB (diff=0.88980 dB) */ 0x02, /* [014] -42.5 dB: AKM[002] = -42.110 dB (diff=0.38980 dB) */ 0x02, /* [015] -42.0 dB: AKM[002] = -42.110 dB (diff=0.11020 dB) */ 0x02, /* [016] -41.5 dB: AKM[002] = -42.110 dB (diff=0.61020 dB) */ 0x02, /* [017] -41.0 dB: AKM[002] = -42.110 dB (diff=1.11020 dB) */ 0x02, /* [018] -40.5 dB: AKM[002] = -42.110 dB (diff=1.61020 dB) */ 0x03, /* [019] -40.0 dB: AKM[003] = -38.588 dB (diff=1.41162 dB) */ 0x03, /* [020] -39.5 dB: AKM[003] = -38.588 dB (diff=0.91162 dB) */ 0x03, /* [021] -39.0 dB: AKM[003] = -38.588 dB (diff=0.41162 dB) */ 0x03, /* [022] -38.5 dB: AKM[003] = -38.588 dB (diff=0.08838 dB) */ 0x03, /* [023] -38.0 dB: AKM[003] = -38.588 dB (diff=0.58838 dB) */ 0x03, /* [024] -37.5 dB: AKM[003] = -38.588 dB (diff=1.08838 dB) */ 0x04, /* [025] -37.0 dB: AKM[004] = -36.090 dB (diff=0.91040 dB) */ 0x04, /* [026] -36.5 dB: AKM[004] = -36.090 dB (diff=0.41040 dB) */ 0x04, /* [027] -36.0 dB: AKM[004] = -36.090 dB (diff=0.08960 dB) */ 0x04, /* [028] -35.5 dB: AKM[004] = -36.090 dB (diff=0.58960 dB) */ 0x05, /* [029] -35.0 dB: AKM[005] = -34.151 dB (diff=0.84860 dB) */ 0x05, /* [030] -34.5 dB: AKM[005] = -34.151 dB (diff=0.34860 dB) */ 0x05, /* [031] -34.0 dB: AKM[005] = -34.151 dB (diff=0.15140 dB) */ 0x05, /* [032] -33.5 dB: AKM[005] = -34.151 dB (diff=0.65140 dB) */ 0x06, /* [033] -33.0 dB: AKM[006] = -32.568 dB (diff=0.43222 dB) */ 0x06, /* [034] -32.5 dB: AKM[006] = -32.568 dB (diff=0.06778 dB) */ 0x06, /* [035] -32.0 dB: AKM[006] = -32.568 dB (diff=0.56778 dB) */ 0x07, /* [036] -31.5 dB: AKM[007] = -31.229 dB (diff=0.27116 dB) */ 0x07, /* [037] -31.0 dB: AKM[007] = -31.229 dB (diff=0.22884 dB) */ 0x08, /* [038] -30.5 dB: AKM[008] = -30.069 dB (diff=0.43100 dB) */ 0x08, /* [039] -30.0 dB: AKM[008] = -30.069 dB (diff=0.06900 dB) */ 0x09, /* [040] -29.5 dB: AKM[009] = -29.046 dB (diff=0.45405 dB) */ 0x09, /* [041] -29.0 dB: AKM[009] = -29.046 dB (diff=0.04595 dB) */ 0x0a, /* [042] -28.5 dB: AKM[010] = -28.131 dB (diff=0.36920 dB) */ 0x0a, /* [043] -28.0 dB: AKM[010] = -28.131 dB (diff=0.13080 dB) */ 0x0b, /* [044] -27.5 dB: AKM[011] = -27.303 dB (diff=0.19705 dB) */ 0x0b, /* [045] -27.0 dB: AKM[011] = -27.303 dB (diff=0.30295 dB) */ 0x0c, /* [046] -26.5 dB: AKM[012] = -26.547 dB (diff=0.04718 dB) */ 0x0d, /* [047] -26.0 dB: AKM[013] = -25.852 dB (diff=0.14806 dB) */ 0x0e, /* [048] -25.5 dB: AKM[014] = -25.208 dB (diff=0.29176 dB) */ 0x0e, /* [049] -25.0 dB: AKM[014] = -25.208 dB (diff=0.20824 dB) */ 0x0f, /* [050] -24.5 dB: AKM[015] = -24.609 dB (diff=0.10898 dB) */ 0x10, /* [051] -24.0 dB: AKM[016] = -24.048 dB (diff=0.04840 dB) */ 0x11, /* [052] -23.5 dB: AKM[017] = -23.522 dB (diff=0.02183 dB) */ 0x12, /* [053] -23.0 dB: AKM[018] = -23.025 dB (diff=0.02535 dB) */ 0x13, /* [054] -22.5 dB: AKM[019] = -22.556 dB (diff=0.05573 dB) */ 0x14, /* [055] -22.0 dB: AKM[020] = -22.110 dB (diff=0.11020 dB) */ 0x15, /* [056] -21.5 dB: AKM[021] = -21.686 dB (diff=0.18642 dB) */ 0x17, /* [057] -21.0 dB: AKM[023] = -20.896 dB (diff=0.10375 dB) */ 0x18, /* [058] -20.5 dB: AKM[024] = -20.527 dB (diff=0.02658 dB) */ 0x1a, /* [059] -20.0 dB: AKM[026] = -19.831 dB (diff=0.16866 dB) */ 0x1b, /* [060] -19.5 dB: AKM[027] = -19.504 dB (diff=0.00353 dB) */ 0x1d, /* [061] -19.0 dB: AKM[029] = -18.883 dB (diff=0.11716 dB) */ 0x1e, /* [062] -18.5 dB: AKM[030] = -18.588 dB (diff=0.08838 dB) */ 0x20, /* [063] -18.0 dB: AKM[032] = -18.028 dB (diff=0.02780 dB) */ 0x22, /* [064] -17.5 dB: AKM[034] = -17.501 dB (diff=0.00123 dB) */ 0x24, /* [065] -17.0 dB: AKM[036] = -17.005 dB (diff=0.00475 dB) */ 0x26, /* [066] -16.5 dB: AKM[038] = -16.535 dB (diff=0.03513 dB) */ 0x28, /* [067] -16.0 dB: AKM[040] = -16.090 dB (diff=0.08960 dB) */ 0x2b, /* [068] -15.5 dB: AKM[043] = -15.461 dB (diff=0.03857 dB) */ 0x2d, /* [069] -15.0 dB: AKM[045] = -15.067 dB (diff=0.06655 dB) */ 0x30, /* [070] -14.5 dB: AKM[048] = -14.506 dB (diff=0.00598 dB) */ 0x33, /* [071] -14.0 dB: AKM[051] = -13.979 dB (diff=0.02060 dB) */ 0x36, /* [072] -13.5 dB: AKM[054] = -13.483 dB (diff=0.01707 dB) */ 0x39, /* [073] -13.0 dB: AKM[057] = -13.013 dB (diff=0.01331 dB) */ 0x3c, /* [074] -12.5 dB: AKM[060] = -12.568 dB (diff=0.06778 dB) */ 0x40, /* [075] -12.0 dB: AKM[064] = -12.007 dB (diff=0.00720 dB) */ 0x44, /* [076] -11.5 dB: AKM[068] = -11.481 dB (diff=0.01937 dB) */ 0x48, /* [077] -11.0 dB: AKM[072] = -10.984 dB (diff=0.01585 dB) */ 0x4c, /* [078] -10.5 dB: AKM[076] = -10.515 dB (diff=0.01453 dB) */ 0x51, /* [079] -10.0 dB: AKM[081] = -9.961 dB (diff=0.03890 dB) */ 0x55, /* [080] -9.5 dB: AKM[085] = -9.542 dB (diff=0.04243 dB) */ 0x5a, /* [081] -9.0 dB: AKM[090] = -9.046 dB (diff=0.04595 dB) */ 0x60, /* [082] -8.5 dB: AKM[096] = -8.485 dB (diff=0.01462 dB) */ 0x66, /* [083] -8.0 dB: AKM[102] = -7.959 dB (diff=0.04120 dB) */ 0x6c, /* [084] -7.5 dB: AKM[108] = -7.462 dB (diff=0.03767 dB) */ 0x72, /* [085] -7.0 dB: AKM[114] = -6.993 dB (diff=0.00729 dB) */ 0x79, /* [086] -6.5 dB: AKM[121] = -6.475 dB (diff=0.02490 dB) */ 0x80, /* [087] -6.0 dB: AKM[128] = -5.987 dB (diff=0.01340 dB) */ 0x87, /* [088] -5.5 dB: AKM[135] = -5.524 dB (diff=0.02413 dB) */ 0x8f, /* [089] -5.0 dB: AKM[143] = -5.024 dB (diff=0.02408 dB) */ 0x98, /* [090] -4.5 dB: AKM[152] = -4.494 dB (diff=0.00607 dB) */ 0xa1, /* [091] -4.0 dB: AKM[161] = -3.994 dB (diff=0.00571 dB) */ 0xaa, /* [092] -3.5 dB: AKM[170] = -3.522 dB (diff=0.02183 dB) */ 0xb5, /* [093] -3.0 dB: AKM[181] = -2.977 dB (diff=0.02277 dB) */ 0xbf, /* [094] -2.5 dB: AKM[191] = -2.510 dB (diff=0.01014 dB) */ 0xcb, /* [095] -2.0 dB: AKM[203] = -1.981 dB (diff=0.01912 dB) */ 0xd7, /* [096] -1.5 dB: AKM[215] = -1.482 dB (diff=0.01797 dB) */ 0xe3, /* [097] -1.0 dB: AKM[227] = -1.010 dB (diff=0.01029 dB) */ 0xf1, /* [098] -0.5 dB: AKM[241] = -0.490 dB (diff=0.00954 dB) */ 0xff, /* [099] +0.0 dB: AKM[255] = +0.000 dB (diff=0.00000 dB) */ }; static void hr222_config_akm(struct pcxhr_mgr *mgr, unsigned short data) { unsigned short mask = 0x8000; /* activate access to codec registers */ PCXHR_INPB(mgr, PCXHR_XLX_HIFREQ); while (mask) { PCXHR_OUTPB(mgr, PCXHR_XLX_DATA, data & mask ? PCXHR_DATA_CODEC : 0); mask >>= 1; } /* termiate access to codec registers */ PCXHR_INPB(mgr, PCXHR_XLX_RUER); } static int hr222_set_hw_playback_level(struct pcxhr_mgr *mgr, int idx, int level) { unsigned short cmd; if (idx > 1 || level < 0 || level >= ARRAY_SIZE(g_hr222_p_level)) return -EINVAL; if (idx == 0) cmd = AKM_LEFT_LEVEL_CMD; else cmd = AKM_RIGHT_LEVEL_CMD; /* conversion from PmBoardCodedLevel to AKM nonlinear programming */ cmd += g_hr222_p_level[level]; hr222_config_akm(mgr, cmd); return 0; } static int hr222_set_hw_capture_level(struct pcxhr_mgr *mgr, int level_l, int level_r, int level_mic) { /* program all input levels at the same time */ unsigned int data; int i; if (!mgr->capture_chips) return -EINVAL; /* no PCX22 */ data = ((level_mic & 0xff) << 24); /* micro is mono, but apply */ data |= ((level_mic & 0xff) << 16); /* level on both channels */ data |= ((level_r & 0xff) << 8); /* line input right channel */ data |= (level_l & 0xff); /* line input left channel */ PCXHR_INPB(mgr, PCXHR_XLX_DATA); /* activate input codec */ /* send 32 bits (4 x 8 bits) */ for (i = 0; i < 32; i++, data <<= 1) { PCXHR_OUTPB(mgr, PCXHR_XLX_DATA, (data & 0x80000000) ? PCXHR_DATA_CODEC : 0); } PCXHR_INPB(mgr, PCXHR_XLX_RUER); /* close input level codec */ return 0; } static void hr222_micro_boost(struct pcxhr_mgr *mgr, int level); int hr222_sub_init(struct pcxhr_mgr *mgr) { unsigned char reg; mgr->board_has_analog = 1; /* analog always available */ mgr->xlx_cfg = PCXHR_CFG_SYNCDSP_MASK; reg = PCXHR_INPB(mgr, PCXHR_XLX_STATUS); if (reg & PCXHR_STAT_MIC_CAPS) mgr->board_has_mic = 1; /* microphone available */ snd_printdd("MIC input available = %d\n", mgr->board_has_mic); /* reset codec */ PCXHR_OUTPB(mgr, PCXHR_DSP_RESET, PCXHR_DSP_RESET_DSP); msleep(5); mgr->dsp_reset = PCXHR_DSP_RESET_DSP | PCXHR_DSP_RESET_MUTE | PCXHR_DSP_RESET_CODEC; PCXHR_OUTPB(mgr, PCXHR_DSP_RESET, mgr->dsp_reset); /* hr222_write_gpo(mgr, 0); does the same */ msleep(5); /* config AKM */ hr222_config_akm(mgr, AKM_POWER_CONTROL_CMD); hr222_config_akm(mgr, AKM_CLOCK_INF_55K_CMD); hr222_config_akm(mgr, AKM_UNMUTE_CMD); hr222_config_akm(mgr, AKM_RESET_OFF_CMD); /* init micro boost */ hr222_micro_boost(mgr, 0); return 0; } /* calc PLL register */ /* TODO : there is a very similar fct in pcxhr.c */ static int hr222_pll_freq_register(unsigned int freq, unsigned int *pllreg, unsigned int *realfreq) { unsigned int reg; if (freq < 6900 || freq > 219000) return -EINVAL; reg = (28224000 * 2) / freq; reg = (reg - 1) / 2; if (reg < 0x100) *pllreg = reg + 0xC00; else if (reg < 0x200) *pllreg = reg + 0x800; else if (reg < 0x400) *pllreg = reg & 0x1ff; else if (reg < 0x800) { *pllreg = ((reg >> 1) & 0x1ff) + 0x200; reg &= ~1; } else { *pllreg = ((reg >> 2) & 0x1ff) + 0x400; reg &= ~3; } if (realfreq) *realfreq = (28224000 / (reg + 1)); return 0; } int hr222_sub_set_clock(struct pcxhr_mgr *mgr, unsigned int rate, int *changed) { unsigned int speed, pllreg = 0; int err; unsigned realfreq = rate; switch (mgr->use_clock_type) { case HR22_CLOCK_TYPE_INTERNAL: err = hr222_pll_freq_register(rate, &pllreg, &realfreq); if (err) return err; mgr->xlx_cfg &= ~(PCXHR_CFG_CLOCKIN_SEL_MASK | PCXHR_CFG_CLOCK_UER1_SEL_MASK); break; case HR22_CLOCK_TYPE_AES_SYNC: mgr->xlx_cfg |= PCXHR_CFG_CLOCKIN_SEL_MASK; mgr->xlx_cfg &= ~PCXHR_CFG_CLOCK_UER1_SEL_MASK; break; case HR22_CLOCK_TYPE_AES_1: if (!mgr->board_has_aes1) return -EINVAL; mgr->xlx_cfg |= (PCXHR_CFG_CLOCKIN_SEL_MASK | PCXHR_CFG_CLOCK_UER1_SEL_MASK); break; default: return -EINVAL; } hr222_config_akm(mgr, AKM_MUTE_CMD); if (mgr->use_clock_type == HR22_CLOCK_TYPE_INTERNAL) { PCXHR_OUTPB(mgr, PCXHR_XLX_HIFREQ, pllreg >> 8); PCXHR_OUTPB(mgr, PCXHR_XLX_LOFREQ, pllreg & 0xff); } /* set clock source */ PCXHR_OUTPB(mgr, PCXHR_XLX_CFG, mgr->xlx_cfg); /* codec speed modes */ speed = rate < 55000 ? 0 : 1; if (mgr->codec_speed != speed) { mgr->codec_speed = speed; if (speed == 0) hr222_config_akm(mgr, AKM_CLOCK_INF_55K_CMD); else hr222_config_akm(mgr, AKM_CLOCK_SUP_55K_CMD); } mgr->sample_rate_real = realfreq; mgr->cur_clock_type = mgr->use_clock_type; if (changed) *changed = 1; hr222_config_akm(mgr, AKM_UNMUTE_CMD); snd_printdd("set_clock to %dHz (realfreq=%d pllreg=%x)\n", rate, realfreq, pllreg); return 0; } int hr222_get_external_clock(struct pcxhr_mgr *mgr, enum pcxhr_clock_type clock_type, int *sample_rate) { int rate, calc_rate = 0; unsigned int ticks; unsigned char mask, reg; if (clock_type == HR22_CLOCK_TYPE_AES_SYNC) { mask = (PCXHR_SUER_CLOCK_PRESENT_MASK | PCXHR_SUER_DATA_PRESENT_MASK); reg = PCXHR_STAT_FREQ_SYNC_MASK; } else if (clock_type == HR22_CLOCK_TYPE_AES_1 && mgr->board_has_aes1) { mask = (PCXHR_SUER1_CLOCK_PRESENT_MASK | PCXHR_SUER1_DATA_PRESENT_MASK); reg = PCXHR_STAT_FREQ_UER1_MASK; } else { snd_printdd("get_external_clock : type %d not supported\n", clock_type); return -EINVAL; /* other clocks not supported */ } if ((PCXHR_INPB(mgr, PCXHR_XLX_CSUER) & mask) != mask) { snd_printdd("get_external_clock(%d) = 0 Hz\n", clock_type); *sample_rate = 0; return 0; /* no external clock locked */ } PCXHR_OUTPB(mgr, PCXHR_XLX_STATUS, reg); /* calculate freq */ /* save the measured clock frequency */ reg |= PCXHR_STAT_FREQ_SAVE_MASK; if (mgr->last_reg_stat != reg) { udelay(500); /* wait min 2 cycles of lowest freq (8000) */ mgr->last_reg_stat = reg; } PCXHR_OUTPB(mgr, PCXHR_XLX_STATUS, reg); /* save */ /* get the frequency */ ticks = (unsigned int)PCXHR_INPB(mgr, PCXHR_XLX_CFG); ticks = (ticks & 0x03) << 8; ticks |= (unsigned int)PCXHR_INPB(mgr, PCXHR_DSP_RESET); if (ticks != 0) calc_rate = 28224000 / ticks; /* rounding */ if (calc_rate > 184200) rate = 192000; else if (calc_rate > 152200) rate = 176400; else if (calc_rate > 112000) rate = 128000; else if (calc_rate > 92100) rate = 96000; else if (calc_rate > 76100) rate = 88200; else if (calc_rate > 56000) rate = 64000; else if (calc_rate > 46050) rate = 48000; else if (calc_rate > 38050) rate = 44100; else if (calc_rate > 28000) rate = 32000; else if (calc_rate > 23025) rate = 24000; else if (calc_rate > 19025) rate = 22050; else if (calc_rate > 14000) rate = 16000; else if (calc_rate > 11512) rate = 12000; else if (calc_rate > 9512) rate = 11025; else if (calc_rate > 7000) rate = 8000; else rate = 0; snd_printdd("External clock is at %d Hz (measured %d Hz)\n", rate, calc_rate); *sample_rate = rate; return 0; } int hr222_read_gpio(struct pcxhr_mgr *mgr, int is_gpi, int *value) { if (is_gpi) { unsigned char reg = PCXHR_INPB(mgr, PCXHR_XLX_STATUS); *value = (int)(reg & PCXHR_STAT_GPI_MASK) >> PCXHR_STAT_GPI_OFFSET; } else { *value = (int)(mgr->dsp_reset & PCXHR_DSP_RESET_GPO_MASK) >> PCXHR_DSP_RESET_GPO_OFFSET; } return 0; } int hr222_write_gpo(struct pcxhr_mgr *mgr, int value) { unsigned char reg = mgr->dsp_reset & ~PCXHR_DSP_RESET_GPO_MASK; reg |= (unsigned char)(value << PCXHR_DSP_RESET_GPO_OFFSET) & PCXHR_DSP_RESET_GPO_MASK; PCXHR_OUTPB(mgr, PCXHR_DSP_RESET, reg); mgr->dsp_reset = reg; return 0; } int hr222_manage_timecode(struct pcxhr_mgr *mgr, int enable) { if (enable) mgr->dsp_reset |= PCXHR_DSP_RESET_SMPTE; else mgr->dsp_reset &= ~PCXHR_DSP_RESET_SMPTE; PCXHR_OUTPB(mgr, PCXHR_DSP_RESET, mgr->dsp_reset); return 0; } int hr222_update_analog_audio_level(struct snd_pcxhr *chip, int is_capture, int channel) { snd_printdd("hr222_update_analog_audio_level(%s chan=%d)\n", is_capture ? "capture" : "playback", channel); if (is_capture) { int level_l, level_r, level_mic; /* we have to update all levels */ if (chip->analog_capture_active) { level_l = chip->analog_capture_volume[0]; level_r = chip->analog_capture_volume[1]; } else { level_l = HR222_LINE_CAPTURE_LEVEL_MIN; level_r = HR222_LINE_CAPTURE_LEVEL_MIN; } if (chip->mic_active) level_mic = chip->mic_volume; else level_mic = HR222_MICRO_CAPTURE_LEVEL_MIN; return hr222_set_hw_capture_level(chip->mgr, level_l, level_r, level_mic); } else { int vol; if (chip->analog_playback_active[channel]) vol = chip->analog_playback_volume[channel]; else vol = HR222_LINE_PLAYBACK_LEVEL_MIN; return hr222_set_hw_playback_level(chip->mgr, channel, vol); } } /*texts[5] = {"Line", "Digital", "Digi+SRC", "Mic", "Line+Mic"}*/ #define SOURCE_LINE 0 #define SOURCE_DIGITAL 1 #define SOURCE_DIGISRC 2 #define SOURCE_MIC 3 #define SOURCE_LINEMIC 4 int hr222_set_audio_source(struct snd_pcxhr *chip) { int digital = 0; /* default analog source */ chip->mgr->xlx_cfg &= ~(PCXHR_CFG_SRC_MASK | PCXHR_CFG_DATAIN_SEL_MASK | PCXHR_CFG_DATA_UER1_SEL_MASK); if (chip->audio_capture_source == SOURCE_DIGISRC) { chip->mgr->xlx_cfg |= PCXHR_CFG_SRC_MASK; digital = 1; } else { if (chip->audio_capture_source == SOURCE_DIGITAL) digital = 1; } if (digital) { chip->mgr->xlx_cfg |= PCXHR_CFG_DATAIN_SEL_MASK; if (chip->mgr->board_has_aes1) { /* get data from the AES1 plug */ chip->mgr->xlx_cfg |= PCXHR_CFG_DATA_UER1_SEL_MASK; } /* chip->mic_active = 0; */ /* chip->analog_capture_active = 0; */ } else { int update_lvl = 0; chip->analog_capture_active = 0; chip->mic_active = 0; if (chip->audio_capture_source == SOURCE_LINE || chip->audio_capture_source == SOURCE_LINEMIC) { if (chip->analog_capture_active == 0) update_lvl = 1; chip->analog_capture_active = 1; } if (chip->audio_capture_source == SOURCE_MIC || chip->audio_capture_source == SOURCE_LINEMIC) { if (chip->mic_active == 0) update_lvl = 1; chip->mic_active = 1; } if (update_lvl) { /* capture: update all 3 mutes/unmutes with one call */ hr222_update_analog_audio_level(chip, 1, 0); } } /* set the source infos (max 3 bits modified) */ PCXHR_OUTPB(chip->mgr, PCXHR_XLX_CFG, chip->mgr->xlx_cfg); return 0; } int hr222_iec958_capture_byte(struct snd_pcxhr *chip, int aes_idx, unsigned char *aes_bits) { unsigned char idx = (unsigned char)(aes_idx * 8); unsigned char temp = 0; unsigned char mask = chip->mgr->board_has_aes1 ? PCXHR_SUER1_BIT_C_READ_MASK : PCXHR_SUER_BIT_C_READ_MASK; int i; for (i = 0; i < 8; i++) { PCXHR_OUTPB(chip->mgr, PCXHR_XLX_RUER, idx++); /* idx < 192 */ temp <<= 1; if (PCXHR_INPB(chip->mgr, PCXHR_XLX_CSUER) & mask) temp |= 1; } snd_printdd("read iec958 AES %d byte %d = 0x%x\n", chip->chip_idx, aes_idx, temp); *aes_bits = temp; return 0; } int hr222_iec958_update_byte(struct snd_pcxhr *chip, int aes_idx, unsigned char aes_bits) { int i; unsigned char new_bits = aes_bits; unsigned char old_bits = chip->aes_bits[aes_idx]; unsigned char idx = (unsigned char)(aes_idx * 8); for (i = 0; i < 8; i++) { if ((old_bits & 0x01) != (new_bits & 0x01)) { /* idx < 192 */ PCXHR_OUTPB(chip->mgr, PCXHR_XLX_RUER, idx); /* write C and U bit */ PCXHR_OUTPB(chip->mgr, PCXHR_XLX_CSUER, new_bits&0x01 ? PCXHR_SUER_BIT_C_WRITE_MASK : 0); } idx++; old_bits >>= 1; new_bits >>= 1; } chip->aes_bits[aes_idx] = aes_bits; return 0; } static void hr222_micro_boost(struct pcxhr_mgr *mgr, int level) { unsigned char boost_mask; boost_mask = (unsigned char) (level << PCXHR_SELMIC_PREAMPLI_OFFSET); if (boost_mask & (~PCXHR_SELMIC_PREAMPLI_MASK)) return; /* only values form 0 to 3 accepted */ mgr->xlx_selmic &= ~PCXHR_SELMIC_PREAMPLI_MASK; mgr->xlx_selmic |= boost_mask; PCXHR_OUTPB(mgr, PCXHR_XLX_SELMIC, mgr->xlx_selmic); snd_printdd("hr222_micro_boost : set %x\n", boost_mask); } static void hr222_phantom_power(struct pcxhr_mgr *mgr, int power) { if (power) mgr->xlx_selmic |= PCXHR_SELMIC_PHANTOM_ALIM; else mgr->xlx_selmic &= ~PCXHR_SELMIC_PHANTOM_ALIM; PCXHR_OUTPB(mgr, PCXHR_XLX_SELMIC, mgr->xlx_selmic); snd_printdd("hr222_phantom_power : set %d\n", power); } /* mic level */ static const DECLARE_TLV_DB_SCALE(db_scale_mic_hr222, -9850, 50, 650); static int hr222_mic_vol_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 1; uinfo->value.integer.min = HR222_MICRO_CAPTURE_LEVEL_MIN; /* -98 dB */ /* gains from 9 dB to 31.5 dB not recommended; use micboost instead */ uinfo->value.integer.max = HR222_MICRO_CAPTURE_LEVEL_MAX; /* +7 dB */ return 0; } static int hr222_mic_vol_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_pcxhr *chip = snd_kcontrol_chip(kcontrol); mutex_lock(&chip->mgr->mixer_mutex); ucontrol->value.integer.value[0] = chip->mic_volume; mutex_unlock(&chip->mgr->mixer_mutex); return 0; } static int hr222_mic_vol_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_pcxhr *chip = snd_kcontrol_chip(kcontrol); int changed = 0; mutex_lock(&chip->mgr->mixer_mutex); if (chip->mic_volume != ucontrol->value.integer.value[0]) { changed = 1; chip->mic_volume = ucontrol->value.integer.value[0]; hr222_update_analog_audio_level(chip, 1, 0); } mutex_unlock(&chip->mgr->mixer_mutex); return changed; } static struct snd_kcontrol_new hr222_control_mic_level = { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .access = (SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_TLV_READ), .name = "Mic Capture Volume", .info = hr222_mic_vol_info, .get = hr222_mic_vol_get, .put = hr222_mic_vol_put, .tlv = { .p = db_scale_mic_hr222 }, }; /* mic boost level */ static const DECLARE_TLV_DB_SCALE(db_scale_micboost_hr222, 0, 1800, 5400); static int hr222_mic_boost_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 1; uinfo->value.integer.min = 0; /* 0 dB */ uinfo->value.integer.max = 3; /* 54 dB */ return 0; } static int hr222_mic_boost_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_pcxhr *chip = snd_kcontrol_chip(kcontrol); mutex_lock(&chip->mgr->mixer_mutex); ucontrol->value.integer.value[0] = chip->mic_boost; mutex_unlock(&chip->mgr->mixer_mutex); return 0; } static int hr222_mic_boost_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_pcxhr *chip = snd_kcontrol_chip(kcontrol); int changed = 0; mutex_lock(&chip->mgr->mixer_mutex); if (chip->mic_boost != ucontrol->value.integer.value[0]) { changed = 1; chip->mic_boost = ucontrol->value.integer.value[0]; hr222_micro_boost(chip->mgr, chip->mic_boost); } mutex_unlock(&chip->mgr->mixer_mutex); return changed; } static struct snd_kcontrol_new hr222_control_mic_boost = { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .access = (SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_TLV_READ), .name = "MicBoost Capture Volume", .info = hr222_mic_boost_info, .get = hr222_mic_boost_get, .put = hr222_mic_boost_put, .tlv = { .p = db_scale_micboost_hr222 }, }; /******************* Phantom power switch *******************/ #define hr222_phantom_power_info snd_ctl_boolean_mono_info static int hr222_phantom_power_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_pcxhr *chip = snd_kcontrol_chip(kcontrol); mutex_lock(&chip->mgr->mixer_mutex); ucontrol->value.integer.value[0] = chip->phantom_power; mutex_unlock(&chip->mgr->mixer_mutex); return 0; } static int hr222_phantom_power_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_pcxhr *chip = snd_kcontrol_chip(kcontrol); int power, changed = 0; mutex_lock(&chip->mgr->mixer_mutex); power = !!ucontrol->value.integer.value[0]; if (chip->phantom_power != power) { hr222_phantom_power(chip->mgr, power); chip->phantom_power = power; changed = 1; } mutex_unlock(&chip->mgr->mixer_mutex); return changed; } static struct snd_kcontrol_new hr222_phantom_power_switch = { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Phantom Power Switch", .info = hr222_phantom_power_info, .get = hr222_phantom_power_get, .put = hr222_phantom_power_put, }; int hr222_add_mic_controls(struct snd_pcxhr *chip) { int err; if (!chip->mgr->board_has_mic) return 0; /* controls */ err = snd_ctl_add(chip->card, snd_ctl_new1(&hr222_control_mic_level, chip)); if (err < 0) return err; err = snd_ctl_add(chip->card, snd_ctl_new1(&hr222_control_mic_boost, chip)); if (err < 0) return err; err = snd_ctl_add(chip->card, snd_ctl_new1(&hr222_phantom_power_switch, chip)); return err; }